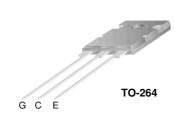


FGL40N120AN 1200V NPT IGBT

Features

- High speed switching
- Low saturation voltage : V_{CE(sat)} = 2.6 V @ I_C = 40A
- High input impedance


Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter	FGL40N120AN	Units	
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		±25	V
	Collector Current	@T _C = 25°C	64	А
I _C	Collector Current	@T _C = 100°C	40	А
I _{CM(1)}	Pulsed Collector Current		160	А
P _D	Maximum Power Dissipation	@T _C = 25°C	500	W
	Maximum Power Dissipation	@T _C = 100°C	200	W
SCWT	Short Circuit Withstand Time, $V_{CE} = 600V, V_{GE} = 15V, T_{C} = 125^{\circ}C$	10	μs	
TJ	Operating Junction Temperature	-55 to +150	°C	
T _{STG}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 second	300	°C	

Notes:

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.25	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Device Marking Device Pac		Package	Reel Size	Тар	e Width	Qua	antity	
			TO-264	-		-		25
Electrical	l Char	acteristics of the	e IGBT Tc=	25°C unless otherwise not	ed			
Symbol		Parameter	C	Conditions		Тур.	Max.	Units
Off Character	ristics							
BV _{CES}	Collector	-Emitter Breakdown Voltag	e V _{GE} = 0V	, I _C = 1mA	1200			V
	Tempera Voltage	ture Coefficient of Breakdo		$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
	Collector	Cut-Off Current	$V_{CE} = V_C$	_{ES} , V _{GE} = 0V			1	mA
	G-E Leal	kage Current	V _{GE} = V _G	_{ES} , V _{CE} = 0V			±250	nA
On Character	ristice							
		eshold Voltage	I _C = 250μ	A, V _{CE} = V _{GE}	3.5	5.5	7.5	V
- (- /			I _C = 40A,	V _{GE} = 15V		2.6	3.2	V
V _{CE(sat)} Collector to Emitter Saturation Voltage		I _C = 40A, T _C = 125°	V _{GE} = 15V, ² C		2.9		V	
-			I _C = 64A,	V _{GE} = 15V		3.15		V
Dynamic Cha	aracteris	tics				1		1
.00	Input Capacitance Output Capacitance		V 30 ¹	V _{CE} = 30V, V _{GE} = 0V f = 1MHz		3200		pF
						370		pF
C _{res}	Reverse Transfer Capacitance					125		pF
Switching Ch	naracteri	stics						
t _{d(on)} Turn-On Delay Time					15		ns	
t _r	Rise Tim	е		V _{CC} = 600V, I _C = 40A,		20		ns
t _{d(off)}	Turn-Off	Delay Time	$V_{CC} = 600$			110		ns
t _f	Fall Time		$R_{G} = 5\Omega,$	V _{GE} = 15V,		40	80	ns
E _{on}	Turn-On	Switching Loss	Inductive	Load, $T_C = 25^{\circ}C$		2.3	3.45	mJ
E _{off}	Turn-Off	Turn-Off Switching Loss				1.1	1.65	mJ
E _{ts}	Total Swi	tching Loss				3.4	5.1	mJ
t _{d(on)}	Turn-On	Delay Time				20		ns
t _r	Rise Tim	е				25		ns
t _{d(off)}	Turn-Off	Delay Time	V _{CC} = 60	$V_{CC} = 600V, I_{C} = 40A,$		120		ns
•	Fall Time Turn-On Switching Loss		$R_{G} = 5\Omega,$	V _{GE} = 15V,		45		ns
E _{on} .			inductive	Inductive Load, T _C = 125°C		2.5		mJ
0	Turn-Off	Switching Loss]		1.8		mJ
E _{ts}	Total Swi	tching Loss				4.3		mJ
Q _g	Total Gat	e charge	V 60	V _{CE} = 600V, I _C = 40A, V _{GE} = 15V		220	330	nC
Q _{ge}	Gate-Em	itter Charge				25	38	nC
Q _{gc}	Gate-Col	lector Charge				130	195	nC

