LV8044LP

6-channel Motor Driver IC for Digital Still Camera

The LV8044LP is a 6-channel motor driver IC for digital still camera.

Functions

- Two microstep drive H-bridge driver channels.
- Two microstep drive/PWM saturated drive switchable H-bridge driver channels.
- Two constant-current drive H-bridge driver channels.
- Drive mode switchable between 2-phase, 1-2 phase full torque, 1-2 phase, and 4W1-2 phase (channels 1, 2, 3, and 4).
- Microstep drive step advance controlled by a single step signal input (channels 1, 2, 3, and 4).
- Ability to set the hold current to one of four levels (channels 1, 2, 3, and 4).
- Ability to set the constant-current reference voltage to one of 16 levels from the serial data (channels 5 and 6).
- Eight-bit 3-wire serial control.
- Three on-chip photosensor driver circuits.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage 1	V _M max		6.0	V
Power supply voltage 2	V _{CC} max		6.0	V
Output peak current	I _O peak	Each CH tw \leq 10ms, duty 20%	600	mA
Output continuous current	I _O max	Each CH	400	mA
Allowable power dissipation 2	Pd max	With substrate *	1.4	W
Operating temperature	Торд		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

*: With 40mm × 50mm × 0.8mm glass epoxy substrate (four-layer substrate).

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

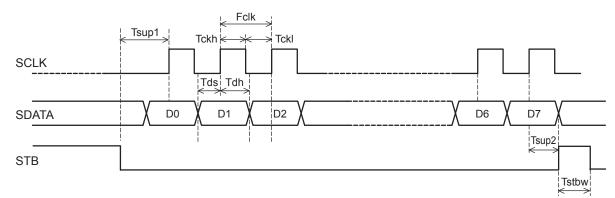
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ORDERING INFORMATION

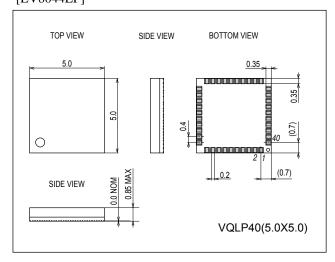
See detailed ordering and shipping information on page 26 of this data sheet.

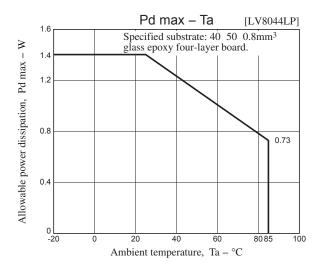
Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage range 1	VM		2.7 to 5.5	V
Power supply voltage range 2	V _{CC}		2.7 to 5.5	V
Logic input voltage range	VIN		0 to V _{CC} +0.3	V
STEP frequency	FSTEP	STEP1, STEP2	to 64	KHz
PWM frequency	FPWM	STEP3, STEP4	to 100	KHz


Electrical Characteristics at Ta = 25°C, V_M = 5V, V_{CC} = 3.3V

Dorr	ameter	Symbol	Conditions		Ratings		Unit
Faid	ameter	Symbol	Conditions	min	typ	max	Unit
Standby supply	current	ISTN	ST = "L"			1.0	μA
Motor supply cu	irrent	IM	ST = "H", PWM3 = PWM4 = "H", IN51 = IN61 = "H", no load		50	100	μA
Logic supply cu	rrent	ICC	ST = "H", PWM3 = PWM4 = "H", IN51 = IN61 = "H", no load	2	3	4	mA
V _{CC} low-voltage	e cut voltage	V _{th} V _{CC}		2.1	2.35	2.6	V
Low-voltage hys		V _{th} HIS		100	150	200	mV
Thermal shutdo	wn temperature	TSD	Design guarantee	150	180	200	°C
Thermal hystere	esis width	∆TSD	Design guarantee		40		°C
Microstep Dr	iver (channels 1	, 2, 3, and 4)					
Output on resist	tance	Ronu	I_{O} = 400mA, Upper ON resistance		0.7	0.8	Ω
		Rond	I_{O} = 400mA, Lower ON resistance		0.5	0.6	Ω
Output leak curi	rent	I _O leak1				1.0	μA
Diode forward v	oltage 1	V _D 1	ID = -400mA		0.9	1.2	V
Logic pin input o		I _{in} L	V _{IN} = 0V (ST, STEP1, STEP2)			1.0	μA
		I _{in} H	V _{IN} = 3.3V (ST, STEP1, STEP2)	20	33	50	μA
Logic input "H" I	evel voltage	V _{in} h	ST, STEP1, STEP2	2.5			V
Logic input "L" le	-	V _{in} l	ST, STEP1, STEP2			1.0	V
Current selection	4W1-2 phase	Vstep16	Step 16 (Initial level: the channel 1 comparator level)	0.185	0.200	0.215	V
reference		Vstep15	Step 15 (Initial+1)	0.185	0.200	0.215	V
voltage level		Vstep14	Step 14 (Initial+2)	0.185	0.200	0.215	V
		Vstep13	Step 13 (Initial+3)	0.176	0.193	0.206	V
		Vstep12	Step 12 (Initial+4)	0.170	0.186	0.200	V
		Vstep11	Step 11 (Initial+5)	0.162	0.178	0.192	V
		Vstep10	Step 10 (Initial+6)	0.154	0.171	0.184	V
		Vstep9	Step 9 (Initial+7)	0.146	0.163	0.176	V
		Vstep8	Step 8 (Initial+8)	0.129	0.148	0.159	V
		Vstep7	Step 7 (Initial+9)	0.113	0.131	0.143	V
		Vstep6	Step 6 (Initial+10)	0.097	0.115	0.127	V
		Vstep5	Step 5 (Initial+11)	0.079	0.097	0.109	V
		Vstep4	Step 4 (Initial+12)	0.062	0.079	0.092	V
		Vstep3	Step 3 (Initial+13)	0.044	0.06	0.074	V
		Vstep2	Step 2 (Initial+14)	0.024	0.04	0.054	V
		Vstep1	Step 1 (Initial+15)	0.006	0.02	0.036	V
	1-2 phase	Vstep16	Step 16 (Initial level: the channel 1 comparator level)	0.185	0.200	0.215	V
		Vstep8	Step 8 (Initial+1)	0.129	0.148	0.159	V
	1-2 phase (Full torque)	Vstep16	Step 16 (Initial level: the channel 1 comparator level)	0.185	0.200	0.215	V
		Vstep8	Step 8 (Initial+1)	0.185	0.200	0.215	V
	2 phase	Vstep8	Step 8	0.185	0.200	0.215	V

