EVL3438-TL-00A

2A, 16V, High-Efficiency, Fully Integrated, **Synchronous Boost Converter Evaluation Board**

DESCRIPTION

The EVL3438-TL-00A is an evaluation board designed to demonstrate the capabilities of the MP3438, a 1.2MHz, fixed-frequency, highefficiency, fully integrated, synchronous boost converter with a wide input supply range.

The MP3438 starts from an input voltage (V_{IN}) as low as 2.7V and supports up to 2A of switching current limit with integrated, low on resistance power MOSFETs.

The MP3438 adopts constant-off-time (COT) control topology to provide fast transient

response. The MP3438 also supports automatic pass-through functionality when V_{IN} exceeds V_{OUT-SET}, which can support high efficiency even when the input exceeds the output regulation.

The MP3438 is available in a SOT583 (1.6mmx2.1mm) package.

It is recommended to read the MP3438 datasheet prior to making any changes to the EVL3438-TL-00A.

PERFORMANCE SUMMARY

Specifications are at $T_A = 25$ °C, unless otherwise noted.

Parameters	Conditions	Value
Input voltage (V _{IN}) range		3V to 10V
Output voltage (V _{OUT})	V _{IN} = 3V to 10V, I _{OUT} = 0A to 0.3A	12V
Maximum output current (I _{OUT})	V _{IN} = 3V to 10V	0.3A to 1.2A (1)
Full load efficiency	V _{IN} = 3.3V, V _{OUT} = 12V, I _{OUT} = 0.3A, f _{SW} = 1.2MHz	91.2%
Switching frequency (fsw)		1.2MHz

Note:

The maximum I_{OUT} range is affected by V_{IN}. See the Load Capability curve on page 5 for more details. 1)

Optimized Performance with MPS Inductor MPL-AL4020 Series

EVALUATION BOARD

LxWxH (5.1cmx5.1cmx0.6cm) 2 Layers, 1oz/1oz

Board Number	MPS IC Number	
EVL3438-TL-00A	MP3438GTL	

QUICK START GUIDE

The EVL3438-TL-00A evaluation board is easy to set up and use to evaluate the performance of the MP3438. For proper measurement equipment set-up, refer to Figure 1 and follow the steps below:

- 1. Preset the power supply (V_{IN}) between 3V and 10V, then turn off the power supply.
- 2. Connect the power supply terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 3. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
- 4. After making the connections, turn on the power supply.
- 5. Limit the inrush current through the high-side MOSFET (HS-FET) body diode to below 6A. Refer to the Input Start-Up Inrush Current Control section in the MP3438 datasheet for more details.
- 6. Check for the proper output voltage (V_{OUT}) between the SENSE VOUT to GND terminals.
- 7. Once the proper V_{OUT} is established, adjust the load within the operating range, then measure the efficiency, output ripple voltage, and other parameters.
- 8. After completing all tests, adjust the load to 0A, then turn off the input power supply.
- 9. If the auto-pass-through function is required, increase input voltage (V_{IN}) to significantly exceed $V_{OUT-SET}$. The MP3438 enters pass-through automatically.

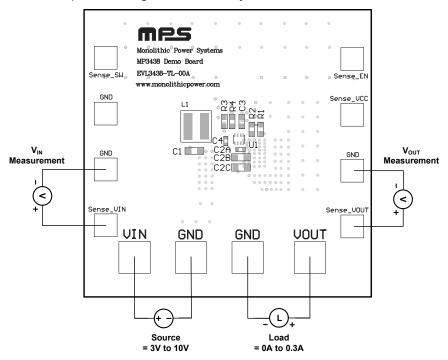


Figure 1: Proper Measurement Equipment Set-Up

EVL3438-TL-00A Rev. 1.0 MonolithicPower.com 2
12/23/2021 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

