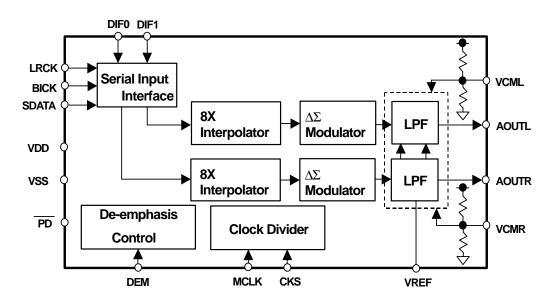
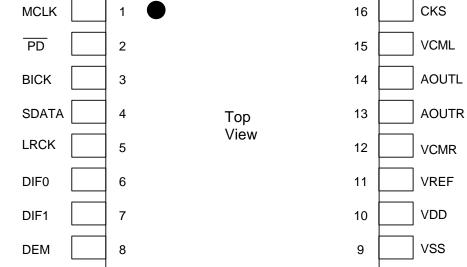
AKM


$\begin{array}{c} \textbf{AK4352} \\ \textbf{2V \& Low Power Multi-Bit } \underline{\wedge} \underline{\Sigma} \textbf{ DAC} \end{array}$

GENERAL DESCRIPTION

The AK4352 is an 18bit low voltage & power stereo DAC for digital audio system. The AK4352 uses the new developed Multi-Bit $\Delta\Sigma$ architecture, this new architecture achieves DR=94dB at low voltage operation. The AK4352 includes post filter with single-ended output and does not need any external parts. The AK4352 is suitable for the portable audio system like MD, etc as low power and small package.

FEATURES


- Multi-Bit $\Delta \Sigma$ DAC
- $_{\bullet}$ Sampling Rate Ranging: 8kHz $_{\sim}$ 50kHz
- On chip post filter
- On chip Buffer with Single-ended Output
- On chip Perfect filtering 8 times FIR interpolator Passband: 20kHz
 - Passband Ripple: \pm 0.06dB
 - Stopband Attenuation: 43dB
- Digital Audio I/F format: 2's compliment, MSB first 18bit MSB justified, 16/18bit LSB justified, I²S
- Digital de-emphasis for 44.1kHz sampling
- Master clock: 256fs or 384fs
- THD+N: -83dB@2V, -89dB@3V
- D-Range: 94dB@2V, 96dB@3V
- Output Voltage: 1.10Vpp@2V
- Low Voltage Operation: 2V (1.8 ~ 3.6V)
- Low power Dissipation: 6mW@2V
- Very Small Package: 16pin TSSOP

[AK4352]

■ Ordering Guide

AK4352VT AKD4352	-40 ~ +85°C Evaluation Board	16pin TSSOP (0.65mm pitch)
■ Pin Layout		

PIN/FUNCTION

No.	Pin Name	I/O	Function
1	MCLK	Ι	Master Clock Pin
			Power-Down Pin
2	PD	Ι	When at "L", the AK4352 is in power-down mode and is held in reset.
			The AK4352 should always be reset upon power-up.
3	BICK	Ι	Serial Bit Input Clock Pin This clock is used to latch audio data.
4	SDATA	I	Audio Data Input Pin
4	SDATA	1	L/R Clock Pin
			This input determines which audio channel is currently being input on
5	LRCK	Ι	SDATA
			pin.
6	DIF0	Ι	Digital Input Format Pin
7	DIF1	Ι	These pins select one of four input modes.
8	DEM	I	De-emphasis Enable Pin
		1	When at "H", de-emphasis of fs=44.1kHz is enabled.
9	VSS	-	Ground Pin
10	VDD	-	Power Supply Pin
11	VREF	I	Reference Voltage Input Pin
		_	Normally connected to VDD.
12	VCMR	0	Rch Common Voltage Pin
13	AOUTR	0	Rch Analog Output Pin
14	AOUTL	0	Lch Analog Output Pin
15	VCML	0	Lch Common Voltage Pin
16	CKS	Ι	Master Clock Select Pin
		-	"L": 256fs "H": 384fs

Note: All input pins should not be left floating.

