
Optoschmitt Detector

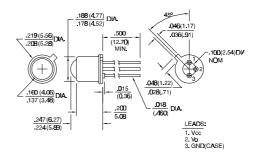
FEATURES

- TO-46 metal can package
- 6° (nominal) acceptance angle
- · High noise immunity output
- TTL/LSTTL/CMOS compatible
- Buffer (SD5600) or inverting (SD5610) logic available
- Mechanically and spectrally matched to SE3450/5450, SE3455/5455 and SE3470/5470 infrared emitting diodes

INFRA-81.TIF

DESCRIPTION

The SD5600/5610 series is a family of single chip Optoschmitt IC detectors mounted in a TO-46 metal can package. The photodetector consists of a photodiode, amplifier, voltage regulator, Schmitt trigger and an NPN output transistor with 10 $k\Omega$ (nominal) pull-up resistor. Output rise and fall times are independent of the rate of change of incident light. Detector sensitivity has been internally temperature compensated. The TO-46 package is ideally suited for operation in hostile environments.


Device Polarity:

Buffer - Output is HI when incident light intensity is above the turn- on threshold level.

Inverter - Output is LO when incident light intensity is above the turn- on threshold level.

OUTLINE DIMENSIONS in inches (mm)

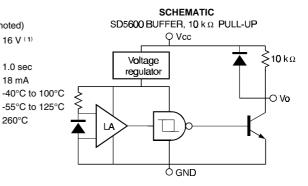
Tolerance 3 plc decimals $\pm 0.005(0.12)$ 2 plc decimals $\pm 0.020(0.51)$

DIM_025.cdr

Optoschmitt Detector

ELECTRICAL CHARACTERISTICS (-40°C to +100°C unless otherwise noted)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Operating Supply Voltage	Vcc	4.5		16.0	V	T _A =25°C
Turn-on Threshold Irradiance (2) SD5600-001, SD5610-001	E _{eT} (+)			2.50	mW/cm ²	Vcc=5 V T _A =25°C
Hysteresis (3)	HYST	5		30	%	
Supply Current	lcc			12.0 15.0	mA	Ee=0 Or 3.0 mW/cm² Vcc=5 V Vcc=16 V
High Level Output Voltage SD5600 SD5610	Voн	2.4 2.4			V	V _{CC} =5 V, I _{OH} =0 Ee=0 Ee=3.0 mW/cm²
Low Level Output Voltage SD5600 SD5610	Vol			0.4 0.4	V	V _{CC} =5 V, I _{OL} =12.8 mA Ee=0 Ee=3.0 mW/cm²
Internal Pull-Up Resistor	RINT	5.0	10.0	20.0	kΩ	
Operate Point Temperature Coefficient	Ортс		-0.76		%/°C	Emitter @ Constant Temperature
Output Rise Time	tr		60		ns	R _L =390 Ω, C _L =50 pF
Output Fall Time	t _f		15		ns	R _L =390 Ω , C _L =50 pF
Propagation Delay, Low-High, High-Low	t _{PLH} , t _{PHL}		5.0		μs	R _L =390 Ω , C _L =50 pF
Clock Frequency				100	kHz	R _L =390 Ω , C _L =50 pF


260°C

ABSOLUTE MAXIMUM RATINGS

(25°C Free-Air Temperature unless otherwise noted) Supply Voltage 16 V (1) Duration of Output Short to V_{CC} or Ground 1.0 sec 18 mA

Output Current Operating Temperature Range Storage Temperature Range Soldering Temperature (10 sec)

1. Derate linearly from 25°C to 7 V at 100°C.

Notes

1. It is recommended that a bypass capacitor, 0.1 µF typical, be added between V_{CC} and GND near the device in order to stabilize The radiation source is an IRED with a peak wavelength of 935 nm.
 Hysteresis is defined as the difference between the operating and release threshold intensities, expressed as a percentage of the

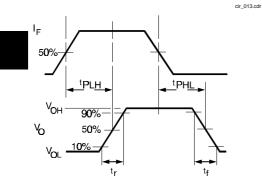
operate threshold intensity.

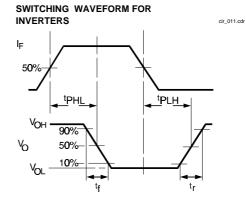
Optoschmitt Detector

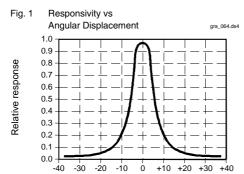
SCHEMATIC

SCH_013.cdr SD5610 INVERTER, 10 k Ω PULL-UP **≥**10 kΩ Voltage regulator O Vo

1**00**Ω V_{IN}> IRED

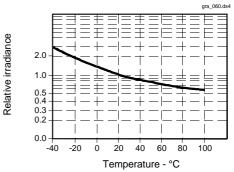

cir_007.cdr


SWITCHING TIME TEST CIRCUIT

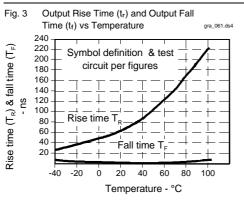

0-10 V 3**90**Ω I_F100 mA input pulse Device under test VOUT **100**Ω **PGND** ∙01.1 VO Includes all strays & scope probe

SWITCHING WAVEFORM FOR BUFFERS

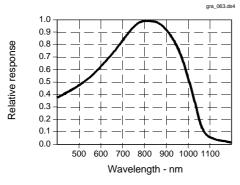
GND



Angular displacement - degrees


Fig. 2 Threshold Irradiance vs Temperature

Honeywell


Honeywell reserves the right to make changes in order to improve design and supply the best products possible.

Optoschmitt Detector

Delay Time vs Temperature gra_062.ds4 3.8 Propagation delay - µs 3.4 3.0 2.6 2.2 1.8 1.4 0.0 -40 40 60 80 Ambient temperature - °C

Fig. 5 Spectral Responsivity

All Performance Curves Show Typical Values