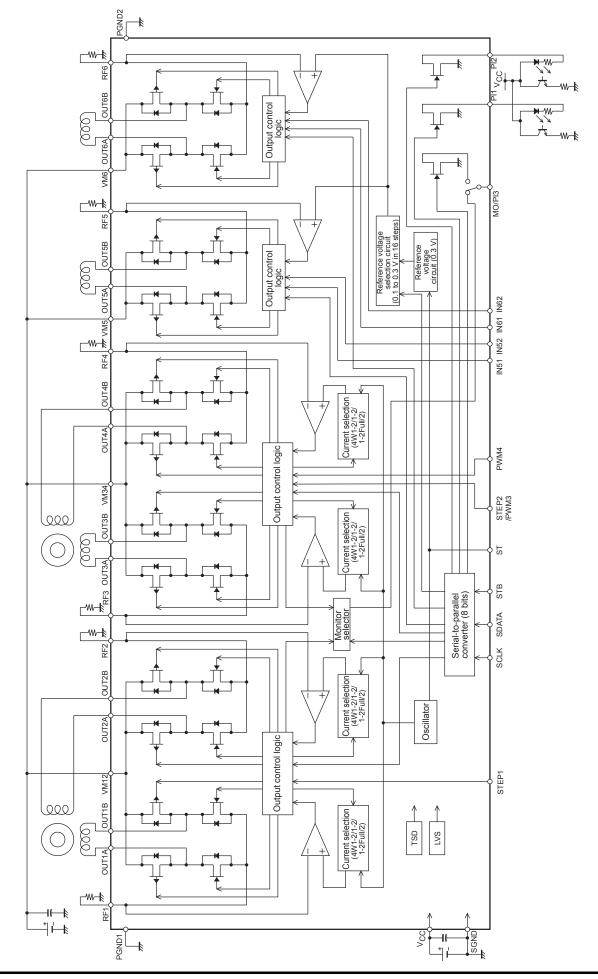
Continued on next page.


Deremeter	Sumbol	Conditions		Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Chopping frequency	fchop1		104	130	156	KHz
	fchop2		52	65	78	KHz
	fchop3		160	200	240	KHz
	fchop4		80	100	120	KHz
Current setting reference voltage	VSEN00	(D5, D6) = (0, 0)	0.185	0.200	0.215	V
	VSEN01	(D5, D6) = (0, 1)	0.119	0.134	0.149	V
	VSEN10	(D5, D6) = (1, 0)	0.085	0.100	0.115	V
	VSEN11	(D5, D6) = (1, 1)	0.051	0.066	0.081	V
Constant-Current Drive (cha	nnels 5 and 6	5)				
Output on resistance	Ronu	I _O = 400mA, Upper ON resistance		0.7	0.8	Ω
	Rond	I _O = 400mA, Lower ON resistance		0.5	0.6	Ω
Output leak current	l _O leak				1.0	μA
Diode forward voltage 1	V _D 1	ID = -400mA		0.9	1.2	V
Logic pin input current	l _{in} L	V _{IN} = 0V, (IN51, IN52, IN61, IN62)			1.0	μA
	l _{in} H	V _{IN} = 3.3V, (IN51, IN52, IN61, IN62)	20	33	50	μA
Logic input "H" level voltage	V _{in} h	IN51, IN52, IN61, IN62	2.5			V
Logic input "L" level voltage	V _{in} l	IN51, IN52, IN61, IN62			1.0	V
Output constant current	IOUT	Rload = 3Ω , RF = 0.5Ω ,	380	400	420	mA
		Internal standard = 0.2V				
Current setting reference voltage	Vref0	(D4, D5, D6, D7) = (0, 0, 0, 0)	0.285	0.30	0.315	V
	Vref1	(D4, D5, D6, D7) = (1, 0, 0, 0)	0.19	0.20	0.21	V
	Vref2	(D4, D5, D6, D7) = (0, 1, 0, 0)	0.18	0.190	0.2	V
	Vref3	(D4, D5, D6, D7) = (1, 1, 0, 0)	0.171	0.180	0.189	V
	Vref4	(D4, D5, D6, D7) = (0, 0, 1, 0)	0.161	0.170	0.179	V
	Vref5	(D4, D5, D6, D7) = (1, 0, 1, 0)	0.156	0.165	0.173	V
	Vref6	(D4, D5, D6, D7) = (0, 1, 1, 0)	0.152	0.160	0.168	V
	Vref7	(D4, D5, D6, D7) = (1, 1, 1, 0)	0.147	0.155	0.163	V
	Vref8	(D4, D5, D6, D7) = (0, 0, 0, 1)	0.143	0.150	0.158	V
	Vref9	(D4, D5, D6, D7) = (1, 0, 0, 1)	0.137	0.145	0.152	V
	VrefA	(D4, D5, D6, D7) = (0, 1, 0, 1)	0.133	0.140	0.147	V
	VrefB	(D4, D5, D6, D7) = (1, 1, 0, 1)	0.128	0.135	0.142	V
	VrefC	(D4, D5, D6, D7) = (0, 0, 1, 1)	0.123	0.130	0.137	V
	VrefD	(D4, D5, D6, D7) = (1, 0, 1, 1)	0.123	0.120	0.107	V
	VrefE	(D4, D5, D6, D7) = (1, 0, 1, 1)	0.114	0.120	0.120	V
	VrefF					V
Photo-sensor Drive Circuit	VICIE	(D4, D5, D6, D7) = (1, 1, 1, 1)	0.095	0.100	0.105	v
Output saturation voltage	Vsat	I _O = -20mA		0.09	0.12	V
Serial Data Transfer Pin	vsat	102011A		0.09	0.12	v
	1. 1	V/W - OV (SCI K SDATA STD)		1	10	
Logic pin input current	I _{in} L	V _{IN} = 0V (SCLK, SDATA, STB)			1.0	μA A
Logio input "I I" lovel veltere	l _{in} H	V _{IN} = 3.3V (SCLK, SDATA, STB)	20	33	50	μA
Logic input "H" level voltage	V _{in} h	SCLK, SDATA, STB	2.5			V
Logic input "L" level voltage	V _{in} l	SCLK, SDATA, STB	0.105		1.0	V
Minimum SLCK "H" pulse width	Tckh		0.125			μS
Minimum SLCK "L" pulse width	Tckl		0.125			μS
Minimum setup time (STB \rightarrow SCLK rising edge)	Tsup1		0.125			μS
Minimum setup time (SCLK rising edge \rightarrow STB)	Tsup2		0.125			μS
Minimum STB pulse width	Tstbw		0.125			μS
Data setup time	Tds		0.125			μS
Data hold time	Tdh		0.125			μS
Maximum SCLK frequency	Fclk				4	MH