ABSOLUTE MAXIMUM RATINGS					
(VSS=0V;Note 1)					
Parameter	Symbol	min	max	Units	
Power Supply	VDD	-0.3	4.6	V	
Input Current, Any Pin Except Supplies	IIN	-	±10	mA	
Input Voltage	VIND	-0.3	VDD+0.3	V	
Ambient Operating Temperature	Та	-40	85	°C	
Storage Temperature	Tstg	-65	150	°C	

Note 1. All voltages with respect to ground.

WARNING: Operation at or beyond these limits may results in permanent damage to the device. Normal operation is not guaranteed at these extremes.

RECOMMENDED OPERATING CONDITIONS						
(VSS=0V;Note 1)						
Parameter		Symbol	min	typ	max	Units
Power Supply		VDD	1.8	2.0	3.6	V
Voltage Reference	(Note 2)	VREF		-	VDD	V

Note 1. All voltages with respect to ground.

Note 2. Analog output voltage scales with the voltage of VREF. AOUT (typ.@0dB)=1.10Vpp*VREF/2.

*AKM assumes no responsibility for the usage beyond the conditions in this data sheet.

ANALOG CHARACTERISTICS

(Ta=25°C; VDD=2.0V, VREF=VDD; fs=44.1kHz; BICK=64fs; Signal Frequency=1kHz; 18bit Input Data; Measurement frequency=10Hz ~ 20kHz; $R_L \ge 10k\Omega$; unless otherwise specified)

Parameter			min	typ	max	Units
Dynamic Characteristic	s	(Note 3)				
THD+N	(0dB Outpu	ıt)		-83	-74	dB
Dynamic Range	(-60dB Out	put, A-weight)	88	94		dB
S/N	(A-weight)		88	94		dB
Interchannel Isolation			90	100		dB
DC Accuracy				-		
Interchannel Gain Mis	smatch			0.1	0.5	dB
Gain Drift			-	60	-	ppm/°C
Output Voltage		(Note 4)	1.02	1.10	1.18	Vpp
Load Resistance			10			kΩ
Power Supplies				-		
Power Supply Current						
Normal Operation	$on (\overline{PD} = "H")$					
V	'DD			3.0	4.7	mA
Power-Down Mo	ode ($\overline{PD} = "L"$)				
V	VDD	(Note 5)		10	50	μA
Power Dissipation (VI						
Normal Operation				6.0	9.4	mW
Power-Down Mo	ode	(Note 5)		20	100	μW
Power Supply Rejectio	n		-	50	-	dB

Note 3. Measured by AD725C (SHIBASOKU). Averaging mode.

In case of VDD=3.0V, THD+N: -89dB

DR: 96dB (A-weight)

S/N: 97dB (A-weight)

Note 4. Full-scale voltage (0dB). Output voltage scales with the voltage of VREF.

AOUT (typ.@0dB)=1.10Vpp*VREF/2.

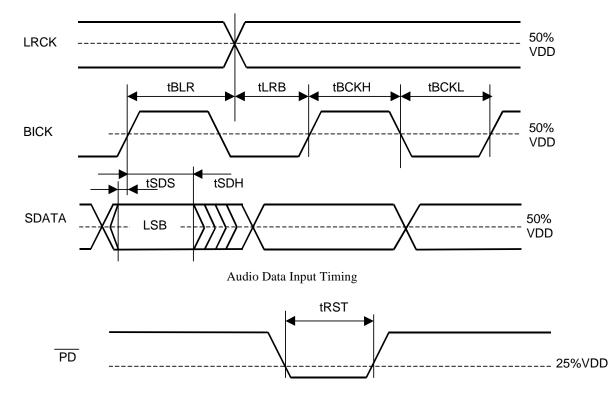
Note 5. In case of power-down mode, all digital input pins including clock pins (MCLK,BICK and LRCK) are held VDD or VSS.

