ProLabs

SFP-25GB-DW-C-15-E-J-C

Juniper Networks[®] Compatible TAA 10/25GBase-DWDM SFP28 Transceiver Dual-Rate 100GHz (SMF, Tunable, 15km, LC, DOM, -20 to 85C)

Features:

- SFF-8432 and SFF-8472 Compliant
- Duplex LC Connector
- 100GHz Channel Spacing
- Supports 24.33024G, 25.78125Gbps (with FEC); 9.8304G,
- 10.1376G, 10.3125Gbps
- Extended Temperature -20 to 85 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

NAME AND ADDRESS OF AD

Applications:

- 25GBase
- Access, Metro and Enterprise

Product Description

This Juniper Networks[®] SFP28 transceiver provides 10/25GBase-DWDM throughput up to 15km over single-mode fiber (SMF) using a tunable wavelength via an LC connector. It is guaranteed to be 100% compatible with the equivalent Juniper Networks[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 061722

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4.
- ESD to the LC Receptacle: compatible with IEC 61000-4-3.
- EMI/EMC: compatible with FCC Part 15 Subpart B Rules, EN55022:2010.
- Laser Eye Safety: compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1, 2.
- RoHS: compliant with EU RoHS 2.0 directive 2015/863/EU.

DWDM Wavelength ITU Channels - 100 GHz Spacing

ITU Channel	Center Wavelength (nm)	Frequency (THz)	ITU Channel	Center Wavelength (nm)	Frequency (THz)
14	1566.31	191.4	38	1546.92	193.8
15	1565.50	191.5	39	1546.12	193.9
16	1564.68	191.6	40	1545.32	194.0
17	1563.86	191.7	41	1544.53	194.1
18	1563.05	191.8	42	1543.73	194.2
19	1562.23	191.9	43	1542.94	194.3
20	1561.42	192.0	44	1542.14	194.4
21	1560.61	192.1	45	1541.35	194.5
22	1559.79	192.2	46	1540.56	194.6
23	1558.98	192.3	47	1539.77	194.7
24	1558.17	192.4	48	1538.98	194.8
25	1557.36	192.5	49	1538.19	194.9
26	1556.55	192.6	50	1537.4	195.0
27	1555.75	192.7	51	1536.61	195.1
28	1554.94	192.8	52	1535.82	195.2
29	1554.13	192.9	53	1535.04	195.3
30	1553.33	193.0	54	1534.25	195.4
31	1552.52	193.1	55	1533.47	195.5
32	1551.72	193.2	56	1532.68	195.6
33	1550.92	193.3	57	1531.9	195.7
34	1550.12	193.4	58	1531.12	195.8
35	1549.32	193.5	59	1530.33	195.9
36	1548.51	193.6	60	1529.55	196.0
37	1547.72	193.7	61	1528.77	196.1

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	0	3.3	3.6	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	-20		85	°C
Operating Humidity	RH	0		85	%
Data Rate	DR	24.33024 9.8304		25.78125 10.3125	Gbps
Data Rate Accuracy		-100		100	ppm
9/125µm G.652 SMF				15	km

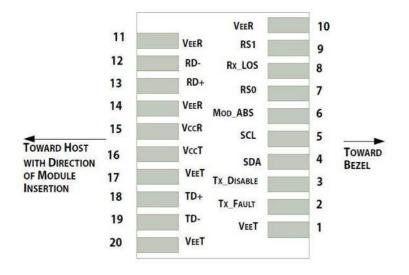
Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Power Supply Voltage	Vcc	3.135	3.30	3.465	V		
Power Dissipation	P _{DISS}			2.5	W	1	
Power Supply Current	Icc			0.76	A		
Transmitter							
Data Rate	DR	24.33024 9.8304		25.78125 10.3125	Gbps	CDR Bypass	
Differential Voltage pk-pk	VIN,pp	180		900	mV		
Tx Differential Input Impendence	ZIN		100		Ω		
Transmitter Disable Voltage	VD	2		Vee+ 0.3	V		
Transmitter Enable Voltage	VEN	0		0.8	V		
Receiver							
Data Rate	DR	24.33024 9.8304		25.78125 10.3125	Gbps	CDR Bypass	
Differential Voltage pk-pk	VIN,pp	450	600	900	mV		
Rx Differential Output Impendence	ZOUT		100		Ω		
LOS Assert Voltage	VLOSA	2.4		Vcc	V		
LOS De-Assert Voltage	VLOSD	Vee		Vee+0.4	V		
Eye Height	EH15	228			mV		
Eye Width	EW15	0.57			UI		
Vertical Eye Closure	VEC			5.5	dB		

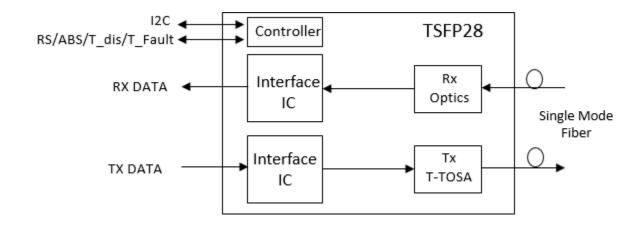
Notes:

1. Power dissipation is less than 2.5W when supply voltage is 3.3V.

Optical Characteristics

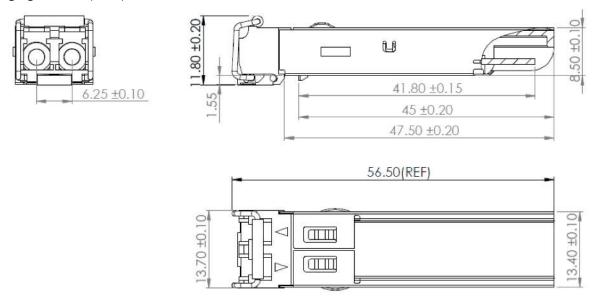

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Output Average Power	PO	0		4	dBm	
Wavelength Range	λC	1528.77		1566.31	nm	
Wavelength Accuracy		-12.5		12.5	GHz	
Frequency Range		191.3		196.0	THz	
Channel Spacing			100		GHz	
Extinction Ratio	ER	3.5			dB	
Side-Mode Suppression Ratio	SMSR	30			dB	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}	{0.31, 0.4, 0.45, 0.34, 0.38, 0.4} Hit ratio 5×10 ⁻⁵ hits per sample					
Receiver						
Frequency Range		191.3		196.0	THz	
Saturation Power		-2		-23	dBm	
Receiver Sensitivity	S			-14 (5e ⁻⁵ FEC)	dBm	
Receiver Sensitivity (After 15km)	S			-14 (5e ⁻⁵ FEC)	dBm	
LOS Assert	LOSA	-30			dBm	
LOS De-Assert	LOSD			-16	dBm	
LOS Hysteresis		0.5			dB	
SRS Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}	{0.31, 0.4, 0.45, 0.34, 0.38, 0.4}					

Pin Descriptions

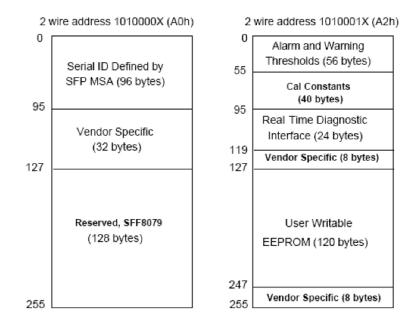

Pin	Symbol	Name	Ref.
1	VeeT	Transmitter Ground.	1
2	Tx_Fault	Transmitter Fault Indication.	
3	Tx_Disable	Disables the transmitter or laser output.	2
4	SDA	2-Wire Serial Interface Data.	2
5	SCL	2-Wire Serial Interface Clock.	2
6	Mod_ABS	Indicates the module online state. This pin is connected to the VeeT or VeeR pin.	
7	RSO	Selects a rate for the module. This pin is connected to the $33k\Omega$ resistor.	
8	LOS	Indicates a loss of received signals.	2
9	RS1	Selects a rate for the module. This pin is connected to the $33k\Omega$ resistor.	
10	VeeR	Receiver Ground.	1
11	VeeR	Receiver Ground 1.	1
12	RD-	Inverse Received Data Output.	
13	RD+	Received Data Output.	
14	VeeR	Receiver Ground.	1
15	VccR	+3.3V Receiver Power.	1
16	VccT	+3.3V Transmitter Power.	1
17	VeeT	Transmitter Ground.	1
18	TD+	Transmit Data Input.	
19	TD-	Inverse Transmit Data Input.	
20	VeeT	Transmitter Ground.	1

Notes:

- 1. The ground of the module (operating module ground) and that of the module shell are separate from each other.
- 2. $4.7k\Omega 10k\Omega$ resistor is used on the module to pull the output up to 3.15 3.45V.


Pin-Out of Connector Block on Host Board

Transceiver Block Diagram


Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map-specific data field description is as below:

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600