Serial Input Switching Characteristics Timing Chart

Package Dimensions

unit : mm (typ) [LV8044LP]

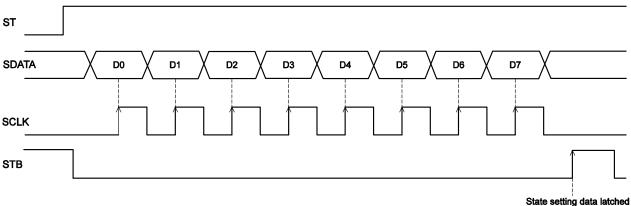


Pin Assignment

30 31 31 1N62 4	29 89 100	28 94	27 DUT6A	OUT4B 95	52 75	0UT4A 7	23 0UT3B	22 843	21 VELTO	VM3/200
32 IN61									P٧	/M4 19
33 VM6									V	M34 18
³⁴ SGND						_			V	/CC 17
35 PI1			L'	V80	44L	Ρ			3	STB 16
36 PI2									SD	ATA 15
37] PI3/MO			-	TOP	VIEW	/			S	CLK 14
38 VM5	_								STI	EP1 13
39 IN52									V	V12 12
40 IN51 6 90 1	⊳ OUT5B	c RF5	4 OUT5A	oUT2B	9 RF2	-4 OUT2A	∞ OUT1B	6 RF1	V110	ST 11

The pin assignment of LV8044LP and LV8044LQ is the same.

Block Diagram


Pin Function Pin No. Pin name Function Equivalent circuit STEP1 13 Channels 1/2 - STEP signal input Vcc 20 PWM3/STEP2 3ch PWM signal input 0 / Channels 3/4 - STEP signal input 19 PWM4 4ch PWM signal input IN51 Channel 5 - Logic input 1 40 IN52 39 $10k\Omega$ IN61 C 32 Channel 6- Logic input 1 31 IN62 SCLK 14 Serial data transfer clock input 本 15 SDATA Serial data input 16 STB Serial data latch pulse input GND O 11 ST Chip enable OUT1A OUTA output 10 1ch 7 OUT2A 2ch 21 OUT3A 3ch OUT4A 24 4ch OUT5A 4 5ch 27 OUT6A 6ch VM 8 OUT1B 1ch OUTB output OUT2B 5 2ch OUT3B 23 3ch 26 OUT4B 4ch 2 OUT5B 5ch O OUTB OUT6B 29 6ch 9 RF1 1ch Current sensing resistor connection 6 RF2 2ch 22 RF3 3ch RF4 25 4ch RF 3 RF5 5ch 28 RF6 6ch VM12 12 Channels 1/2 - Motor power supply 18 VM34 Channels 3/4 - Motor power supply 38 VM5 Channels 5 - Motor power supply 33 VM6 Channels 6 - Motor power supply 35 PI1 Photosensor drive output PI2 36 Vcc

Continued on next page.

Pin No.	Pin name	Function	Equivalent circuit
37	PI3/MO	Photosensor drive output 3/position detection monitor	V _{CC} 500Ω GND ○
17	V _{CC}	Logic system power supply	
1	PGND1	Channels 1/2/5 - Power system ground	
30	PGND2	Channels 3/4/6 - Power system ground	
34	SGND	Signal system ground	

Serial Data Input Specifications

1. Serial Data Input Setup

First set STB low and then input the SDATA and SCLK signals. The SCLK signal is not accepted when STB is high. SDATA inputs the data in the order D0, D1, ... D6, D7.

Data is transferred on the rising edge of SCLK and after all data has been transferred, all the data is latched on the rising edge of STB.

2. Timing with which the Serial Data Settings are Reflected in the Output

- STP timing mode (applies to microstep driver settings)
 - Type 1: The hold, reset, and enable settings, as well as the reference voltage setting are reflected at the same time as the STB signal data latch operation.
 - Type 2: The forward/reverse (FR) and the excitation setting mode (MS) setting that are set at STP setup are reflected in the output at the next clock rising edge after data latch.
- STB timing (applies to settings other than the above)

Type 1: The PWM driver, constant-current driver, PI, and other settings are reflected at the same time as the STB signal data latch operation.

STEP			STEP	
STB			STB	
	Data latch timing -	STB timing		Data latch timing Reflected at the falling edge
Type 1		X	Type 2	Example: 2-phase excitation

Serial Data Truth Table

Serial Logic Table (1)

			Inp	out				Setting mode	Description	Remarks			Set ch	anne	l		PI	Serial	data refl timing	ection
D0	D1	D2	D3	D4	D5	D6	D7				1ch	2ch	3ch	4ch	5ch	6ch		STEP1	STEP2	STB
			0	0	*	*	*		2 phase											
			1	0	*	*	*	Channels 1 and 2	1-2 phase (full torque)											
			0	1	*	*	*	excitation mode selection	1-2 phase									0		
			1	1	*	*	*		4W1-2 phase											
			*	*	0	0	*		100% (0.2V)		0	0								
0	0	0	*	*	1	0	*	Channels 1 and 2	67% (0.134V)											
			*	*	0	1	*	Current reference	50% (0.1V)											0
			*	*	1	1	*		33% (0.066V)									-		
			*	*	*	*	0													
			*	*	*	*	1	(Dummy data)												
			0	*	*	*	*	1/2ch energization	CW (Forward)									_		
			1	*	*	*	*	direction	CCW (Reverse)									0		
			*	0	*	*	*		Cancel									-		
			*	1	*	*	*	1/2ch step hold	Hold									-		
			*	*	0	*	*		Reset		0	0						-		
1	0	0	*	*	1	*	*	1/2ch counter reset	Cancel											0
			*	*	*	0	*		Output OFF						+			-		
			*	*	*	1	*	1/2ch output enable	Output ON											
			*	*	*	*	0													
			*	*	*	*	1	(Dummy data)												