		FILTER CHAR	RACTERIST	TICS		
(Ta=25°C; VI	DD=1.8 ~ 3.6V; fs=44.1kHz;	DEM= "L")				
Parameter		Symbol	min	typ	max	Units
Digital filter						
Passband	-0.1dB (Note 6)	PB	0		20.0	kHz
	-6.0dB		-	22.05	-	kHz
Stopband	(Note 6)	SB	24.1			kHz
Passband Ripp	ble	PR			± 0.06	dB
Stopband Atte	nuation	SA	43			dB
Group Delay	(Note 7)	GD	-	14.7	-	1/fs
Digital Filter +	Analog Filter					
Frequency Res	sponse 0 ~ 20.0kHz		-	± 0.2	-	dB

Note 6. The passband and stopband frequencies scale with fs.

For example, PB=0.4535*fs(@-0.1dB), SB=0.546*fs(@-43dB).

Note 7. The calculating delay time which occurred by digital filtering. This time is from setting the 18bit data of both channels to input register to the output of analog signal.


DIGITAL CHARACTERISTICS					
(Ta=25°C; VDD=1.8 ~ 3.6V)					
Parameter	Symbol	min	typ	max	Units
High-Level Input Voltage	VIH	75%VDD	-	-	V
Low-Level Input Voltage	VIL	-	-	25%VDD	V
Input Leakage Current	Iin	-	-	± 10	μΑ

	SWITCHING CHARACTERISTICS					
(Ta=25°C; VDD=1	.8 ~ 3.6V)					
Parameter		Symbol	min	typ	max	Units
Master Clock Timing	256fs:	fCLK	2.048	11.2896	12.8	MHz
_	Pulse Width Low	tCLKL	28			ns
	Pulse Width High	tCLKH	28			ns
	384fs:	fCLK	3.072	16.9344	19.2	MHz
	Pulse Width Low	tCLKL	23			ns
	Pulse Width High	tCLKH	23			ns
LRCK Frequency		fs	8	44.1	50	kHz
Serial Interface Timing	(Note 8)					
BICK Period		tBCK	312.5			ns
BICK Pulse Width	Low	tBCKL	100			ns
Pulse Width	High	tBCKH	100			ns
BICK rising to LRO	CK Edge (Note 9)	tBLR	50			ns
LRCK Edge to BIC	CK rising (Note 9)	tLRB	50			ns
SDATA Hold Time	e	tSDH	50			ns
SDATA Setup Tim	e	tSDS	50			ns
Reset Timing						
PD Pulse Width	(Note 10)	tRST	300			ns

Note 8. Refer to the operating overview section "Audio Data Interface".

Note 9. BICK rising edge must not occur at the same time as LRCK edge.

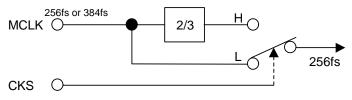
Note 10. The AK4352 can be reset by bringing $\overline{PD} = "L"$ to "H" only upon power up.

Timing Diagram

Reset Timing

OPERATION OVERVIEW

System Clock


The external clocks which are required to operate the AK4352 are MCLK (256fs/384fs) LRCK (fs), BICK (32fs~). The master clock (MCLK) should be synchronized with LRCK but the phase is not critical. The frequency of MCLK is determined by the sampling rate (LRCK) and CKS pin. Setting CKS= "L" selects an MCLK frequency of 256fs while setting CKS= "H" selects 384fs. When the 384fs is selected, the internal master clock becomes 256fs(=384fs*2/3). Table 1 illustrates standard audio word rates and corresponding frequencies used in the AK4352.

All external clocks (MCLK, BICK and LRCK) should always be present whenever the AK4352 is in normal operation mode ($\overline{PD} = "H"$). If these clocks are not provided, the AK4352 may draw excess current because the device utilizes dynamic refreshed logic internally. If the external clocks are not present, the AK4352 should be in the power-down mode($\overline{PD} = "L"$).

As the AK4352 includes the phase detection circuit for LRCK, the AK4352 adjusts the phase of LRCK automatically when the synchronization is out of phase by changing the clock frequencies. Therefore, the reset is only needed for power-up.

