





## Application :

**RISH** Master **3480** measures important electrical parameters & replaces the multiple analog panel meters. It measures electrical parameters like AC current, Voltage, frequency, active energy import & active energy export, Current Demand, kW Demand, kVA Demand and Max Current Demand, Max kW Demand and Max kVA Demand. The instrument has optional output as one pulse output or two pulse output for energy measurement.

## **Product Features:**

#### Touch screen graphics LCD:

Rish Master 3480 has touch sensible color graphics LCD display with resolution of 320x240.

#### On site programmable PT/CT ratios:

It is possible to program primary of external potential Transformer (PT), primary of external Current Transformer (CT) on site locally by entering into Programming mode or remotely via MODBUS (RS485)

### User selectable CT Secondary 5A/1A:

The secondary of external Current Transformer (CT) can be programmed on site to either 5A or 1A locally by entering into Programming mode or remotely via MODBUS (Rs485)

#### User selectable PT Secondary:

The secondary of external potential Transformer (PT) can be programmed on site locally by entering into Programming mode or remotely via MODBUS (RS485)

#### User selectable 3 phase 3W or 4W unbalanced network:

User can program on site the network connection as either 3 Phase 3 Wire or 4 Wire locally by entering into Programming mode or remotely via MODBUS (RS485).

### Low back depth:

The instrument has very low back depth (behind the panel) of less than 80 mm in spite of optional features like pulse output

#### Onsite selection of Auto scroll / Fixed Screen:

User can set the display in auto scrolling mode or fixed screen mode can be programmed locally by entering into Programming mode or remotely via MODBUS (RS485).

### Phase reversal indication:

The instrument can detect wrong phase sequence or failure of one of the input voltages and displays "phase" error message.

#### Energy measurement (Import and Export):

Active energy (kWh), Reactive energy (kVArh), Apparent energy (kVAh) & Ampere Hour (kAh). Any of the parameters can be freely assigned to 2 optional pulse outputs.

#### True RMS measurement:

The instrument measures distorted waveform up to 15th Harmonic.

User selectable Low Current suppression (below 30 mA):

User can suppress the readings below 30 mA in the current measurement by onsite programming if required.

#### Min Max storage of parameters possible:

The instrument stores minimum and maximum values for System

Voltage and System Current. Every 40 sec minimum and maximum readings are updated.

## Number of parameters measured: more than 46:

The instrument measures more than 46 electrical parameters of 3 Phase network.

#### Parameter Screen recall:

In case of power failure, the instrument memorizes the last displayed screen. The displayed screen will get memorized only if user keeps this screen for minimum 40 sec duration before power failure for fixed screen mode.

## Data Sheet RISH Master 3480



### Phasor Diagram:

Pictorial representation of all 3 Phases (Voltage & Current) in terms of vectors.

#### Custom color setting:

User can assign individual color for each Phase as per the application requirement through display. **WaveForm:** 

Pictorial representation of all 3 phases Current & voltage in terms of sinusoidal waveform.

#### Total Harmonic Distortion (THD):

The instrument can measures per phase (%) THD of voltage and (%) THD of current.

#### Energy Count storage:

In case of power failure, the instrument memorizes the last energy count. **Programmable Energy format & Energy rollover count:** 

Customer can assign the format for energy display on MODBUS (RS485) in terms of W, kW or MW. Additional to this, customer can also set a rollover count from 7 to 14 digits depending on the energy format.

## Hour Run, ON Hour, Number of Interruptions:

Hour run records the number of hours load is connected. ON Hour is the period for which the auxiliary supply is ON. Number of Interruptions indicates the number of times the Auxiliary Supply was interrupted. **Optional MODBUS (RS485) Output:** 

The optional ModBus output enables the instrument to transmit all the measured parameters over standard MODBUS (Rs485).

## User Assignable Registers for MODBUS:

Customer can assign MODBUS register address as per his need for faster response time.

### Optional Pulse Output (1 or 2 Relay output) / Limit switch:

The instrument can be programmed as Pulse output or Limit Switch. **Pulse Output:** The optional pulse output is a potential free, very fast acting relay contact which can be used to drive an external mechanical counter for energy measurement.