Serial Logic Table (2)

			In	out				Setting mode	Description	Remarks		:	Set cl	nanne	l		PI	Serial	data refl timing	ection
D0	D1	D2	D3	D4	D5	D6	D7	-			1ch	2ch	3ch	4ch	5ch	6ch		STEP1	STEP2	STB
			0	0	*	*	*		2 phase											
			1	0	*	*	*	3/4ch	1-2 phase (full torque)				1						_	
			0	1	*	*	*	excitation mode selection	1-2 phase										0	
			1	1	*	*	*	mode selection	4W1-2 phase											
			*	*	0	0	*		100% (0.2V)				1							
0	1	0	*	*	1	0	*	3/4ch	67% (0.134V)				0	0						
			*	*	0	1	*	current reference voltage selection	50% (0.1V)											
			*	*	1	1	*		33% (0.066V)											0
			*	*	*	*	0	3/4ch	PWM											
			*	*	*	*	1	Channels 3 and 4 saturation/microstep selection	Microstep											
			0	0	*	*	*		OFF											
			1	0	*	*	*	3ch energization	$OUT3A \rightarrow OUT3B$											
			0	1	*	*	*	direction (Saturated mode)	$OUT3B \rightarrow OUT3A$				0							
			1	1	*	*	*	(catalated mode)	Brake											
			*	*	0	0	*		OFF											0
			*	*	1	0	*	4ch energization	$OUT4A \rightarrow OUT4B$											0
			*	*	0	1	*	direction (Saturated mode)	$OUT4B \rightarrow OUT4A$					0						
			*	*	1	1	*	()	Brake											
			*	*	*	*	0	3/4ch PWM DECAY	Brake				0	0						
1	1	0	*	*	*	*	1	(Saturated mode)	Standby mode				0	0						
1	1	0	0	*	*	*	*	3/4ch energization direction	CW (Forward)										0	
			1	*	*	*	*	(Microstep mode)	CCW (Reverse)										0	
			*	0	*	*	*	3/4ch step hold	Cancel											
			*	1	*	*	*	(Microstep mode)	Hold				0	0						
			*	*	0	*	*	3/4ch counter reset	Reset											0
			*	*	1	*	*	(Microstep mode)	Cancel											0
			*	*	*	0	*	3/4ch output enable	Output OFF											
			*	*	*	1	*	(Microstep mode)	Output ON											
			*	*	*	*	0	(Dummy data)												
			*	*	*	*	1													

Serial Logic Table (3)

			Inj	out				Setting mode	Description	Remarks		5	Set ch	anne	I		PI	Serial	data refl timing	ection
D	D1	D2	D3	D4	D5	D6	D7	5			1ch	2ch	3ch	4ch	5ch	6ch		STEP1	STEP2	STB
			0	0	*	*	*		OFF											
			1	0	*	*	*	5ch energization	$OUT5A \rightarrow OUT5B$						_					
			0	1	*	*	*	direction	$OUT5B \rightarrow OUT5A$	*1					0					
			1	1	*	*	*		Brake											
			*	*	0	0	*		OFF											0
0	0	1	*	*	1	0	*	6ch energization	$OUT6A \rightarrow OUT6B$	*0						~				
			*	*	0	1	*	direction	$OUT6B \rightarrow OUT6A$	*2						0				
			*	*	1	1	*		Brake											
			*	*	*	*	0	(Durana data)												
			*	*	*	*	1	(Dummy data)												
			0	*	*	*	*	Reference setting	5ch setting											
			1	*	*	*	*	channel selection	6ch setting											
			*	0	0	0	0		0.300V											
			*	1	0	0	0		0.200V											
			*	0	1	0	0		0.190V											
			*	1	1	0	0		0.180V											
			*	0	0	1	0		0.170V											
			*	1	0	1	0		0.165V											
1	0	1	*	0	1	1	0		0.160V							0	0			0
1	0	ľ	*	1	1	1	0	Constant-current	0.155V							0	0			0
			*	0	0	0	1	reference voltage	0.150V											
			*	1	0	0	1		0.145V											
			*	0	1	0	1		0.140V											
			*	1	1	0	1		0.135V											
			*	0	0	1	1		0.130V											
			*	1	0	1	1		0.120V											
			*	0	1	1	1		0.110V											
			*	1	1	1	1		0.100V											

Serial Logic Table (4)

			In	put				Setting mode	Description	Remarks		;	Set ch	anne	I		PI	Serial	data refi timing	lection
D0	D1	D2	D3	D4	D5	D6	D7				1ch	2ch	3ch	4ch	5ch	6ch		STEP1	STEP2	STB
			0	*	*	*	*		OFF											
			1	*	*	*	*	Photo-sensor drive 1	ON											
			*	0	*	*	*	Photo-sensor drive 2	OFF											
			*	1	*	*	*	Photo-sensor unive 2	ON								0			0
			*	*	0	*	*	Photo-sensor drive 3 (When PI3 output	OFF								1			
0	1	1	*	*	1	*	*	selected)	ON								1			
			*	*	*	0	*													
			*	*	*	1	*	(Dummy data)												
			*	*	*	*	0													
			*	*	*	*	1	(Dummy data)												
			0	*	*	*	*	PI3/MO select	PI3 Output											
			1	*	*	*	*	PI3/MO Select	MO output											
			*	0	*	*	*	MO output channel	1/2ch											
			*	1	*	*	*	selection (When MO output selected)	3/4ch	*3							0			
1	1	1	*	*	0	*	*		Initial position											0
			*	*	1	*	*	MO output position	1-2 phase	*4										
			*	*	*	0	0		130KHz											
			*	*	*	1	0	Chopping frequency	65KHz											
			*	*	*	0	1	setting	200KHz											
			*	*	*	1	1		100KHz											

Notes

- *1: This serial data is only accepted when the IN51/IN52 pulse inputs are in the Low/Low states, respectively. It is ignored at all other times.
- *2: This serial data is only accepted when the IN61/IN62 pulse inputs are in the Low/Low states, respectively. It is ignored at all other times.
- *3: When D4 = 1, MO is only output if microstep mode is selected for channels 3 and 4. In PWM mode, this output is held fixed at the high level.
- *4: The MO output can be specified to be the 1-2 phase position only in 4W1-2 phase excitation mode. In all other excitation modes, the MO output position becomes the initial position regardless of the serial data values.