$I DCV (f_{2})$	M	$\mathbf{PICV}(64f_0)$	
LRCK (fs)	CKS= "L": 256fs	CKS= "H": 384fs	BICK (64fs)
32.0kHz	8.1920MHz	12.2880MHz	2.0480MHz
44.1kHz	11.2896MHz	16.9344MHz	2.8224MHz
48.0kHz	12.2880MHz	18.4320MHz	3.0720MHz

Table 1. Examples of System Clock

Audio Serial Interface Format

The AK4352 interfaces with external system by using SDATA, BICK and LRCK pins. Four types of data format are available and one of them is selected by setting DIF0 and DIF1. Format 0 is compatible with existing 16bit DACs and digital filters. Format 1 is an 18bit version of format 0. Format 2 is similar to AKM ADCs and many DSP serial ports. Format 3 is compatible with the I²S serial data protocol. In format 2 and 3, 16bit data followed by two zeros also could be input. In all modes, the serial data is MSB first and 2's complement format.

DIF1	DIF0	Mode	BICK	Figure
0	0	0: 16bit LSB Justified	≥32fs	Figure 2
0	1	1: 18bit LSB Justified	≥36fs	Figure 2
1	0	2: 18bit MSB Justified	≥36fs	Figure 3
1	1	3: I ² S Compatible	≥32fs or 36fs	Figure 4

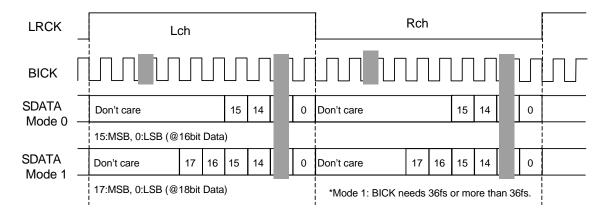
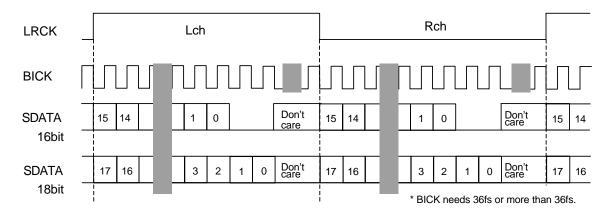
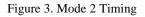
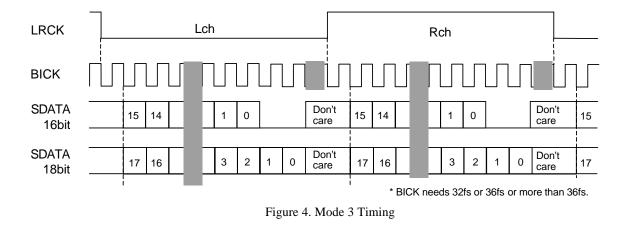





Table 2. Digital Input Formats

Figure 2. Mode 0,1 Timing

De-emphasis filter

The AK4352 includes the digital de-emphasis filter (tc= $50/15\mu$ s) by IIR filter. This filter corresponds to 44.1kHz sampling. The de-emphasis is enabled by setting DEM pin "H".

Power-down

The AK4352 is placed in the power-down mode by bringing \overline{PD} pin "L" and the anlog outputs are floating(Hi-Z). Figure 5 shows an example of the system timing at the power-down and power-up.

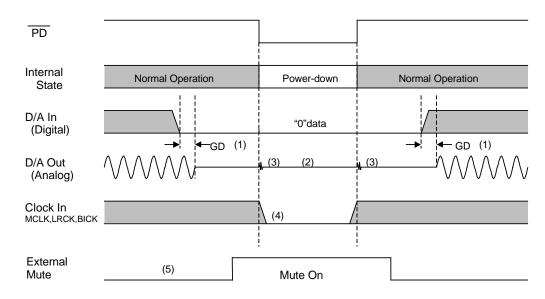


Figure 5. Power-down/up sequence example

Notes:

- (1) Analog output corresponding to digital input have the group delay (GD).
- (2) Analog outputs are floating(Hi-Z) at the power-down mode.
- (3) Click noise occures at the edges (" $\uparrow \downarrow$ ") of the falling edge of PD signal.
- (4) When the external clocks(MCLK,BICK,LRCK) are stopped, the AK4352 should be in the power-down mode.
- (5) Please mute the analog output externally if the click noise(3) influences system application. The timing example is shown in this figure.

