

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	10	1000		
R _{DS(on)} (Ω)	V _{GS} = 10 V	3.5		
Q _g (max.) (nC)	12	120		
Q _{gs} (nC)	1	16		
Q _{gd} (nC)	6	65		
Configuration	Sin	Single		

FEATURES

- Dynamic dV/dt rated
- Repetitive avalanche rated
- · Isolated central mounting hole
- · Fast switching
- · Ease of paralleling
- Simple drive requirements
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-247AC package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220AB devices. The TO-247AC is similar but superior to the earlier TO-218 package because of its isolated mouting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications.

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free	IRFPG40PbF

ABSOLUTE MAXIMUM RATINGS (T_C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V_{DS}	1000	V
Gate-source voltage			V_{GS}	± 20	¬
Continuous drain augrent	\/ at 10 \/	T _C = 25 °C	1	4.3	
Continuous drain current $V_{GS} \text{ at } 10 \text{ V} \frac{T_C = 25}{T_C = 100}$		T _C = 100 °C	I _D	2.7	Α
Pulsed drain current ^a			I _{DM}	17	
Linear derating factor				1.2	W/°C
Single pulse avalanche energy b			E _{AS}	490	mJ
Repetitive avalanche current ^a			I _{AR}	4.3	Α
Repetitive avalanche energy ^a			E _{AR}	15	mJ
Maximum power dissipation	T _C = 25 °C		P_{D}	150	W
Peak diode recovery dV/dt ^c			dV/dt	1.0	V/ns
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Soldering recommendations (peak temperature) for 10 s		-	300 ^d		
Mounting torque	6 20 or M2 :	0.00 140		10	lbf ⋅ in
Mounting torque	6-32 or M3 screw			1.1	N⋅m

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. $V_{DD} = 50 \text{ V}$, starting $T_J = 25 \,^{\circ}\text{C}$, $L = 50 \, \text{mH}$, $R_g = 25 \, \Omega$, $I_{AS} = 4.3 \, \text{A}$ (see fig. 12)
- c. $I_{SD} \le 4.3$ A, $dI/dt \le 100$ A/ μ s, $V_{DD} \le 600$, $T_J \le 150$ °C
- d. 1.6 mm from case

Vishay Siliconix

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum junction-to-ambient	R _{thJA}	-	40	
Case-to-sink, flat, greased surface	R _{thCS}	0.24	-	°C/W
Maximum junction-to-case (drain)	R _{thJC}	-	0.83	

PARAMETER	SYMBOL	TEST	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		1000	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Reference to 2	5 °C, I _D = 1 mA	-	1.3	-	V/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D =$: 250 μA	2.0	-	4.0	V
Gate-source leakage	I _{GSS}	$V_{GS} = \pm 20 \text{ V}$		-	-	± 100	nA
Zana anto continuo desir accoment	,	V _{DS} = 1000 V,	V _{GS} = 0 V	-	-	100	
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 800V, V_{C}$	_{SS} = 0 V, T _J = 125 °C	-	-	500	μA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 2.6 A ^b	-	-	3.5	Ω
Forward transconductance	9 _{fs}	$V_{DS} = 50 \text{ V}, I_D$	= 2.6 A ^b	33	-	-	S
Dynamic							
Input capacitance	C _{iss}	$V_{GS} = 0 V$		-	1600	-	
Output capacitance	C _{oss}	$V_{DS} = 25 \text{ V},$		-	170	-	pF
Reverse transfer capacitance	C _{rss}	f = 1.0 MHz, se	ee fig. 5	-	56	-	
Total gate charge	Qg			-	-	120	
Gate-source charge	Q _{gs}	V _{GS} = 10 V	$I_{D} = 4.3 \text{ A}, V_{DS} = 400 \text{ V},$ $I_{D} = 4.3 \text{ A}, V_{DS} = 400 \text{ A},$ $I_{D} = 4.3 \text{ A}, V_{DS} = 400 \text{ A},$ $I_{D} = 4.3 \text{ A},$ $I_{D} = 4.3 $		-	16	nC
Gate-drain charge	Q_{gd}	See lig. 6 and 13		-	-	65	
Turn-on delay time	t _{d(on)}	V_{DD} = 500 V, I_{D} = 4.3 A , R_{g} = 9.1 Ω , R_{D} = 120 Ω , see fig. 10 b		-	15	-	
Rise time	t _r			-	33	-	
Turn-off delay time	t _{d(off)}			-	100	-	ns
Fall time	t _f			-	30	-	
Internal drain inductance	L _D	Between lead, 6 mm (0.25") from package and center of die contact		-	5.0	-	
Internal source inductance	L _S			-	13	-	nH
Drain-Source Body Diode Characteristic	es						
Continuous source-drain diode current	I _S	MOSFET symb	ool	-	-	4.3	
Pulsed diode forward current ^a	I _{SM}	showing the integral reverse p - n junction diode		-	-	17	А
Body diode voltage	V _{SD}	T _J = 25 °C, I _S =	= 4.3 A, V _{GS} = 0 V ^b	-	-	1.8	V
Body diode reverse recovery time	t _{rr}	T 05 00 1	40 A 41/4+ 400 A /- h	-	470	710	ns
Body diode reverse recovery charge	Q _{rr}	$T_J = 25 ^{\circ}\text{C}, I_F = 4.3 \text{A}, \text{dI/dt} = 100 \text{A/}\mu\text{s}^{\text{b}}$		-	1.9	2.9	μC
Forward turn-on time	t _{on}	Intrinsic turn-o	n time is negligible (turn-on	is domin	ated by L	s and Ln)	