Channels 1 and 2 Driver Circuit (Microstep drive stepping mode driver) STEP1 Pin Function

In	out	Operating mode	
ST	STEP1	Operating mode	
Low	*	Standby mode	
High		Excitation step feed	
High	_	Excitation step hold	

Excitation Mode Setting (D0 = 0, D1 = 0, D2 = 0)

Da	D4		Initial position		
D3	D4	Excitation mode	1ch	2ch	
0	0	2 phase excitation	100%	-100%	
1	0	1-2 phase excitation (full torque)	100%	0%	
0	1	1-2 phase excitation	100%	0%	
1	1	4W1-2 phase excitation	100%	0%	

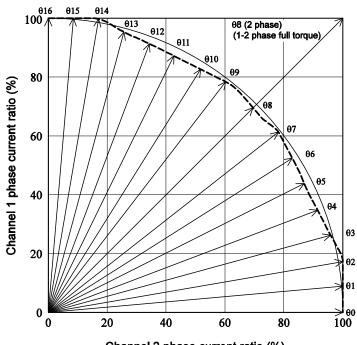
The initial state at power on is the initial position for each excitation mode when the counter is reset.

Reference Voltage Setting Serial Data: (D0 = 0, D1 = 0, D2 = 0)

D5	D6	Current setting reference voltage (When microstep is 100%)
0	0	0.2V
1	0	0.134V
0	1	0.1V
1	1	0.066V

The output current setting reference voltage can be switched between four levels with the serial data. This setting is useful for saving power in the motor powered hold state.

Calculating the Set Current

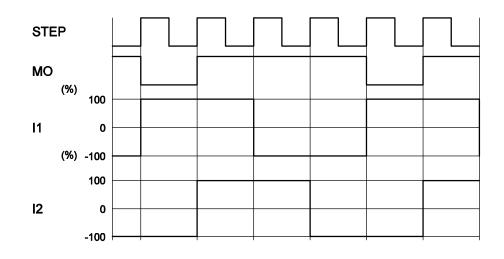

Since the reference voltage can be modified (0.2, 0.134, 0.1, and 0.66V) with the serial data, the output current can be set with the reference voltage and the resistor RF connected between the RF pin and ground.

IOUT = (<reference voltage> × <set current ratio>)/<RF resistor value>

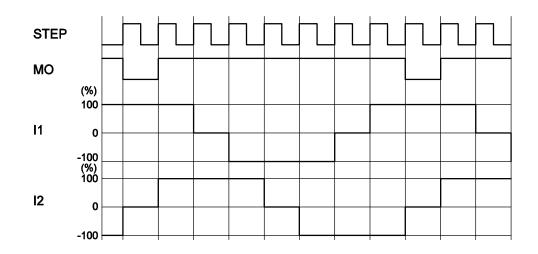
Example: If the reference voltage is 0.2 V, the set current ratio is 100%, and the RF resistor value is 1 Ω , then the output current will be that shown below.

 $I_{OUT} = 0.2V \times 100\%/1\Omega = 200 \text{mA}$

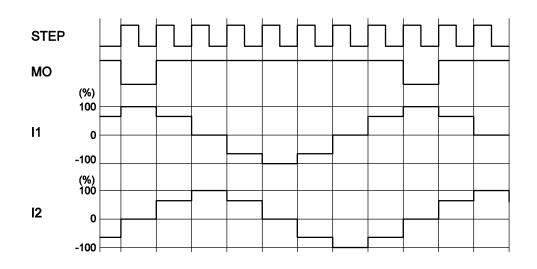
Output Current Vector Locus (With one step normalized to 90 degrees)

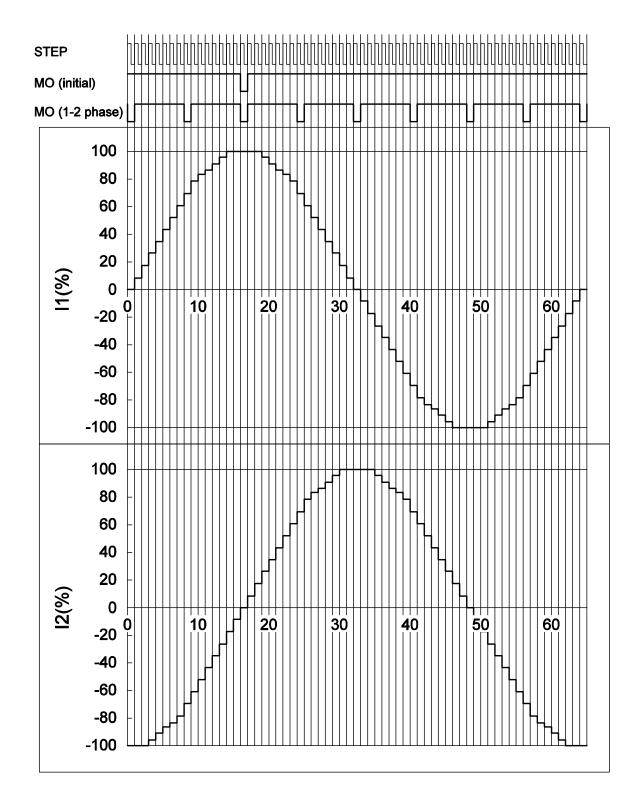


Channel 2 phase current ratio (%)


Set Current Ratios in the Different Excitation Modes

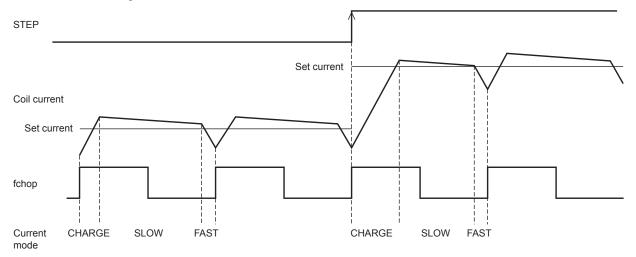
STEP	4W1-2 pl	nase (%)	1-2 pha	ase (%)	1-2 phase fu	Ill torque (%)	2 phase (%)	
	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ0	0	100	0	100	0	100		
θ1	10	100						
θ2	20	100						
θ 3	30	96.5						
θ4	39.5	93.0	/		/			
θ5	48.5	89						
0 6	57.5	85.5						
θ7	65.5	81.5					\bigvee	
θ8	74.0	74.0	74.0	74.0	100	100	100	100
0 9	81.5	65.5						/
θ10	85.5	57.5						
θ11	89	48.5						
θ12	93.0	39.5	/		/			
θ13	96.5	30						
θ14	100	20						
θ15	100	10						
θ16	100	0	100	0	100	0	\bigvee	

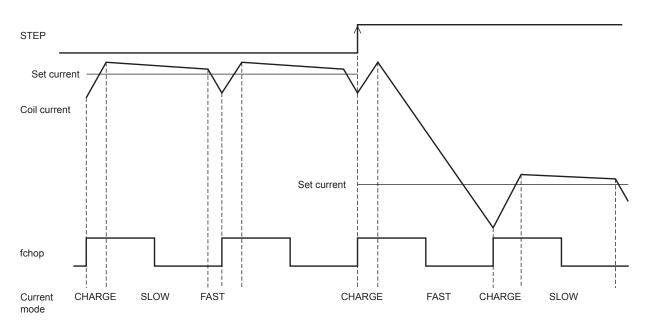

2 Phase Excitation (CW mode)



1-2 Phase Excitation full torque (CW mode)

1-2 Phase Excitation (CW mode)




4W1-2 Phase Excitation (CW mode)

Current Control Operation Specifications

• Sine wave increasing direction

• Sine wave decreasing direction

Each of the current modes operates with the follow sequence.

- The IC enters charge mode when the chopping oscillation starts. (A period of charge mode is forcibly present in 1/8 of the period, regardless of which of the coil current (ICOIL) and the set current (IREF) is larger.)
- In charge mode, the coil current (ICOIL) and the set current (IREF) are compared.

If an ICOIL < IREF state exists during the charge period:

The IC operates in charge mode until ICOIL \geq IREF. After that, it switches to slow decay mode and then switches to fast decay mode in the last 1/8 of the period.

If no ICOIL < IREF state exists during the charge period:

The IC switches to fast decay mode and the coil current is attenuated with the fast decay operation until the end of the chopping period.

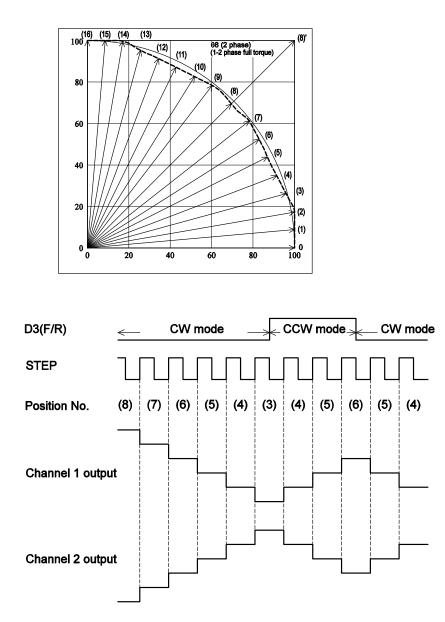
The above operation is repeated. Normally, in the sine wave increasing direction the IC operates in slow (+fast) decay mode, and in the sine wave decreasing direction the IC operates in fast decay mode until the current is attenuated and reaches the set value and the IC operates in slow decay mode.

Chopping Frequency Setting (D6 and D7 in the serial data)

This IC integrates an internal oscillator circuit and allows the chopping frequency used in constant-current control to be switched with the serial data (111***, D6, D7) setting.

Data D6	Data D7	Chopping frequency
0	0	130KHz
1	0	65KHz
0	1	200KHz
1	1	100KHz

Monitor Output Setting (Serial data bits D3, D4, and D5)


The signal output from the PI3/MO pin can be switched with the serial data (111, D3, ****) setting.

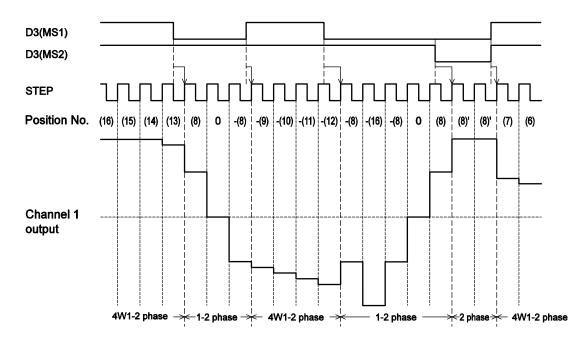
Data D3	PI3/MO pin output
0	Photosensor drive output 3
1	Stepping position detection monitor output

It is also possible to select which of channels 1 and 2 or channels 3 and 4 are output from the monitor pin with the serial data (111*, D4, D5, **) setting. The MO output position used to detect the driver excitation position in microstepping drive mode can also be switched. The state MO = Low is output at the output position.