Limit switch: The instrument will trip the one or two relays if the

programmed parameter exceeds the programmed High & Low Limits. Configuration of the Instrument via MODBUS:

## The instrument settings can be configured locally by entering into Programming mode or remotely via MODBUS (Rs485)

Optional Analog Outputs (1 or 2 Outputs):

1 or 2 Analog outputs can be programmed from a list of input parameters. **Ethernet Interface (Modbus TCP/IP Protocol)** 

The optional Ethernet Interface output transmit all the measured parameters on Modbus TCP/IP. Also user can configure their instrument via Ethernet Interface.

#### Enclosure Protection for dust and water:

Conforms to IP 54 (front face) as per IEC60529

Compliance to International Safety standards:

Compliance to International Safety standard IEC 61010-1-2001

## **EMC** Compatibility:

Compliance to International standard IEC 61326



## **Technical Specifications:**

## Input Voltage: Nominal input voltage (AC RMS)

System PT primary values Max continuous input voltage

Input Current: Nominal input current System CT secondary values System CT primary values Max continuous input current

Auxiliary Supply: ACDC Auxiliary Supply

AC Auxiliary supply frequency range

VA Burden: Nominal input voltage burden Nominal input current burden Auxillary Supply burden

Overload Withstand: Voltage Current

### **Operating Measuring Ranges**

Voltage Current Frequency Power Factor

### Reference conditions for Accuracy:

Reference temperature Input waveform Input frequency Auxiliary supply voltage Auxiliary supply frequency Voltage Range

Current Range

Power

Power Factor / Phase Angle

 $\label{eq:linear} \begin{array}{l} \mbox{Phase} -\mbox{Neutral 57.7 - 346} \ V_{L-N} \\ \mbox{Line-Line} \ 100 - 600 \ V_{L-L} \\ \mbox{100VLL to 692kVLL programmable on site.} \\ \mbox{120\% of rated value} \end{array}$ 

1A/5A AC RMS. 1A & 5A programmable on site. From 1A up to 9999A (for 1 or 5 Amp ) 120% of rated value

60-300 VAC /DC  $\,$  OR 65-300 VAC /DC  $\,$  for Ethernet Option OR 12V... 60 VAC DC

45 to 66 Hz

< 0.35 VA approx. per phase < 0.3 VA approx. per phase < 6.5 VA approx. < 8 VA approx. for Analog / Ethernet option

2 x rated value for 1 second, repeated 10 times at 10 second intervals 20x rated value for 1 second, repeated 5 times at 5 min

10... 120% of rated value 5 ... 120% of rated value 40...70 Hz 0.5 Lag ... 1... 0.8 Lead

23°C +/- 2°C Sinusoidal (distortion factor 0.005) 50 or 60 Hz  $\pm$ 2% Rated Value  $\pm$ 1% Rated Value  $\pm$ 1% 50... 100% of Nominal Value. 60... 100% of Nominal Value for THD. 10... 100% of Nominal Value. 20... 100% of Nominal Value for THD. Cos phi / sin phi = 1 for Active / Reactive Power & Energy. 10... 100% of Nominal Current & 50... 100% of Nominal Voltage. 40... 100% of Nominal Current &

50... 100% of Nominal Voltage.



## Data Sheet RISH Master 3480

## Technical Specifications:

### Accuracy:

|                           | Class 1.0 (Standard)     | Class 0.5 (on request)   | Class 0.2 (on request)   |
|---------------------------|--------------------------|--------------------------|--------------------------|
| Voltage                   | ± 0.5% of Nominal value  | ± 0.5% of Nominal value  | ± 0.2% of Nominal value  |
| Current                   | ± 0.5% of Nominal value  | ± 0.5% of Nominal value  | ± 0.2% of Nominal value  |
| Frequency                 | ± 0.15% of mid frequency | ± 0.15% of mid frequency | ± 0.15% of mid frequency |
| Active Power              | ± 0.5% of Nominal value  | ± 0.5% of Nominal value  | ± 0.2% of Nominal value  |
| Re-Active Power           | ± 0.5% of Nominal value  | ± 0.5% of Nominal value  | ± 0.4% of Nominal value  |
| Apparent Power            | ± 0.5% of Nominal value  | ± 0.5% of Nominal value  | ± 0.2% of Nominal value  |
| Active energy (kWh)       | ± 1.0% of Nominal value  | ± 0.5% of Nominal value  | ± 0.2% of Nominal value  |
| Re Active energy (kVArh)  | ± 1.0% of Nominal value  | ± 0.5% of Nominal value  | ± 0.5% of Nominal value  |
| Apparent energy (kVAh)    | ± 1.0% of Nominal value  | ± 0.5% of Nominal value  | ± 0.2% of Nominal value  |
| Accuracy of Analog Output | 1 % of Output end value  | 1 % of Output end value  | 1 % of Output end value  |
| Power Factor              | ±1% of Unity             | ±1% of Unity             | ±1.0% of Unity           |
| Angle                     | ±1% of range             | ±1% of range             | ±1% of range             |
| Total Harmonic Distortion | ±1%                      | ±1%                      | ±1%                      |

