

Advance Technical Information

GenX3™ 1200V IGBT w/ Diode

IXGR55N120A3H1

(Electrically Isolated Tab)

Ultra-Low-Vsat PT IGBTs for up to 3kHz Switching

$\mathbf{V}_{\mathtt{CES}}$	=	1200V
C110	=	30A
	<	2.35V

SOPLUS 247 [™]	
G	Isolated Tab

G = Gate	С	= Collector
E = Emitter		

F	ea	tu	re	S

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Anti-Parallel Ultra Fast Diode
- Optimized for Low Conduction Losses

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

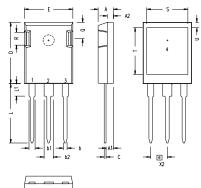
Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	1200	V	
V _{CGR}	$T_{_J} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{GE}} = 1\text{M}\Omega$	1200	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _C = 25°C (Chip Capability)	70	A	
I _{C110}	$T_{c} = 110^{\circ}C$	30	Α	
I _{F110}	$T_{c} = 110^{\circ}C$	44	Α	
I _{CM}	T _c = 25°C, 1ms	330	Α	
SSOA	$V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 3\Omega$	I _{CM} = 110	A	
(RBSOA)	Clamped Inductive Load	@ 0.8 • V _{CES}		
P _c	T _C = 25°C	200	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062 in.) from Case for 10	260	°C	
V _{ISOL}	50/60 Hz, 1 minute	2500	V~	
F _c	Mounting Force	20120/4.527	N/lb.	
Weight		5	g	

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.	
V _{GE(th)}	$I_{\rm C} = 1 {\rm mA}, V_{\rm CE} = V_{\rm GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			25	μA
	Note 1, $T_J = 125^{\circ}C$			1.5	mΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C} = 55A, V_{\rm GE} = 15V, \text{ Note 2}$ $T_{\rm L} = 125^{\circ}\text{C}$		2.20	2.35	V

Symbol (T _J = 25	Test Conditions °C, Unless Otherwise Spe		racteristic . Typ.	Values Max.
g _{fs}	$I_{\rm C} = 55A, V_{\rm CE} = 10V$, Note 2 30	45	S
C _{ies})		4340	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V,$	f = 1 MHz	300	pF
C _{res}			115	pF
Q _{g(on)})		185	nC
\mathbf{Q}_{ge}	$I_{\rm C} = 55A, V_{\rm GE} = 15V$	V , $V_{CE} = 0.5 \cdot V_{CES}$	25	nC
Q _{gc}	J		75	nC
t _{d(on)})		23	ns
t _{ri}	Inductive load, T _J =	: 25°C	42	ns
E _{on}	$I_{\rm C} = 55A, V_{\rm GE} = 15$	V	5.1	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} =$	= 3Ω	365	ns
t _{fi}	Note 3		282	ns
E _{off})		13.3	mJ
$\mathbf{t}_{d(on)}$			24	ns
t _{ri}	Inductive load, T _J =	: 125°C	46	ns
E_{on}	$I_{\rm C} = 55A, V_{\rm GE} = 15V$	1	9.5	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 0.8 \cdot V_{CES}, R_{G} =$	= 3Ω	618	ns
t _{fi}	Note 3		635	ns
E _{off}	J		29.0	mJ
R _{thJC}				0.62 °C/W
R _{thCK}			0.15	°C/W

Reverse Diode (FRED)

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			acteristic Typ.	Values Max.		
V _F		$I_F = 60A, V_{GE} = 0V, \text{ Note 2}$ $T_J = 150^{\circ}\text{C}$		1.85 1.90	2.5	V
t _{rr}	$\overline{)}$	$I_{\rm F} = 60$ A, $V_{\rm GE} = 0$ V,		200		ns
I _{RM}	J	$-di_{F}/dt = 350A/\mu s, V_{R} = 600V, T_{J} = 100^{\circ}C$		24.6		Α
R _{thJC}					0.42 °C	C/W


Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 3. Switching times & energy losses may increase for higher $V_{CE}(Clamp)$, T_{J} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

ISOPLUS247 (IXGR) Outline

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.045	.055	1.14	1.40	
b1	.075	.084	1.91	2.13	
b2	.115	.123	2.92	3.12	
С	.024	.031	0.61	0.80	
D	.819	.840	20.80	21.34	
E	.620	.635	15.75	16.13	
е	.215	BSC	5.45	BSC	
L	.780	.800	19.81	20.32	
L1	.150	.170	3.81	4.32	
Q	.220	.244	5.59	6.20	
R	.170	.190	4.32	4.83	
S	.520	.540	13.21	13.72	
T	.620	.640	15.75	16.26	
U	.065	.080	1.65	2.03	

1 - GATE 2 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER)

4 - NO CONNECTION

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.