Data D4	Data D5	Channels 1 and 2 excitation mode	Channels 3 and 4 excitation mode	MO output
0	0	2 phase excitation		Channels 1 and 2 monitor/initial position
0	1			
0	0	1-2 phase excitation		Channels 1 and 2 monitor/initial position
0	1	(full torque)		
0	0	1-2 phase excitation		Channels 1 and 2 monitor/initial position
0	1			
0	0	4W1-2 phase excitation		Channels 1 and 2 monitor/initial position
0	1			Channels 1 and 2 monitor/1-2 phase position
1	0		2 phase excitation	Channels 3 and 4 monitor/initial position
1	1			
1	0		1-2 phase excitation (full torque)	Channels 3 and 4 monitor/initial position
1	1			
1	0		1-2 phase excitation	Channels 3 and 4 monitor/initial position
1	1			
1	0		4W1-2 phase excitation	Channels 3 and 4 monitor/initial position
1	1			Channels 3 and 4 monitor/1-2 phase position
1	0		PWM drive mode	Output held fixed at the high level
1	1			Output held fixed at the high level

Basic Set Current Step Switching (STEP pin) and Forward/Reverse Switching (D3 in the serial data) Operations

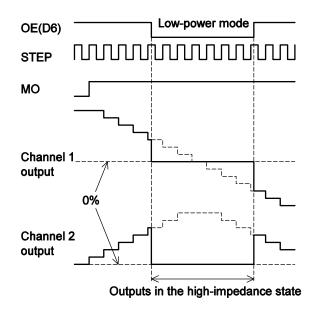
The IC internal D/A converter advances by 1 bits on the rising edge of the input step pulse.


The CW/CCW mode can be switched with the serial data (100, D3, ****) setting. The operation progresses with the position number decreasing in CW mode and increasing in CCW mode.

In CW mode, the channel 2 current phase is delayed by 90 degrees relative to the channel 1 current.

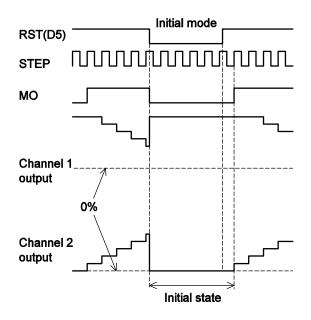
In CCW mode, the channel 2 current phase is advanced by 90 degrees relative to the channel 1 current.

LV8044LP


Excitation Mode Switching During Operation (D3 and D4 in the serial data)

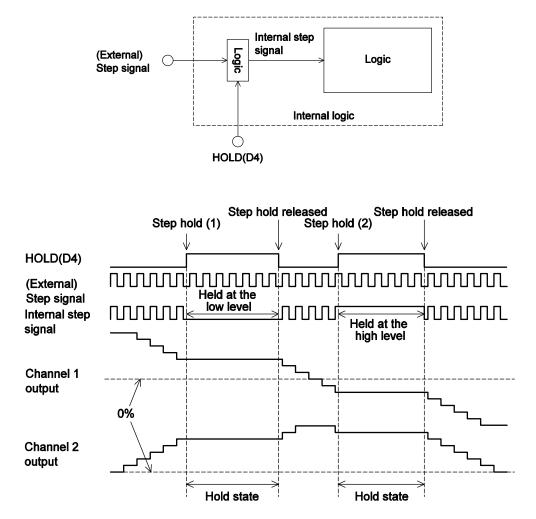
If the excitation mode is switched when power is applied to the motor, the operation follows the sequence shown below. (CW mode)

Before excitatio	n mode switching		Step position after excitation mode switching					
Excitation mode	Position	4W1-2 phase	1-2 phase	2 phase full	2 phase			
				torque				
	(16)		(8)	(8)'	(8)'			
	(15) to (9)		(8)	(8)'	(8)'			
4W1-2 phase	(8)		0	0	(8)'			
	(7) to (1)		(8)	(8)'	(8)'			
	0		-(8)	-(8)'	-(8)'			
	(16)	(15)		(8)'	(8)'			
1-2 phase	(8)	(7)		0	(8)'			
	0	-(1)		-(8)'	-(8)'			
	(16)	(15)	(8)		(8)'			
2 phase full torque	(8)'	(7)	0		(8)'			
	0	-(1)	-(8)		-(8)'			
2 phase	(8)'	(7)	0	0				


Output Enable Function (D6 in the serial data)

When the OE bit in the serial data, D6 (100, ***, D6, *), is set to 0, the output is turned off and set to the high-impedance state at the rise of STB.

Since, however, the internal logic circuits operate in this state, the position number will be advanced if a step input is applied. Therefore, when the OE bit (D6) is returned to 1, a level according to the position number advanced by the step input will be output.


Counter Reset Function (D5 in the serial data)

When the reset bit in the serial data, D5 (100, **, D5, **), is set to 0, the output goes to the initial state at the rise of STB and the MO output goes low.

Then, when the reset bit (D5) is next set to 1, the position number will advance at the next step input.

Step Hold Function (D4 in the serial data)

When the hold bit in the serial data, D4 (100, *, D4, ***), is set to 1, the external step state at that time is held without change as the internal step state.

Since the (external) step state is low at the timing of the step hold operation (1) in the figure, the internal step state is held at the low level, and since the (external) step state is high at the timing of the step hold operation (1), the internal step state is held at the high level.

When the hold data (D) is set to 0, the internal state is synchronized with the external step signal.

The output is held at the state at the point where the step hold was applied and after the step hold is released, it advances with the timing of the next step input (rising edge).

As long as the IC is in the hold state, the position number does not advance even if external step pulses are applied.

Channels 3 and 4 Driver Circuit (Saturated drive/microstep drive)

Driver Mode Setting (D0 = 0, D1 = 1, D2 = 0)

D7 data value	D7 data value Drive mode		Notes	
0	0 Saturated drive		Used as the channel 3 PWM input pin	
1	1 Microstep drive		Used as the channels 3 and 4 excitation step input pin	

The channels 3 and 4 driver circuit can be switched between the following operating modes by bit D7 in the serial data (010, ****, D7).

(1) Two saturated mode driver channels

(2) One microstep drive stepping motor driver channel

Microstep Drive Stepping Motor Driver

The basic functionality provided is identical to that of the channels 1 and 2 stepping motor driver. See section 10-2 for details on the serial data settings.

PWM Saturated Mode Driver

Channel 3 Truth Table (PWM mode: D0 = 1, D1 = 1, D2 = 0)

		Input			Output		Operating mode
ST	PWM3	D3	D4	D7	OUT3A	OUT3B	
Low	*	*	*	*	OFF	OFF	Standby mode
High	Low	0	0	*	OFF	OFF	Output off
High	Low	1	0	*	High	Low	CW (forward)
High	Low	0	1	*	Low	High	CCW (reverse)
High	Low	1	1	*	Low	Low	Brake
High	High	*	*	0	Low	Low	SLOW DECAY (brake)
High	High	*	*	1	OFF	OFF	FAST DECAY (output off)

Channel 4 Truth Table (PWM mode: D0 = 1, D1 = 1, D2 = 0)

		Input			Output		Operating mode
ST	PWM4	D5	D6	D7	OUT4A	OUT4B	
Low	*	*	*	*	OFF	OFF	Standby mode
High	Low	0	0	*	OFF	OFF	Output off
High	Low	1	0	*	High	Low	CW (forward)
High	Low	0	1	*	Low	High	CCW (reverse)
High	Low	1	1	*	Low	Low	Brake
High	High	*	*	0	Low	Low	SLOW DECAY (brake)
High	High	*	*	1	OFF	OFF	FAST DECAY (output off)

*: Don't care

Channels 5 and 6 Driver Circuit (Constant-current drive)

Output Function

When the channels 5 and 6 driver circuit is used to drive an actuator, it can be controlled either from the serial data or from the IN51, IN52, IN61, and IN62 parallel signals.

When the parallel input signals IN51 (IN61)/IN52 (IN62) are in the low/low state (note that since these inputs are pulled down internally in the IC, the open/open state can also be used), the output mode will be determined by the serial data.

If the parallel input signals are in any state other than the above, the serial data will be ignored and the output mode will be determined by the parallel inputs.

Truth Table (Channel 5: D0 = 0, D1 = 0, D2 = 1)

Parallel input		Serial data		Out	Mode		
IN51	IN52	D3	D4	OUT5A	OUT5B		
		0	0	OFF	OFF	Standby mode	
1	1	1	0	High	Low	CW (forward)	
Low	Low	LOW	0	1	Low	High	CCW (reverse)
		1	1	Low	Low	Brake	
High	Low	*	*	High	Low	CW (forward)	
Low	High	*	*	Low	High	CCW (reverse)	
High	High	*	*	Low	Low	Brake	

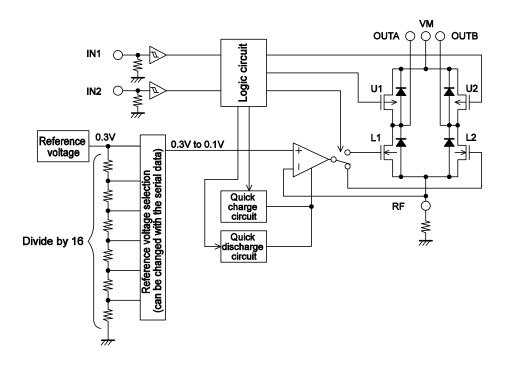
Truth Table (Channel 6: D0 = 0, D1 = 0, D2 = 1)

	()		*,=- *,					
	Paralle	Parallel input		l data	Out	puts	Mode	
	IN61	IN62	D5	D6	OUT6A	OUT6B		
	Low	Low	0	0	OFF	OFF	Standby mode	
			Low	1	0	High	Low	CW (forward)
				0	1	Low	High	CCW (reverse)
				1	1	Low	Low	Brake
	High	Low	*	*	High	Low	CW (forward)	
	Low	High	*	*	Low	High	CCW (reverse)	
	High	High	*	*	Low	Low	Brake	

*: Don't care

Constant-Current Control

eference Voltage	Setting $(D0 = 1, D)$	l = 0, D2 = 1, D3 =	= 0 (channel 5) or I	D3 = 1 (channel 6)
D4	D5	D6	D7	Current setting reference voltage
0	0	0	0	0.300V
1	0	0	0	0.200V
0	1	0	0	0.190V
1	1	0	0	0.180V
0	0	1	0	0.170V
1	0	1	0	0.165V
0	1	1	0	0.160V
1	1	1	0	0.155V
0	0	0	1	0.150V
1	0	0	1	0.145V
0	1	0	1	0.140V
1	1	0	1	0.135V
0	0	1	1	0.130V
1	0	1	1	0.120V
0	1	1	1	0.110V
1	1	1	1	0.100V


Defense	Valta an C	atting $(D0 = 1$	D1 = 0 D2	-1 D2 -0.0	(chonnol 5)	n D2 = 1 ((abommal (A))
Reference	vonage 5	etting $(D0 = 1)$	D D = 0.02	= 1.10 = 0.0	channel of c	$y_{1}y_{2} = 1$	channel off
	· orange o	••••••••••••••••••••••••••••••••••••••	.,				•

The constant-current setting for channels 5 and 6 can be set individually for each channel.

(When D3 is 0, channel 5 is set, and when D3 is 1, channel 6 is set.)

The constant-current output value is set by the constant-current reference voltage set with the serial data and the value of the resistor (referred to as "RF" here) connected to the RF5 or RF6 pin. The formula below is used to calculated the constant-current output value.

<Constant-current output level> = <current setting reference voltage>/<RF resistor>

Photosensor Drive Circuit (PI1, PI2, and PI3)

The photosensor drive circuit has open-drain outputs. The output is controlled (set to on or off) by a bit in the serial data (0 or 1).

Truth Table

Input				Output			Drive circuit
ST	D3	D4	D5	PI1	PI2	PI3	
Low	*	*	*	OFF	OFF	OFF	Standby mode
High	0	*	*	OFF	*	*	Off
High	1	*	*	Low	*	*	On
High	*	0	*	*	OFF	*	Off
High	*	1	*	*	Low	*	On
High	*	*	0	*	*	OFF	Off
High	*	*	1	*	*	Low	On

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)	
LV8044LP-MPB-E	VQLP40(5.0X5.0) (Pb-Free)	2450 / Tray JEDEC	
LV8044LP-MPB-H	VQLP40(5.0X5.0) (Pb-Free / Halogen Free)	2450 / Tray JEDEC	
LV8044LP-TLM-E	VQLP40(5.0X5.0) (Pb-Free)	2000 / Tape and Reel	
LV8044LP-TLM-H	VQLP40(5.0X5.0) (Pb-Free / Halogen Free)	2000 / Tape and Reel	

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized upplication, Buyer shall indeminify and hold SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright aws and is not for resale in any manner.