Note:- Measurement error is normally much less than the error specified above. Variation due to influence quantity is less than twice the error allowed for reference condition

## Influence of Variations:

| Temperature coefficient :<br>(for rated value range of use (050°C)) | 0.025%/°C for Voltage (50 120% of rated value) and 0.05%/°C for Current (10 120% of rated value) |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <b>Display update rate:</b><br>Response time to step input          | 1 sec approx.                                                                                    |
| Applicable Standards:                                               |                                                                                                  |
| EMC                                                                 | IEC 61326                                                                                        |
| Immunity                                                            | IEC 61000-4-3. 10V/m min – Level 3 industrial low level                                          |
| Safety                                                              | IEC 61010-1-2001, Permanently connected use                                                      |
| IP for water & dust                                                 | IEC60529                                                                                         |
| Pollution degree                                                    | 2                                                                                                |
| Installation category                                               |                                                                                                  |
| High Voltage Test                                                   | 2.2 kV AC, 50Hz for 1 minute between all electrical circuits                                     |
| Environmental                                                       |                                                                                                  |
| Operating temperature                                               | -10 to +55°C                                                                                     |
| Storage temperature                                                 | -20 to +65°C                                                                                     |
| Relative humidity                                                   | 0 90% non condensing                                                                             |
| Warm up time                                                        | Minimum 3 minute                                                                                 |
| Shock                                                               | 15g in 3 planes                                                                                  |
| Vibration                                                           | 10 55 Hz, 0.15mm amplitude                                                                       |

## Energy (can be programmed for different energy parameters simultaneously):

| Relay contact    |                                  | 1 NO + 1 NC                    |                               |
|------------------|----------------------------------|--------------------------------|-------------------------------|
| Switching Volta  | ge & Current for Relay           | 240 VDC ,5 A                   |                               |
| Other Pulse rate | e divisors (applicable only when | Energy on MODBUS (RS485) is in | W)                            |
| 10               | 1 per 10 Wh (up to 3600W),       | 1 per 10kWh (up to 3600kW),    | 1 per 10MWh (above 3600 kW)   |
| 100              | 1 per 100Wh (up to 3600W),       | 1 per 100kWh (up to 3600kW),   | 1 per 100MWh (above 3600 kW)  |
| 1000             | 1 per 1000Wh (up to 3600W),      | 1 per 1000kWh (up to 3600kW),  | 1 per 1000MWh (above 3600 kW) |
| Pulse duration   | 60 ms, 100 ms or 200 ms          |                                |                               |

Above options are also applicable to Apparent & reactive Energy.



## **Ampere Hour:**

| Default pulse rate divisor | CT secondary = 1A Max pulse rate 3600 pulses/Ah *<br>CT secondary = 5A Max pulse rate 720 pulses/Ah |
|----------------------------|-----------------------------------------------------------------------------------------------------|
| Other Pulse rate           |                                                                                                     |
| Divisors (applicable only  | when Energy on MODBUS (RS485) is in W)                                                              |
| 10                         | CT secondary = 1A Max pulse rate 3600 pulses/10Ah *                                                 |
|                            | CT secondary = 5A Max pulse rate 720 pulses/10Ah                                                    |
| 100                        | CT secondary = 1A Max pulse rate 3600 pulses/100Ah *                                                |
|                            | CT secondary = 5A Max pulse rate 720 pulses/100Ah                                                   |
| 1000                       | CT secondary = 1A Max pulse rate 3600 pulses/1000Ah *                                               |
|                            | CT secondary = 5A Max pulse rate 720 pulses/1000Ah                                                  |
| Pulse duration             | 60 ms, 100 ms or 200 ms                                                                             |
| *No. of Pulses =           | Maximum Pulses<br>CT Ratio                                                                          |
| Where, CT Ratio            | p = (CT primary/ CT Secondary)                                                                      |

## Limit Output Option:

Limit can be assigned to different measured parameters. It can be configured in one of the four modes given below.

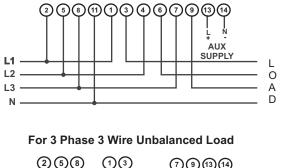
- 1) Hi alarm & Energized Relay
- 2) Hi alarm & De-energized Relay
- 3) Lo alarm & Energized Relay
- 4) Lo alarm & De-energized Relay

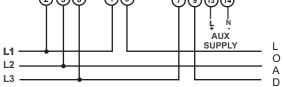
With user selectable Trip point, Hysteresis, Energizing delay and De-energizing delay.

## Parameter Measurement and Display:

| Sr No | Displayed Parameters | 3Phase 4Wire | 3Phase 3Wire |
|-------|----------------------|--------------|--------------|
| 1.    | System Volts         | ✓            | ✓            |
| 2.    | System Current       | ✓            | ✓            |
| 3.    | Volts L1 – N         | ✓            | ×            |
| 4.    | Volts L2 – N         | ✓            | ×            |
| 5.    | Volts L3 – N         | √            | ×            |
| 6.    | Volts L1 – L2        | √            | ✓            |
| 7.    | Volts L2 – L3        | √            | ✓            |
| 8.    | Volts L3 – L1        | √            | ✓            |
| 9.    | Current L1           | ✓            | $\checkmark$ |
| 10.   | Current L2           | √            | $\checkmark$ |
| 11.   | Current L3           | √            | $\checkmark$ |
| 12.   | Neutral Current      | ✓            | ×            |
| 13.   | Frequency            | ✓            | ✓            |



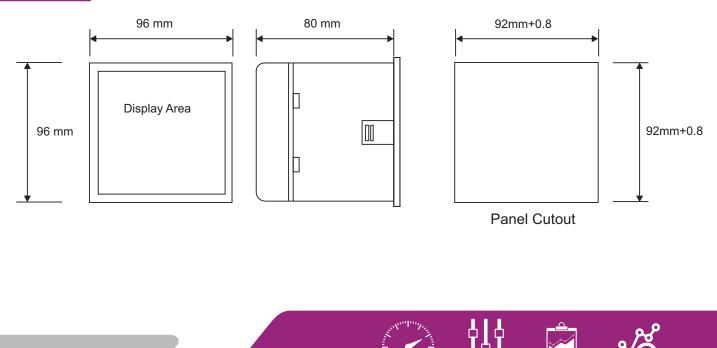

## Parameter Measurement and Display:


| Sr No | Displayed Parameters                      | 3 Phase 4Wire | 3Phase 3Wire |
|-------|-------------------------------------------|---------------|--------------|
| 14.   | System Active Power (kW)                  | $\checkmark$  | $\checkmark$ |
| 15.   | Active Power L1 (kW)                      | ✓             | ×            |
| 16.   | Active Power L2 (kW)                      | ✓             | ×            |
| 17.   | Active Power L3 (kW)                      | ✓             | ×            |
| 18.   | System Re-active Power (kVAr)             | ✓             | $\checkmark$ |
| 19.   | Re-active Power L1 (kVAr)                 | ✓             | ×            |
| 20.   | Re-active Power L2 (kVAr)                 | ✓             | ×            |
| 21.   | Re-active Power L3 (kVAr)                 | ✓             | ×            |
| 22.   | System Apparent Power (kVA)               | ✓             | ✓            |
| 23.   | Apparent Power L1 (kVA)                   | ✓             | ×            |
| 24.   | Apparent Power L2 (kVA)                   | ✓             | ×            |
| 25.   | Apparent Power L3 (kVA)                   | ✓             | ×            |
| 26.   | System Power Factor                       | ✓             | ✓            |
| 27.   | Power Factor L1                           | ✓             | ×            |
| 28.   | Power Factor L2                           | ✓             | ×            |
| 29.   | Power Factor L3                           | ✓             | ×            |
| 30.   | Phase Angle L1                            | ✓             | ×            |
| 31.   | Phase Angle L2                            | ✓             | ×            |
| 32.   | Phase Angle L3                            |               | ×            |
| 33.   | Import kWh (8 digit resolution)           |               | √            |
| 34.   | Export kWh (8 digit resolution)           |               | ✓            |
| 35.   | Import kVArh (8 digit resolution)         | √             | ✓<br>✓       |
| 36.   | Export kVArh (8 digit resolution)         | <b>√</b>      | ✓<br>✓       |
| 37.   |                                           | <b>√</b>      | ✓<br>✓       |
| 38.   | kVAh (8 digit resolution)                 | <b>∨</b>      | ✓<br>✓       |
|       | KAh (8 digit resolution)                  | v<br>         | ✓<br>✓       |
| 39.   | Current Demand                            | v<br>         | ✓<br>✓       |
| 40.   | KVA Demand                                |               |              |
| 41.   | KW Import Demand                          | ✓             | ✓<br>✓       |
| 42.   | KW Export Demand                          | ✓             | ✓<br>✓       |
| 43.   | Max Current Demand                        | ✓             | ✓            |
| 44.   | Max KVA Demand                            | ✓             | ✓<br>✓       |
| 45.   | Max KW Import Demand                      | ✓             | ✓            |
| 46.   | Max KW Export Demand                      | √             | ✓            |
| 47.   | Run Hour                                  | ✓             | ✓            |
| 48.   | On Hour                                   | ✓             | ✓            |
| 49.   | Number of Interruptions                   | ✓             | ✓            |
| 50.   | Phase Reversal Indication                 | ✓             | ×            |
| 51.   | Phaser Diagram (Pictorial Representation) | ✓             | ×            |
| 52.   | VA waveform (Pictorial Representation)    | ✓             | ×            |
| 53.   | THD Volts L1-N                            | ✓             | ×            |
| 54.   | THD Volts L2-N                            | ✓             | ×            |
| 55.   | THD Volts L3-N                            | √             | ×            |
| 56.   | THD Volts L1-L2                           | ×             | ✓            |
| 57.   | THD Volts L2-L3                           | ×             | ✓            |
| 58.   | THD Volts L3-L1                           | ×             | ✓            |
| 59.   | THD Current L1                            | √             | √            |
| 60.   | THD Current L2                            | √             | √            |
| 61.   | THD Current L3                            | √             | ✓            |
| 62.   | THD Voltage Mean                          | √             | ✓            |
| 63.   | THD Current Mean                          | ✓             | ✓            |



## **Electrical Connections:**

### For 3 Phase 4 Wire Unbalanced Load






It is recommended that the wires used for connections to the instrument should have lugs soldered at the end. That is, the connections should be made with Lugged wires for secure connections. The Maximum diameter of the lug should be 7.0 mm and maximum thickness 3.5 mm.

Permissible cross section of the connection wires:  $<= 4.0 \text{ mm}^2$  single wire or  $2 \times 2.5 \text{ mm}^2$  fine wire.

## Dimensions



Measure

Control

Record

Analyze

## Order Code:

| Ordering information                      | Ordering Code    |  |
|-------------------------------------------|------------------|--|
|                                           | RISH Marter 3480 |  |
| Accuracy Class                            |                  |  |
| Accuracy 1.0% (Standard)                  | 1.0              |  |
| Accuracy 0.5% (on request)                | 0.5              |  |
| Accuracy 0.2% (on request)                | 0.2              |  |
| Auxiliary Voltage                         |                  |  |
| 60-300V AC DC                             | Н                |  |
| 12-60V AC DC                              | L                |  |
| Optional:                                 |                  |  |
| RS 485 + 2 Pulse output                   | 1                |  |
| RS 485 + 1 Pulse output + 2 Analog output | 2                |  |
| Ethernet                                  | 3                |  |
| Option not used                           | Z                |  |

## Order Code Example:

RISH Master 3480 0.2 - H - 1

RISH Marter 3480 , Accuracy 0.2% ,60 - 300V AC DC Auxiliary supply, with MODBUS (RS485), with 2 pulse output .





All specifications are subject to change without notice

Record









RISHABH INSTRUMENTS LIMITED Domestic (India): +91 253 2202028/99 | marketing@rishabh.co.in International: +91 253 2202004/06/08/99 | global@rishabh.co.in www.rishabh.co.in