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. Pulse width \leq 300 µs; duty cycle \leq 2 %

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

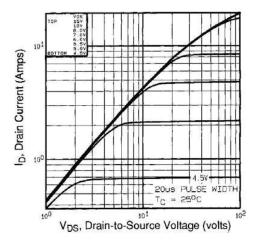


Fig. 1 - Typical Output Characteristics, $T_C = 25$ °C

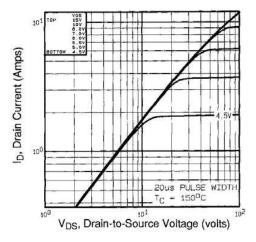


Fig. 2 - Typical Output Characteristics, $T_C = 150$ °C

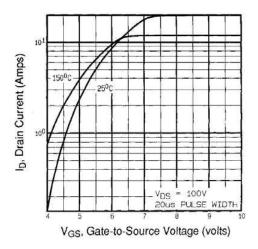


Fig. 3 - Typical Transfer Characteristics

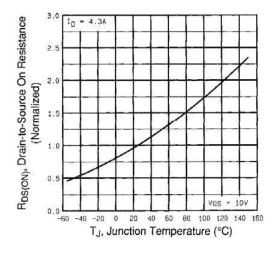


Fig. 4 - Normalized On-Resistance vs. Temperature

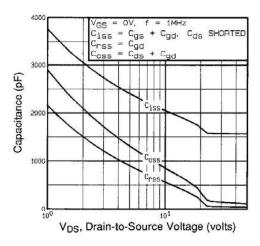


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

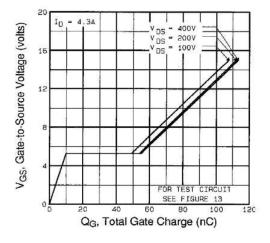


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

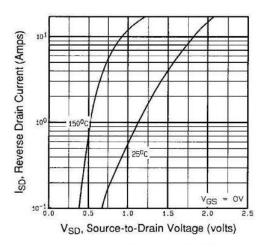


Fig. 7 - Typical Source-Drain Diode Forward Voltage

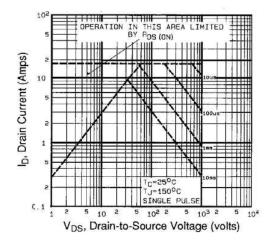


Fig. 8 - Maximum Safe Operating Area

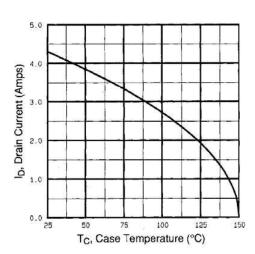


Fig. 9 - Maximum Drain Current vs. Case Temperature

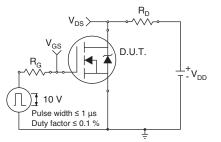


Fig. 10 - Switching Time Test Circuit

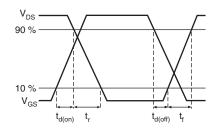


Fig. 11 - Switching Time Waveforms

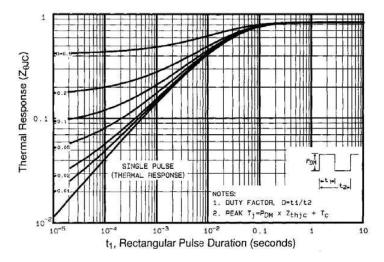
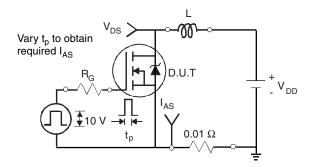
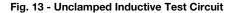




Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

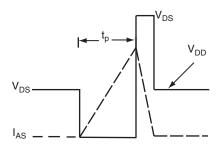


Fig. 14 - Unclamped Inductive Waveforms

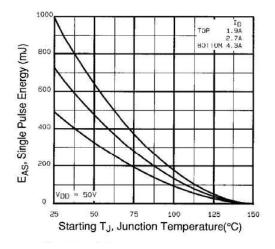


Fig. 15 - Maximum Avalanche Energy vs. Drain Current

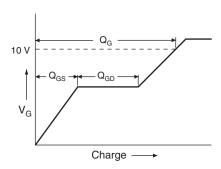


Fig. 16 - Basic Gate Charge Waveform

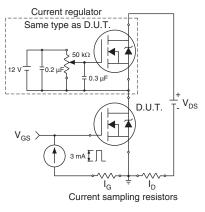
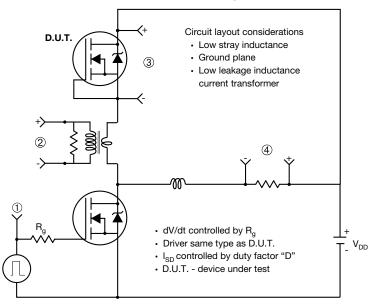
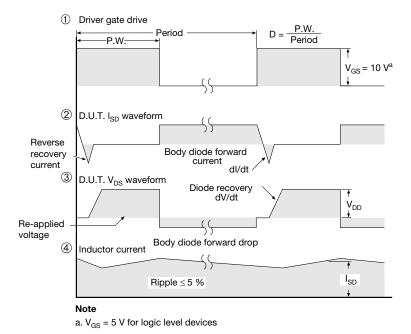
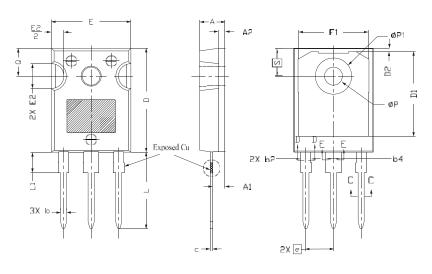



Fig. 17 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit




Fig. 18 - For N-Channel

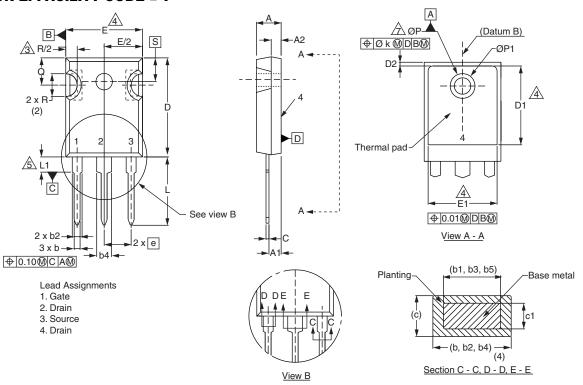
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91253.

TO-247AC (High Voltage)

VERSION 1: FACILITY CODE = 9

Section C--C,D-D,E-E

	MILLIMETERS			
DIM.	MIN.	NOM.	MAX.	NOTES
Α	4.83	5.02	5.21	
A1	2.29	2.41	2.55	
A2	1.17	1.27	1.37	
b	1.12	1.20	1.33	
b1	1.12	1.20	1.28	
b2	1.91	2.00	2.39	6
b3	1.91	2.00	2.34	
b4	2.87	3.00	3.22	6, 8
b5	2.87	3.00	3.18	
С	0.40	0.50	0.60	6
c1	0.40	0.50	0.56	
D	20.40	20.55	20.70	4


		MILLIMETERS	3		
DIM.	MIN.	NOM.	MAX.	NOTES	
D1	16.46	16.76	17.06	5	
D2	0.56	0.66	0.76		
Е	15.50	15.70	15.87	4	
E1	13.46	14.02	14.16	5	
E2	4.52	4.91	5.49	3	
е		5.46 BSC			
L	14.90	15.15	15.40		
L1	3.96	4.06	4.16	6	
ØΡ	3.56	3.61	3.65	7	
Ø P1	7.19 ref.				
Q	5.31	5.50	5.69		
S					

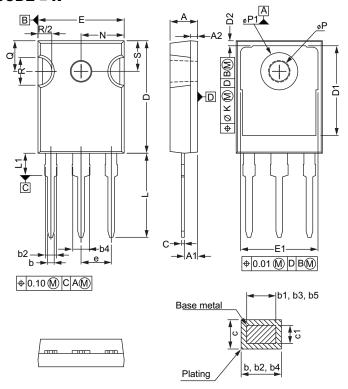
- (1) Package reference: JEDEC® TO247, variation AC
- (2) All dimensions are in mm
- (3) Slot required, notch may be rounded
- (4) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- (5) Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- $^{(7)}$ Ø P to have a maximum draft angle of 1.5° to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

www.vishay.com

Vishay Siliconix

VERSION 2: FACILITY CODE = Y

	MILLIMETERS		
DIM.	MIN.	MAX.	NOTES
Α	4.58	5.31	
A1	2.21	2.59	
A2	1.17	2.49	
b	0.99	1.40	
b1	0.99	1.35	
b2	1.53	2.39	
b3	1.65	2.37	
b4	2.42	3.43	
b5	2.59	3.38	
С	0.38	0.86	
c1	0.38	0.76	
D	19.71	20.82	
D1	13.08	-	


	MILLIN		
DIM.	MIN.	MAX.	NOTES
D2	0.51	1.30	
E	15.29	15.87	
E1	13.72	-	
е	5.46	BSC	
Øk	0.2	254	
L	14.20	16.25	
L1	3.71	4.29	
ØР	3.51	3.66	
Ø P1	-	7.39	
Q	5.31	5.69	
R	4.52	5.49	
S	5.51 BSC		

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC outline TO-247 with exception of dimension c

www.vishay.com

Vishay Siliconix

VERSION 3: FACILITY CODE = N

	MILLIMETERS			
DIM.	MIN.	MAX.		
Α	4.65	5.31		
A1	2.21	2.59		
A2	1.17	1.37		
b	0.99	1.40		
b1	0.99	1.35		
b2	1.65	2.39		
b3	1.65	2.34		
b4	2.59	3.43		
b5	2.59	3.38		
С	0.38	0.89		
c1	0.38	0.84		
D	19.71	20.70		
D1	13.08	-		

	MILLIMETERS		
DIM.	MIN.	MAX.	
D2	0.51	1.35	
E	15.29	15.87	
E1	13.46	1	
е	5.46 BSC		
k	0.254		
L	14.20	16.10	
L1	3.71	4.29	
N	7.62	BSC	
Р	3.56	3.66	
P1	-	7.39	
Q	5.31	5.69	
R	4.52	5.49	
S	5.51 BSC		

ECN: E22-0452-Rev. G, 31-Oct-2022

DWG: 5971

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.