System Reset

The AK4352 should be reset once by bringing $\overline{PD} = "L"$ upon power-up. The internal timing starts clocking by LRCK " \uparrow " upon exiting reset.

SYSTEM DESIGN

Figure 6 shows the system connection diagram. An evaluation board [AKD4352] is available in order to allow an easy study on the layout of a surrounding circuit.

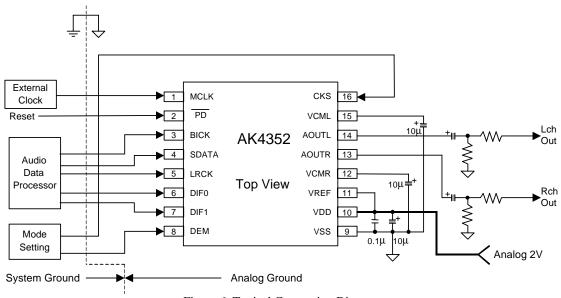


Figure 6. Typical Connection Diagram

Notes:

- LRCK = fs, BICK \ge 32fs or 36fs, MCLK = 256fs/384fs.

- When AOUT drives some capacitive load, some resistor should be added in series between AOUT and capacitive load.

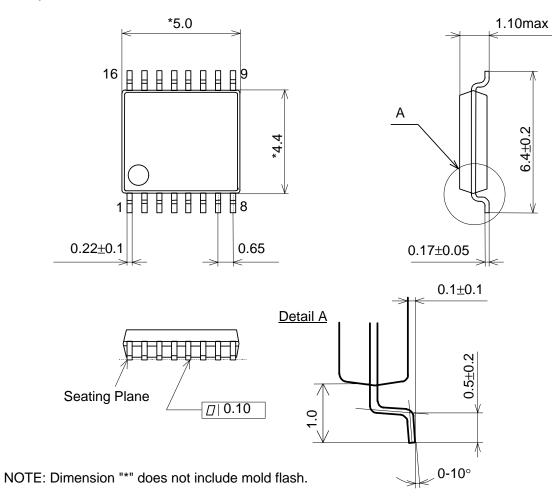
1. Grounding and Power Supply Decoupling

Figure 6 shows the power supply connection example. VDD is supplied from analog supply in system. Decoupling capacitors for high frequency should be as near to the AK4352 device as possible, with the low value ceramic capacitor between VREF and VSS being the nearest.

2. Voltage Reference

The differential Voltage between VREF and VSS sets the analog output range. VREF pin is normally connected to VDD. An electrolytic capacitor 10μ F parallel with a 0.1μ F ceramic capacitor are attached between VREF and VSS pins. VCML and VCMR pins are a signal ground of this chip. An electrolytic capacitor less than 10μ F parallel with a 0.1μ F ceramic capacitor attached between VCML, VCMR pins and VSS eliminates the effects of high frequency noise. Especially, the ceramic capacitor should be connected to these pins as near as possible.

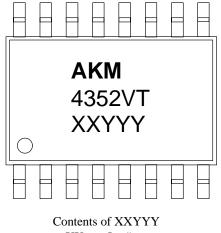
No load current may be drawn from VCML and VCMR pins. All signals, especially clocks, should be kept away from the VREF, VCML and VCMR pins in order to avoid unwanted coupling into the AK4352.


3. Analog Outputs

The analog outputs are single-ended and centered around the VCML, VCMR voltage. The output signal range is typically 1.10Vpp. If the noise generated by the delta-sigma modulator beyond the audio band would be the problem, the attenuation by external filter is required. The output voltage is a positive full scale for 7FFFH(@16bit) and a negative full scale for 8000H(@16bit). The ideal output is VCML, VCMR voltage for 0000H(@16bit).

DC offsets on analog outputs are eliminated by AC coupling since analog outputs have DC offsets of VCML, VCMR voltage + a few mV.

PACKAGE


16pin TSSOP (Unit: mm)

Package & Lead frame material

Package molding compound:	Epoxy
Lead frame material:	Cu
Lead frame surface treatment:	Solder plate

MARKING

XX: Lot# YYY: Date Code

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.
- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
 - a. A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
 - b. A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.