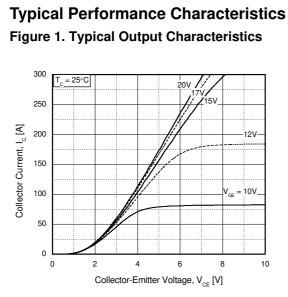


Figure 3. Saturation Voltage vs. Case Temperature at Variant Current Level

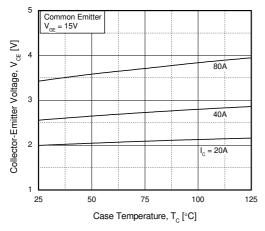


Figure 5. Saturation Voltage vs. V_{GE}

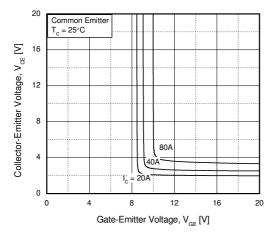


Figure 2. Typical Saturation Voltage Characteristics

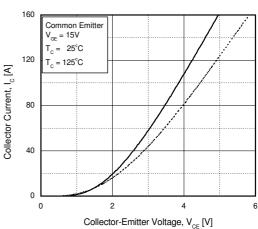
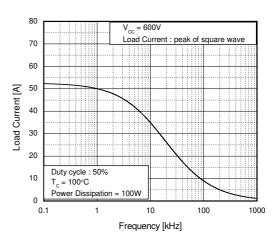
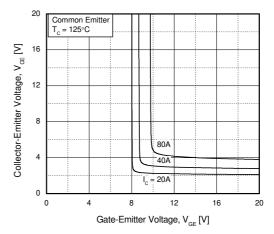
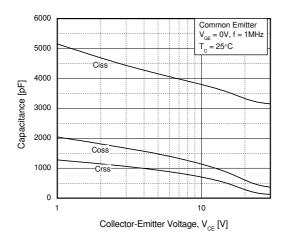


Figure 4. Load Current vs. Frequency


Figure 6. Saturation Voltage vs. V_{GE}

FGL40N120AN 1200V NPT IGBT

Typical Performance Characteristics (Continued)

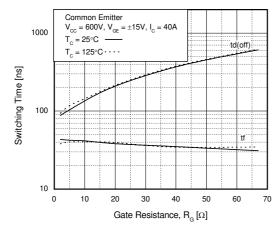
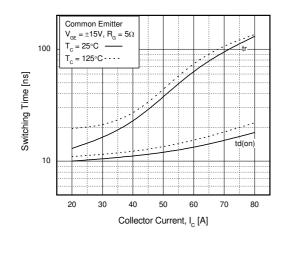
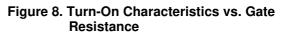
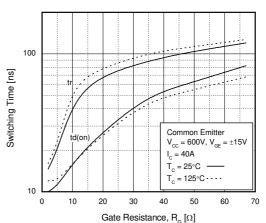