EVALUATION BOARD SCHEMATIC

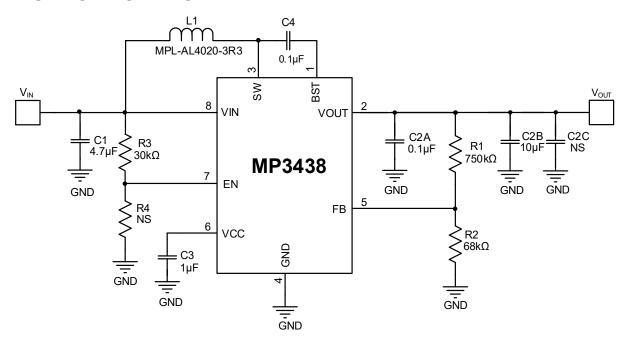
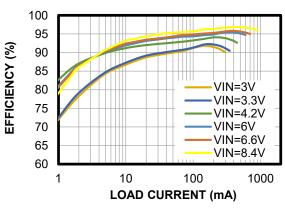
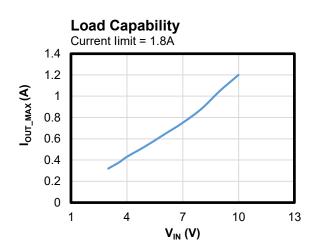


Figure 2: Evaluation Board Schematic

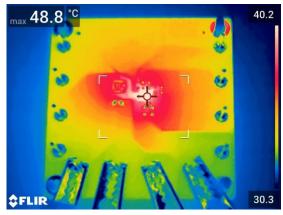
EVL3438-TL-00A BILL OF MATERIALS


Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
1	C1	4.7µF	Ceramic capacitor, 25V, X7S	0805	Murata	GRM21BC71E475KE11L
2	C2A, C4	0.1µF	Ceramic capacitor, 25V, X7R	0402	Murata	GRM155R71E104ME14D
1	C2B	10µF	Ceramic capacitor, 25V, X5R	0805	Murata	GRM21BR61E106KE43L
1	C3	1µF	Ceramic capacitor, 10V, X5R	0603	Murata	GRM188R61A105KA61D
1	R1	750kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-07750KL
1	R2	68kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0768KL
1	R3	30kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0730KL
0	R4, C2C	NS				
1	L1	3.3µH	Inductor, R_{DC} = 34.5m Ω , I _{SAT} = 5.2A	SMD	MPS	MPL-AL4020-3R3
1	U1	MP3438	2A, 16V, synchronous boost converter	SOT583	MPS	MP3438GTL

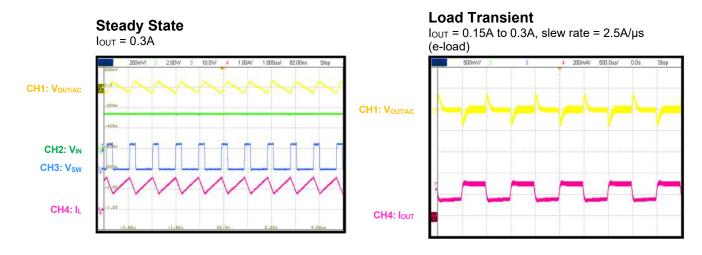


EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board, $V_{IN} = 3.3V$, $V_{OUT} = 12V$, L = 3.3 μ H, $I_{OUT} = 0.3A$, $T_A = 25$ °C, unless otherwise noted.


Efficiency vs. Load Current

Thermal Performance


V_{IN} = 3.3V, I_{OUT} = 0.3A, T_A = 30°C, no forced airflow

EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board, V_{IN} = 3.3V, V_{OUT} = 12V, L = 3.3 μ H, I_{OUT} = 0.3A, T_A = 25°C, unless otherwise noted.

PCB LAYOUT

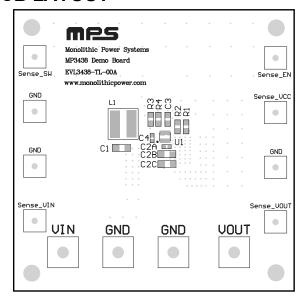


Figure 3: Top Silk

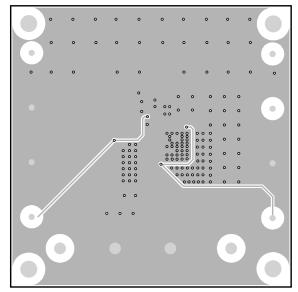


Figure 5: Bottom Layer

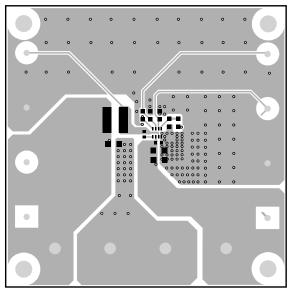


Figure 4: Top Layer

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	1/18/2022	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

8