Figure 11. Turn-On Characteristics vs. Collector Current

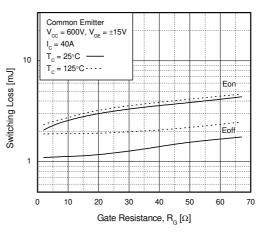
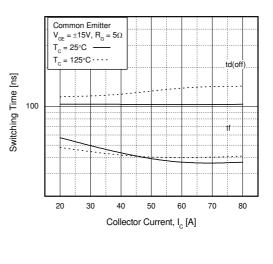
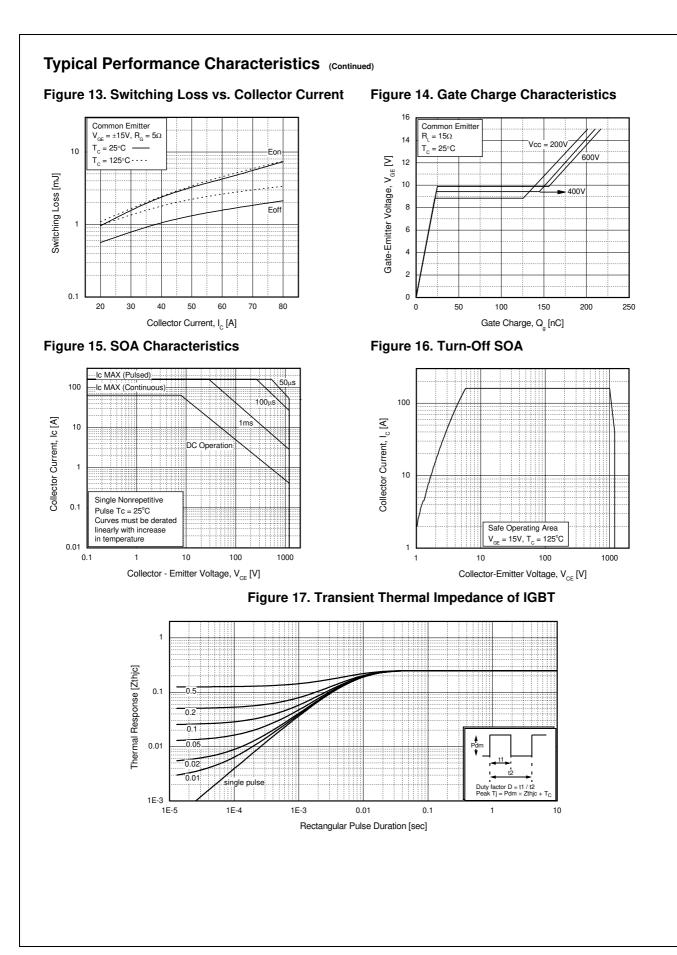
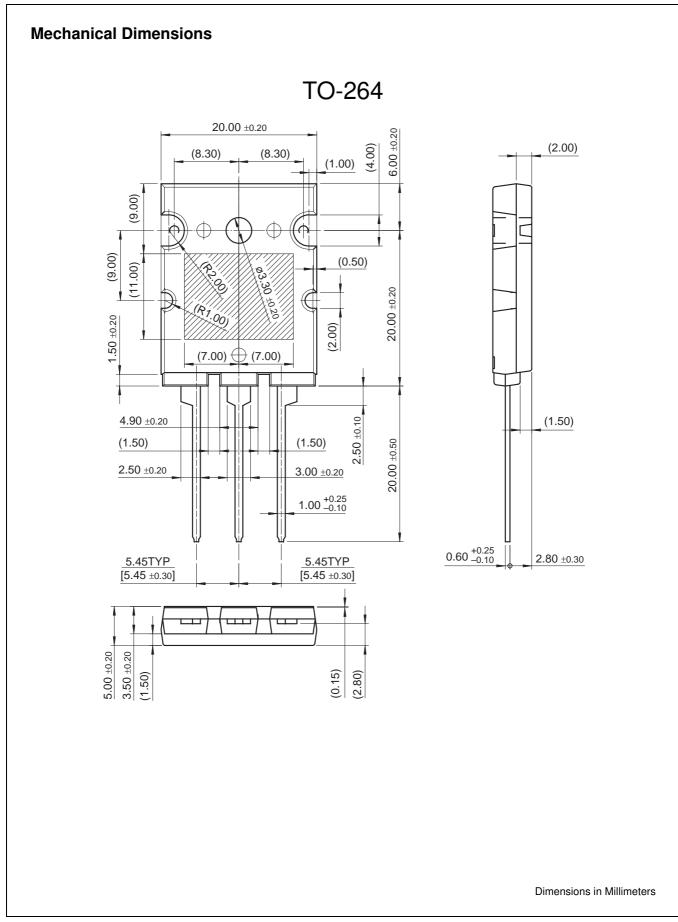





Figure 12. Turn-Off Characteristics vs. Collector Current

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK[®]** FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FPS™ FRFET® Global Power Resource[™] Green FPS™

Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** PDP-SPM™ Power220[®] Power247[®]

POWEREDGE[®] Power-SPM[™] PowerTrench[®] Programmable Active Droop™ **QFET**[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6

SuperSOT[™]-8 . SyncFET™ The Power Franchise® TM TinyBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinvPower™ TinyPWM™ TinyWire™ μSerDes™ UHC[®] UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.				

Rev. 129

BUY

Datasheet

datasheet

PDF

<u></u> =- '

Download this

Home >> Find products >>

FGL40N120AN 1200V NPT IGBT

Contents

•General description •Features •Applications •Product status/pricing/packaging

•<u>Order Samples</u> •Qualification Support

General description

Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

back to top

Features

- High speed switching
- Low saturation voltage: V_{CE(sat)} = 2.6 V @ I_C = 40A
- High input impedance

back to top

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

back to top

Product status/pricing/packaging

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**
---------	----------------	----------------	----------	--------------	-------	----------------	------------------------------

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

<u>_____</u>

<u>Support</u>

Sales support

Quality and reliability

Design center

This page Print version

e-mail this datasheet

FGL40N120ANTU	Full Production	Full Production	\$10.78	<u>TO-264</u>	3	RAIL	<u>Line 1:</u> \$Y (Fairchild logo) & Z (Asm. Plant Code) &E <u>Line 2:</u> FGL40N120 <u>Line 3:</u> AN &3
---------------	-----------------	--------------------	---------	---------------	---	------	--

* Fairchild 1,000 piece Budgetary Pricing ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Ø Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FGL40N120AN is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product FGL40N120ANTU

back to top

© 2007 Fairchild Semiconduct	2007	07 Fairchild Se	emiconducto
------------------------------	------	-----------------	-------------

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (