
 1.01

a

Loader and Utilities Manual
(including ADSP-BFxxx and ADSP-21xxx)

Revision 1.3, May 2014

Part Number

82-100114-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

 1.1

Copyright Information
©2014 Analog Devices, Inc., ALL RIGHTS RESERVED. �is document may not be reproduced in any form
without prior, express written consent from Analog Devices, Inc. Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by
Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices
for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

�e Analog Devices logo, Black�n, SHARC, EngineerZone, VisualDSP++, CrossCore Embedded Studio, EZ-KIT
Lite, and EZ-Board are registered trademarks of Analog Devices, Inc.

Black�n+ is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

2

Contents

Chapter 1: Preface...9
Purpose of This Manual..9

Intended Audience... 9

Manual Contents...9

What's New in This Manual.. 10

Technical Support...10

Supported Processors.. 11

Product Information...11
Analog Devices Web Site.. 11

EngineerZone.. 12

Notation Conventions.. 12

Chapter 2: Introduction ...15
De�nition of Terms... 15

Program Development Flow..18
Compiling and Assembling.. 19

Linking... 19

Loading, Splitting, or Both... 19

Non-Bootable Files Versus Boot-Loadable Files... 20

Boot Modes... 22
No-Boot Mode... 22

PROM Boot Mode.. 22

Host Boot Mode... 22

Boot Kernels..23

Boot Streams...23

Loader File Searches...24

Loader File Extensions... 24

Chapter 3:
Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors.....27
ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting...27

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide..32
Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors..32

CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors..42

Chapter 4: Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors..........................43
ADSP-BF53x/BF561 Processor Booting.. 43

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting...44

ADSP-BF561 Processor Booting... 56

ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management...64

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

5

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support... 67

ADSP-BF53x/BF561 Processor Loader Guide... 71
Loader Command Line for ADSP-BF53x/BF561 Processors... 72

CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors... 82

Chapter 5: Loader/Splitter for ADSP-BF60x Black�n Processors......................................83
ADSP-BF60x Processor Booting.. 83

ADSP-BF60x Processor Boot Modes.. 84

ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot... 85

Building a Dual-Core Application.. 86

CRC32 Protection...87

Block Sizes..88

ADSP-BF60x Processor Loader Guide... 88
CCES Loader and Splitter Interface for ADSP-BF60x Processors... 88

ROM Splitter Capabilities for ADSP-BF60x Processors...89

ADSP-BF60x Loader Collateral... 90

Chapter 6: Loader/Splitter for ADSP-BF70x Black�n Processors......................................91
ADSP-BF70x Processor Booting.. 91

ADSP-BF70x Processor Boot Modes.. 92

ADSP-BF70x BCODE Field for SPI Boot.. 92

Secure Boot and Encrypted Images... 93

CRC32 Protection...94

Block Sizes..94

ADSP-BF70x Processor Loader Guide... 95
CCES Loader and Splitter Interface for ADSP-BF70x Processors... 95

ROM Splitter Capabilities for ADSP-BF70x Processors...96

ADSP-BF70x Loader Collateral... 97

Chapter 7: Loader for ADSP-21160 SHARC Processors..99
ADSP-21160 Processor Booting.. 99

Power-Up Booting Process... 100

Boot Mode Selection...101

ADSP-21160 Boot Modes..102

ADSP-21160 Boot Kernels.. 107

ADSP-21160 Interrupt Vector Table...111

ADSP-21160 Multi-Application (Multi-DXE) Management.. 111

Processor Loader Guide... 112
Loader Command Line for Processors... 112

CCES Loader Interface for Processors.. 116

Chapter 8: Loader for ADSP-21161 SHARC Processors..117
ADSP-21161 Processor Booting.. 117

Power-Up Booting Process... 118

Boot Mode Selection...118

ADSP-21161 Processor Boot Modes.. 119

ADSP-21161 Processor Boot Kernels... 127

ADSP-21161 Processor Interrupt Vector Table... 130

ADSP-21161 Multi-Application (Multi-DXE) Management.. 130

ADSP-21161 Processor Loader Guide... 131
Loader Command Line for Processors... 132

CCES Loader Interface for Processors.. 136

Chapter 9: Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors................ 137
ADSP-2126x/2136x/2137x/214xx Processor Booting... 137

Power-Up Booting Process... 138

ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table.. 139

General Boot De�nitions.. 139

Contents

6 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Boot Mode Selection...139

Boot DMA Con�guration Settings... 140

ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels..147

ADSP-2126x/2136x/2137x/214xx Processor Boot Streams...151

Multi-Application (Multi-DXE) Management.. 159

ADSP-2126x/2136x/2137x Processor Compression Support.. 161

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide..165
Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors..165

CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors...171

Chapter 10: Splitter for SHARC Processors...173
Splitter Command Line.. 173

Splitter File Searches...175

Splitter Output File Extensions.. 175

Splitter Command-Line Switches...175

Chapter 11: File Formats.. 179
Source Files... 179

C/C++ Source Files...179

Assembly Source Files...180

Assembly Initialization Data Files..180

Header Files... 181

Linker Description Files.. 181

Linker Command-Line Files.. 181

Build Files.. 181
Assembler Object Files..182

Library Files... 182

Linker Output Files..182

Memory Map Files... 182

Bootable Loader Output Files.. 182

Non-Bootable Loader Output Files in Byte Format.. 188

Splitter Output Files..189

Debugger Files..191

Chapter 12: Utilities..193
hexutil - Hex-32 to S-Record File Converter... 193

elf2dyn - ELF to Dynamically-Loadable Module Converter.. 194
Dynamically-Loadable Modules.. 194

Syntax...195

File Formats and -l Switch...196

Exported Symbols... 197

Section Alignment...197

elf2elf - ELF to ELF File Converter..198

dyndump - Display the Contents of Dynamically-Loadable Modules... 199
-f Family..200

Output.. 200

dynreloc - Relocate Dynamically-Loadable Modules.. 200
Explicit Mappings..201

Region Mappings.. 201

signtool - Sign and Encrypt Boot Streams for Secure Booting... 202
Syntax...202

Output Formats... 203

Key Generation for Signing.. 203

Key Generation for Encryption...204

Signing and Encrypting Boot Streams.. 204

Extracting Public Keys...204

Contents

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

7

Contents

8 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

1
Preface

�ank you for purchasing CrossCore® Embedded Studio (CCES), Analog Devices development so�ware for
Black�n® and SHARC® processors.

Purpose of This Manual
�e Loader and Utilities Manual contains information about the loader/splitter program for Analog Devices
processors.

�e manual describes the loader/splitter operations for these processors and references information about
related development so�ware. It also provides information about the loader and splitter command-line
interfaces.

Intended Audience
�e primary audience for this manual is a programmer who is familiar with Analog Devices processors. �e
manual assumes the audience has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices processors can use this manual, but
should supplement it with other texts, such as hardware reference and programming reference manuals, that
describe their target architecture.

Manual Contents
�e manual contains:

• Chapter 1, Introduction, provides an overview of the loader utility (or loader) program as well as the process of
loading and splitting, the �nal phase of the application development �ow.

• Chapter 2, Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors, explains how the
loader/splitter utility is used to convert executable �les into boot-loadable or non-bootable �les for the ADSP-
BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and ADSP-BF59x Black�n processors.

Preface

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

9

• Chapter 3, Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors, explains how the loader/splitter utility
is used to convert executable �les into boot-loadable or non-bootable �les for the ADSP-BF53x and ADSP-
BF561 Black�n processors.

• Chapter 4, Loader/Splitter for ADSP-BF60x Black�n Processors, explains how the loader/splitter utility
(elfloader.exe) is used to convert executable �les into boot-loadable or non-bootable �les for the ADSP-
BF60x Black�n processors.

• Chapter 5, Loader for ADSP-21160 SHARC Processors, explains how the loader utility is used to convert
executable �les into boot-loadable �les for the ADSP-21160 SHARC processors.

• Chapter 6, Loader for ADSP-21161 SHARC Processors, explains how the loader utility is used to convert
executable �les into boot-loadable �les for the ADSP-21161 SHARC processors.

• Chapter 7, Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors, explains how the loader utility is
used to convert executable �les into boot-loadable �les for the ADSP-2126x, ADSP- 2136x, ADSP-2137x,
ADSP-2146x, ADSP-2147x, and ADSP-2148x SHARC processors.

• Chapter 8, Splitter for SHARC Processors, explains how the splitter utility is used to convert executable �les
into non-bootable �les for the earlier SHARC processors.

• Appendix A, File Formats, describes source, build, and debugger �le formats.

• Appendix B, Utilities, describes several utility programs included with CrossCore Embedded Studio, some of
which run from a command line only.

What's New in This Manual
�is is Revision 1.3 of the Loader and Utilities Manual, supporting CrossCore Embedded Studio (CCES) 1.1.0.

�is revision includes support for new Black�n processors and utility programs in the Utilities appendix.

For future revisions, this section will document loader and splitter functionality that is new to CCES, including
support for new SHARC and/or Black�n processors. In addition, modi�cations and corrections based on errata
reports against the previous revisions of the manual will also be noted here.

Technical Support
You can reach Analog Devices processors and DSP technical support in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone®:

http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:

http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools development so�ware from CrossCore Embedded
Studio or VisualDSP++®:

Choose Help > Email Support. �is creates an e-mail to processor.tools.support@analog.com and
automatically attaches your CrossCore Embedded Studio or VisualDSP++ version information and
license.dat �le.

• E-mail your questions about processors and processor applications to:

Preface

10 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

http://ez.analog.com/community/dsp
http://www.analog.com/support
http://mailto:processor.tools.support@analog.com

processor.tools.support@analog.com

processor.china@analog.com (Greater China support)

• Contact your Analog Devices sales o�ce or authorized distributor. Locate one at:

http://www.analog.com/adi-sales

• Send questions by mail to:

Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
�e CrossCore Embedded Studio loader and utility programs support the following processor families from
Analog Devices.

• Black�n (ADSP-BFxxx)

• SHARC (ADSP-21xxx)

Refer to the CrossCore Embedded Studio online help for a complete list of supported processors.

Product Information
Product information can be obtained from the Analog Devices Web site and the CrossCore Embedded Studio
online help.

Analog Devices Web Site
�e Analog Devices Web site, http://www.analog.com, provides information about a broad range of products—
analog integrated circuits, ampli�ers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to http://www.analog.com/processors/
technical_library. �e manuals selection opens a list of current manuals related to the product as well as a link to
the previous revisions of the manuals. When locating your manual title, note a possible errata check mark next
to the title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web
page to display only the latest information about products you are interested in. You can choose to receive
weekly e-mail noti�cations containing updates to the Web pages that meet your interests, including
documentation errata against all manuals. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

Preface

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

11

http://mailto:processor.tools.support@analog.com
http://mailto:processor.china@analog.com
http://www.analog.com/adi-sales
http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI technical
support engineers. You can search FAQs and technical information to get quick answers to your embedded
processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use
this open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

Notation Conventions
Text conventions used in this manual are identi�ed and described as follows. Additional conventions, which
apply only to speci�c chapters, may appear throughout this document.

Example Description

File > Close Titles in bold style indicate the location of an item within the CrossCore
Embedded Studio IDE’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or that.
One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and separated
by vertical bars; read the example as an optional this or that.

[this, …] Optional item lists in syntax descriptions appear within brackets delimited by
commas and terminated with an ellipsis; read the example as an optional
comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with letter
gothic font.

filename Non-keyword placeholders appear in text with italic style format.

i
Note: NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online
version of this book, the word Note appears instead of this symbol.

Preface

12 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

http://ez.analog.com
http://ez.analog.com

Example Description

x
Caution: CAUTION: Incorrect device operation may result if ...

CAUTION: Device damage may result if ...

A caution identi�es conditions or inappropriate usage of the product that
could lead to undesirable results or product damage. In the online version of
this book, the word Caution appears instead of this symbol.

x
Attention: ATTENTION Injury to device users may result if ...

A warning identi�es conditions or inappropriate usage of the product that
could lead to conditions that are potentially hazardous for devices users. In
the online version of this book, the word Warning appears instead of this
symbol.

Preface

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

13

2
Introduction

�e majority of this manual describes the loader utility (or loader) program as well as the process of loading and
splitting, the �nal phase of the application development �ow.

Most of this chapter applies to all 8-, 16-, and 32-bit processors. Information speci�c to a particular processor, or
to a particular processor family, is provided in the following chapters.

• Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

• Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

• Loader/Splitter for ADSP-BF60x Black�n Processors

• Loader for ADSP-21160 SHARC Processors

• Loader for ADSP-21161 SHARC Processors

• Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

• Splitter for SHARC Processors

• File Formats

• Utilities

Definition of Terms
Loader and
Loader Utility

�e term loader refers to a loader utility that is part of CrossCore Embedded Studio. �e
loader utility post-processes one or multiple executable (.dxe) �les, extracts segments that
have been declared by the TYPE(RAM) command in a Linker Description File (.ldf), and
generates a loader �le (.ldr). Since the .dxe �le meets the Executable and Linkable Format
(ELF) standard, the loader utility is o�en called elfloader utility. See also Loader Utility
Operations.

Splitter Utility �e splitter utility is part of CrossCore Embedded Studio. �e splitter utility post-processes
one or multiple executable (.dxe) �les, extracts segments that have been declared by the
TYPE(R0M) command in a Linker Description File (.ldf), and generates a �le consisting of
processor instructions (opcodes). If burned into an EPROM or �ash memory device

Introduction

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

15

connected to the target processor's system bus, the processor can directly fetch and execute
these instructions. See also Splitter Utility Operations.

Splitter and loader jobs can be managed either by separate utility programs or by the same
program (see Non-Bootable Files Versus Boot-Loadable Files). In the latter case, the
generated output �le can contain code instructions and boot streams.

Loader File A loader �le is generated by the loader utility. �e �le typically has the .ldr extension and is
o�en called an LDR �le. Loader �les can meet one of multiple formats. Common formats are
Intel hex-32, binary, or ASCII representation. Regardless of the format, the loader �le
describes a boot image, which is the binary version of the loader �le. See also Non-Bootable
Files Versus Boot-Loadable Files.

Loader
Command Line

If invoked from a command-line prompt, the loader and splitter utilities accept numerous
control switches to customize the loader �le generation.

Loader
Properties Page

�e loader properties page is part of the Tool Settings dialog box in the IDE. �e properties
page is a graphical tool that assists in composing the loader utility's command line.

Boot Mode Most processors support multiple boot modes. A boot mode is determined by special input
pins that are interrogated when the processor awakes from either a reset or power-down
state. See also Boot Modes.

Boot Kernel A boot kernel is so�ware that runs on the target processor. It reads data from the boot source
and interprets the data as de�ned in the boot stream format. �e boot kernel can reside in an
on-chip boot ROM or o�-chip ROM device. O�en, the kernel has to be prebooted from the
boot source before it can be executed. In this case, the loader utility puts a default kernel to
the front of the boot image, or, allows the user to specify a customized kernel. See also Boot
Kernels.

Boot ROM A boot ROM is an on-chip read-only memory that holds the boot kernel and, in some cases,
additional advanced booting routines.

Second-Stage
Loader

A second-stage loader is a special boot kernel that extends the default booting mechanisms of
the processor. It is typically booted by a �rst-stage kernel in a standard boot mode
con�guration. A�erward, it executes and boots in the �nal applications. See also Boot
Kernels.

Boot Source A boot source refers to the interface through which the boot data is loaded as well as to the
storage location of a boot image, such as a memory or host device.

Boot Image A boot image that can be seen as the binary version of a loader �le. Usually, it has to be stored
into a physical memory that is accessible by either the target processor or its host device.

Introduction

16 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

O�en it is burned into an EPROM or downloaded into a �ash memory device using the
Programmer plug-in.

�e boot image is organized in a special manner required by the boot kernel. �is format is
called a boot stream. A boot image can contain one or multiple boot streams. Sometimes the
boot kernel itself is part of the boot image.

Boot Stream A boot stream is basically a list of boot blocks. It is the data structure that is processed and
interpreted by the boot kernel. �e loader utility generates loader �les that contain one or
multiple boot streams. A boot stream o�en represents one application. However, a linked list
of multiple application-level boot streams is referred to as a boot stream.

Boot Host A boot host is a processor or programmable logic that feeds the device con�gured in a slave
boot mode with a boot image or a boot stream.

Boot Block Multiple boot blocks form a boot stream. �ese blocks consist of boot data that is preceded
by a block header. �e header instructs the boot kernel how to interpret the payload data. In
some cases, the header may contain special instructions only. In such blocks, there is likely
no payload data present.

Boot Code Boot code refers to all boot-relevant ROM code. Boot code typically consists of the preboot
routine and the boot kernel.

Boot Strapping If the boot process consists of multiple steps, such as preloading the boot kernel or managing
second-stage loaders, this is called boot strapping.

Initialization
Code

Initialization code or initcode is part of a boot stream for Black�n processors and is a special
boot block. While normally all boot blocks of an application are booted in �rst and control is
passed to the application a�erward, the initialization code executes at boot time. It is
common that an initialization code is booted and executed before any other boot block. �is
initialization code can customize the target system for optimized boot processing.

Global Header Some boot kernels expect a boot stream to be headed by a special information tag. �e tag is
referred to as a global header.

Callback
Routine

Some processors can optionally call a user-de�ned routine a�er a boot block has been loaded
and processed. �is is referred to as a callback routine. It provides hooks to implement
checksum and decompression strategies.

Slave Boot �e term slave boot spans all boot modes where the target processor functions as a slave. �is
is typically the case when a host device loads data into the target processor's memories. �e
target processor can wait passively in idle mode or support the host-controlled data transfers
actively. Note that the term host boot usually refers only to boot modes that are based on so-
called host port interfaces.

Introduction

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

17

Master Boot �e term master boot spans all boot modes where the target processor functions as master.
�is is typically the case when the target processor reads the boot data from parallel or serial
memories.

Boot Manager A boot manager is �rmware that decides which application is to be booted. An application is
usually represented as a project in the IDE and stored in a .dxe �le. �e boot manger itself
can be managed within an application .dxe �le, or have its own separate .dxe �le. O�en, the
boot manager is executed by initialization code.

In slave boot scenarios, boot management is up to the host device and does not require
special tools support.

Multi-dxe Boot A loader �le can contain data of multiple application (.dxe) �les if the loader utility was
invoked by specifying multiple .dxe �les. Either a boot manager decides which application is
to be booted exclusively or, alternatively, one application can terminate and initiate the next
application to be booted. In some cases, a single application can also consist of multiple .dxe
�les.

Next .dxe File
Pointer

If a loader �le contains multiple applications, some boot stream formats enable them to be
organized as a linked list. �e next .dxe pointer (NDP) is simply a pointer to a location
where the next application's boot stream resides.

Preboot Routine A preboot routine is present in the boot ROM of parts that feature OTP memory on a
processor. Preboot reads OTP memory and customizes several MMR registers based on
factory and user instructions, as programmed to OTP memory. A preboot routine executes
prior to the boot kernel.

Program Development Flow
�e Program Development Flow �gure is a simpli�ed view of the application development �ow.

�e development �ow can be split into three phases:

1. Compiling and Assembling

2. Linking

3. Loading, Splitting, or Both

A brief description of each phase follows.

Introduction

18 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER

.asm, .c, .cpp

PROCESSOR

LOADER
AND/OR

SPLITTER

EXTERNAL
MEMORY

BOOTING
UPON

RESET

TARGET SYSTEM

.doj .dxe

.ldr

LINKER

Figure 1. Program Development Flow

Compiling and Assembling
Input source �les are compiled and assembled to yield object �les. Source �les are text �les containing C/C++
code, compiler directives, possibly a mixture of assembly code and directives, and, typically, preprocessor
commands. �e assembler and compiler are documented in the Assembler and Preprocessor Manual and C/C++
Compiler Manual, which are part of the online help.

Linking
Under the direction of the linker description �le (LDF) and linker settings, the linker consumes separately-
assembled object and library �les to yield an executable �le. If speci�ed, the linker also produces the shared
memory �les and overlay �les. �e linker output (.dxe �les) conforms to the ELF standard, an industry-
standard format for executable �les. �e linker also produces map �les and other embedded information
(DWARF-2) used by the debugger.

�ese executable �les are not readable by the processor hardware directly. �ey are neither supposed to be
burned onto an EPROM or �ash memory device. Executable �les are intended for debugging targets, such as the
simulator or emulator. Refer to the Linker and Utilities Manual and online help for information about linking
and debugging.

Loading, Splitting, or Both
Upon completing the debug cycle, the processor hardware needs to run on its own, without any debugging tools
connected. A�er power-up, the processor's on-chip and o�-chip memories need to be initialized. �e process of
initializing memories is o�en referred to as boot process, introduction to booting. �erefore, the linker output
must be transformed to a format readable by the processor. �is process is handled by the loader and/or splitter
utility. �e loader/splitter utility uses the debugged and tested executable �les as well as shared memory and
overlay �les as inputs to yield a processor-loadable �le.

CrossCore Embedded Studio includes these loader and splitter utilities:

Introduction

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

19

• elfloader.exe (loader utility) for Black�n and SHARC processors. �e loader utility for Black�n processors
also acts as a ROM splitter when evoked with the corresponding switches.

• elfspl21k.exe (ROM splitter utility) for earlier SHARC processors. Starting with the ADSP-214xx
processors, splitter functionality is available through elfloader.exe.

�e loader/splitter output is either a boot-loadable or non-bootable �le. �e output is meant to be loaded onto
the target. �ere are several ways to use the output:

• Download the loadable �le into the processor's PROM space on an EZ-KIT Lite®/EZ-Board® board via the
Device Programmer plug-in. Refer to the online help for information on the Device Programmer.

• Use the IDE to simulate booting in a simulator session. Load the loader �le and then reset the processor to
debug the booting routines. No hardware is required: just point to the location of the loader �le, letting the
simulator to do the rest. You can step through the boot kernel code as it brings the rest of the code into
memory.

• Store the loader �le in an array for a multiprocessor system. A master (host) processor has the array in its
memory, allowing a full control to reset and load the �le into the memory of a slave processor.

Non-Bootable Files Versus Boot-Loadable Files
A non-bootable �le executes from an external memory of the processor, while a boot-loadable �le is transported
into and executes from an internal memory of the processor. �e boot-loadable �le is then programmed into an
external memory device (burned into EPROM) within your target system. �e loader utility outputs loadable
�les in formats readable by most EPROM burners, such as Intel hex-32 and Motorola S formats. For advanced
usage, other �le formats and boot modes are supported. (See the File Formats appendix.)

A non-bootable EPROM image �le executes from an external memory of the processor, bypassing the built-in
boot mechanisms. Preparing a non-bootable EPROM image is called splitting. In most cases (except for Black�n
processors), developers working with �oating- and �xed-point processors use the splitter instead of the loader
utility to produce a non-bootable memory image �le.

A booting sequence of the processor and application program design dictate the way loader/splitter utility is
called to consume and transform executable �les:

• For Black�n processors, loader and splitter operations are handled by the loader utility program,
elfloader.exe. �e splitter is invoked by a di�erent set of command-line switches than the loader.

In the IDE, with the addition of the -readall switch, the loader utility for the ADSP-BF50x/BF51x/BF52x/
BF54x/BF59x Black�n processors can call the splitter program automatically. For more information, see -
readall #.

• For earlier SHARC processors, splitter operations are handled by the splitter program, elfspl21k.exe.
Starting with the ADSP-214xx processors, splitter functionality is available through elfloader.exe.

Loader Utility Operations
Common tasks performed by the loader utility can include:

• Processing loader properties or command-line switches.

Introduction

20 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

• Formatting the output .ldr �le according to user speci�cations. Supported formats are binary, ASCII, Intel
hex-32, and more. Valid �le formats are described in the File Formats appendix.

• Packing the code for a particular data format: 8-, 16- or 32-bit for some processors.

• Adding the code and data from a speci�ed initialization executable �le to the loader �le, if applicable.

• Adding a boot kernel on top of the user code.

• If speci�ed, preprogramming the location of the .ldr �le in a speci�ed PROM space.

• Specifying processor IDs for multiple input .dxe �les for a multiprocessor system, if applicable.

Using CCES Loader Interface
Run the loader utility from the CrossCore Embedded Studio command line (elfloader) or within the IDE. To
use the loader utility for a project, the project's output (artifact) type must be a loader �le (.ldr). �e IDE
invokes the elfloader.exe utility to build the output loader �le.

To run the loader utility within the IDE and/or modify the loader settings, use the loader pages. �e pages (also
called properties pages) show the default loader properties for the project's target processor. �e loader
properties control how the loader utility processes executable �les into boot-loadable �les, letting you select and
modify kernels, boot modes, and output �le formats. Settings on the loader properties pages correspond to
switches typed on the elfloader command line.

See the CCES online help for more information about the loader interface.

Splitter Utility Operations
Splitter utility operations depend on the processor family, splitter properties, and command-line switches, which
control which utility is invoked, and how it processes executable �les into non-bootable �les:

• For Black�n processors, the loader utility includes the ROM splitter capabilities invoked through the CCES
IDE or command line. �e IDE settings correspond to switches typed on the elfloader command line. Refer
to the CCES online help for more information.

• For SHARC processors earlier than ADSP-214xx, the splitter functionality is available in CCES via the
command-line (elfspl21k.exe). Refer to the Splitter for SHARC Processors chapter for more information.

• For SHARC ADSP-214xx processors, the loader utility includes section splitting capabilities via the -splitter
switch.). Refer to the Splitter for SHARC Processors chapter for more information.

Using CCES Splitter Interface
For Black�n and SHARC processors, use the splitter capabilities of the loader from the CrossCore Embedded
Studio command line (elfloader) or within the IDE. To use the splitter capabilities for a project, the project's
output (artifact) type must be a loader �le (.ldr). �e IDE invokes the elfloader.exe utility to build the
output loader �le.

For Black�n processors, use the CCES splitter page. �e page (also called properties page) show the default
splitter properties for the project's target processor. �e properties control how the loader utility processes
executable �les into non-bootable �les, letting you select and modify address masks, data packing options, and
output �le formats.

Introduction

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

21

For the ADSP-214xx SHARC processors, use the CCES Additional Options properties page of the loader and
specify the -splittersection-name switch.

Settings on the properties pages correspond to switches typed on the elfloader command line. See the CCES
online help for more information about the loader/splitter interface.

Boot Modes
Once an executable �le is fully debugged, the loader utility is ready to convert the executable �le into a
processor-loadable (boot-loadable) �le. �e loadable �le can be automatically downloaded (booted) to the
processor a�er power-up or a�er a so�ware reset. �e way the loader utility creates a boot-loadable �le depends
upon how the loadable �le is booted into the processor.

�e boot mode of the processor is determined by sampling one or more of the input �ag pins. Booting
sequences, highly processor-speci�c, are detailed in the following chapters.

Analog Devices processors support di�erent boot mechanisms. In general, the following schemes can be used to
provide program instructions to the processors a�er reset.

• No-Boot Mode

• PROM Boot Mode

• Host Boot Mode

No-Boot Mode
A�er reset, the processor starts fetching and executing instructions from EPROM/�ash memory devices directly.
�is scheme does not require any loader mechanism. It is up to the user program to initialize volatile memories.

�e splitter utility generates a �le that can be burned into the PROM memory.

PROM Boot Mode
A�er reset, the processor starts reading data from a parallel or serial PROM device. �e PROM stores a
formatted boot stream rather than raw instruction code. Beside application data, the boot stream contains
additional data, such as destination addresses and word counts. A small program called a boot kernel (described
in Boot Kernels) parses the boot stream and initializes memories accordingly. �e boot kernel runs on the target
processor. Depending on the architecture, the boot kernel may execute from on-chip boot RAM or may be
preloaded from the PROM device into on-chip SRAM and execute from there.

�e loader utility generates the boot stream from the linker output (an executable �le) and stores it to �le format
that can be burned into the PROM.

Host Boot Mode
In this scheme, the target processor is a slave to a host system. A�er reset, the processor delays program
execution until the slave gets signaled by the host system that the boot process has completed. Depending on
hardware capabilities, there are two di�erent methods of host booting. In the �rst case, the host system has full

Introduction

22 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

control over all target memories. �e host halts the target while initializing all memories as required. In the
second case, the host communicates by a certain handshake with the boot kernel running on the target
processor. �is kernel may execute from on-chip ROM or may be preloaded by the host devices into the
processor's SRAM by any bootstrapping scheme.

�e loader/splitter utility generates a �le that can be consumed by the host device. It depends on the intelligence
of the host device and on the target architecture whether the host expects raw application data or a formatted
boot stream. In this context, a boot-loadable �le di�ers from a non-bootable �le in that it stores instruction code
in a formatted manner in order to be processed by a boot kernel. A non-bootable �le stores raw instruction code.

Boot Kernels
A boot kernel refers to the resident program in the boot ROM space responsible for booting the processor.
Alternatively (or in absence of the boot ROM), the boot kernel can be preloaded from the boot source by a
bootstrapping scheme.

When a reset signal is sent to the processor, the processor starts booting from a PROM, host device, or through a
communication port. For example, an ADSP-2116x processor, brings a 256-word program into internal memory
for execution. �is small program is a boot kernel.

�e boot kernel then brings the rest of the application code into the processor's memory. Finally, the boot kernel
overwrites itself with the �nal block of application code and jumps to the beginning of the application program.

Some of the newer Black�n processors do not require to load a boot kernel-a kernel is already present in the on-
chip boot ROM. It allows the entire application program's body to be booted into the internal and external
memories of the processor. �e boot ROM has the capability to parse address and count information for each
bootable block.

Boot Streams
�e loader utility's output (.ldr �le) is essentially the same executable code as in the input .dxe �le; the loader
utility simply repackages the executable as shown in the .dxe Files Versus .ldr Files �gure.

Processor code and data in a loader �le (also called a boot stream) is split into blocks. Each code block is marked
with a tag that contains information about the block, such as the number of words and destination in the
processor's memory. Depending on the processor family, there can be additional information in the tag.
Common block types are "zero" (memory is �lled with 0s); nonzero (code or data); and �nal (code or data).
Depending on the processor family, there can be other block types.

Introduction

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

23

.LDR FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

.DXE FILE

CODE

DATA

SYMBOLS

DEBUG
INFORMATION

A .DXE FILE INCLUDES:
 - DSP INSTRUCTIONS (CODE AND DATA)
 - SYMBOL TABLE AND SECTION INFORMATION
 - TARGET PROCESSOR MEMORY LAYOUT
 - DEBUG INFORMATION

AN .LDR FILE INCLUDES:
 - DSP INSTRUCTIONS (CODE AND DATA)
 - RUDIMENTARY FORMATTING
 (ALL DEBUG INFORMATION HAS
 BEEN REMOVED)

Figure 2. .dxe Files Versus .ldr Files

Loader File Searches
File searches are important in the loader utility operations. �e loader utility supports relative and absolute
directory names and default directories. File searches occur as follows.

• Speci�ed path-If relative or absolute path information is included in a �le name, the loader utility searches
only in that location for the �le.

• Default directory-If path information is not included in the �le name, the loader utility searches for the �le in
the current working directory.

• Overlay and shared memory �les-�e loader utility recognizes overlay and shared memory �les but does not
expect these �les on the command line. Place the �les in the directory that contains the executable �le that
refers to them, or place them in the current working directory. �e loader utility can locate them when
processing the executable �le.

When providing an input or output �le name as a loader/splitter command-line parameter, use these guidelines:

• Enclose long �le names within straight quotes, "long file name".

• Append the appropriate �le extension to each �le.

Loader File Extensions
Some loader switches take a �le name as an optional parameter. �e File Extensions table lists the expected �le
types, names, and extensions.

Introduction

24 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Table 1. File Extensions

Extension File Description

.dxe Loader input �les, boot kernel �les, and initialization �les

.ldr Loader output �le

.knl Loader output �les containing kernel code only when two output �les are selected

In some cases, the loader utility expects the overlay input �les with the .ovl �le extension, shared memory input
�les with the .sm extension, or both but does not expect those �les to appear on a command line or properties
pages. �e loader utility expects to �nd these �les in the directory of the associated .dxe �les, in the current
working directory, or in the directory speci�ed for the .ldf �le.

Introduction

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

25

3
Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/
BF59x Blackfi Processors

�is chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) �les
into boot-loadable or non-bootable �les for the ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF54x, and
ADSP-BF59x Black�n processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations speci�c to the ADSP-BF50x/
BF51x/BF52x/BF54x and ADSP-BF59x Black�n processors are detailed in the following sections.

• ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting

Provides general information on various boot modes, including information on second-stage kernels.

• ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide

Provides reference information on the loader utility's command-line syntax and switches.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting
Refer to the processor's data sheet and hardware reference manual for detailed information on system
con�guration, peripherals, registers, and operating modes.

• Black�n processor data sheets can be found at:

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/data-sheets/resources/index.html.

• Black�n processor manuals can be found at:

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/manuals/resources/index.html or
downloaded into the CCES IDE via Help > Install New So�ware.

�e following table lists the part numbers that currently comprise the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
families of Black�n processors. Future releases of CrossCore Embedded Studio may support additional
processors.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

27

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

Table 2. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Part Numbers

Processor Family Part Numbers

ADSP-BF504 ADSP-BF504, ADSP-BF504F, ADSP-BF506

ADSP-BF518 ADSP-BF512, ADSP-BF514, ADSP-BF516, ADSP-BF518

ADSP-BF526 ADSP-BF522, ADSP-BF524, ADSP-BF526

ADSP-BF527 ADSP-BF523, ADSP-BF525, ADSP-BF527

ADSP-BF548 ADSP-BF542, ADSP-BF544, ADSP-BF547, ADSP-BF548, ADSP-BF549

ADSP-BF548M ADSP-BF542M, ADSP-BF544M, ADSP-BF547M, ADSP-BF548M, ADSP-BF549M

ADSP-BF592 ADSP-BF592-A

Upon reset, an ADSP-BF50x/BF51x/BF52x/BF54x/BF59x processor starts fetching and executing instructions
from the on-chip boot ROM at address 0xEF00 0000. �e boot ROM is an on-chip read-only memory that
holds a boot kernel program to load data from an external memory or host device. �e boot ROM details can be
found in the corresponding hardware reference manual.

�ere are other boot modes available, including idle (no-boot) mode. �e processor transitions into the boot
mode sequence con�gured by the BMODE pins; see the ADSP-BF50x Boot Modes, ADSP-BF51x Boot Modes,
ADSP-BF52x/BF54x, andADSP-BF59x Boot Modes tables. �e BMODE pins are dedicated mode-control pins; that
is, no other functions are performed by the pins. �e pins can be read through bits in the system con�guration
register (SYSCR).

Table 3. ADSP-BF50x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Stacked parallel �ash memory in async mode 0011 0x2000 0000

Stacked parallel �ash memory in sync burst mode 010 0x2000 0000

SPI0 master from SPI memory 011 0x0000 0000

1 ADSP-BF504 processors do not support BMODE 001 or 010 because they have no internal �ash.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

28 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Boot Source BMODE[2:0] Start Address

SPI0 slave from host device 100 N/A

16-bit PPI host 101 N/A

Reserved 110 N/A

UART0 slave from UART host 111 N/A

Table 4. ADSP-BF51x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

8- or 16-bit external �ash memory (default mode) 001 0x2000 0000

Internal SPI memory 010 0x2030 0000

External SPI memory (EEPROM or �ash) 011 0x0000 0000

SPI0 host device 100 N/A

One-time programmable (OTP) memory 101 N/A

SDRAM memory 110 N/A

UART0 host 111 N/A

Table 5. ADSP-BF52x/BF54x Boot Modes

Boot Source BMODE[3:0] Start Address

Idle (no-boot) 0000 N/A

8- or 16-bit external �ash memory (default mode) 0001 0x2000 0000

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

29

Boot Source BMODE[3:0] Start Address

16-bit asynchronous FIFO 0010 0x2030 0000

8-, 16-, 24-, or 32-bit addressable SPI memory 0011 0x0000 0000

External SPI host device 0100 N/A

Serial TWI memory 0101 0x0000 0000

TWI host 0110 N/A

UART0 host on ADSP-BF52x processors; UART1 host on
ADSP-BF54x processors

0111 N/A

UART1 host on the ADSP-BF52x processors; reserved
on ADSP-BF54x processors

1000 N/A

Reserved 1001 N/A

SDRAM/DDR 1010 0x0000 0010

OTP memory 1011 default page 0x40

8- or 16-bit NAND �ash memory 1100, 1101 0x0000 0000

16-bit host DMA 1110 N/A

8-bit host DMA 1111 N/A

Table 6. ADSP-BF59x Boot Modes

Boot Source BMODE[2:0] Start Address

Idle (no-boot) 000 N/A

Reserved 001 N/A

External serial SPI memory using SPI1 010 N/A

SPI host device using SPI1 011 N/A

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

30 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Boot Source BMODE[2:0] Start Address

External serial SPI memory using SPI0 100 N/A

PPI host 101 N/A

UART host 110 N/A

Internal L1 ROM 111 0x2000 0000

In general, there are two categories of boot modes: master and slave. In master boot modes, the processor
actively loads data from parallel or serial memory devices. In slave boot modes, the processor receives data from
parallel or serial memory devices.

�e Black�n loader utility generates .ldr �les that meet the requirements of the target boot mode; for example:

• HOSTDP (-b HOSTDP)

When building for the HOSTDP boot, the loader utility aligns blocks with payload to the appropriate FIFO
depth for the target processor. Note that HOSTDP di�ers from other boot modes in the default setting for the
-NoFillBlock switch. �e HOSTDP boot mode directs the loader not to produce �ll (zero) blocks by default.

To enable �ll blocks for HOSTDP builds in the CCES IDE:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. �e Tool Settings page appears.

3. Click Additional Options under CrossCore Black�n Loader. �e loader Additional Options properties page
appears.

4. Click Add (+). �e Enter Value dialog box appears.

5. In Additional Options, type in -FillBlock.

6. Click OK to close the dialog box.

7. Click Apply.

• NAND (-b NAND)

When building for NAND boot, the loader utility appends 256 bytes to the boot NAND loader stream, a
requirement for the boot kernel for the prefetch mechanism. While fetching one 256 byte block of data, it
prefetches the next 256 byte block of data. �e padding ensures that the �nal block of the loader stream is
programmed, and the error correction parity data is written.

• OTP (-b OTP)

When building for OTP boot, no width selection is used. OTP is always a 32-bit internal transfer. Use Intel
hex-32 format for the OTP boot mode and provide the o�set to the start address for the OTP page. �e OTP
�ash programmer requires the o�set to the start address for the OTP page when Intel hex loader format is
selected. To specify the start address in the CCES IDE:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. �e Tool Settings page appears.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

31

3. Click General under CrossCore Black�n Loader. �e loader General properties page appears.

4. In Boot format (-f), ensure Intel hex is selected.

5. Disable Use default start kernel. �e Start address (-p) is enabled.

6. In Start address (-p), enter the page number multiplied by 16. For example, if you are building for OTP boot
and writing to page 0x40L, specify start address 0x400.

7. Click Apply.

On the loader command-line, the above example corresponds to:

-b otp -f hex -p 0x400

Refer to the CCES online help for information about the loader properties pages.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE
(CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

�ese sections describe how to produce a bootable (single and multiple) or non-bootable loader �le:

• Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

• CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors

Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors
�e loader utility uses the following command-line syntax for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Black�n processors.

For a single input �le:

 elfloader inputfile -proc processor [-switch]

For multiple input �les:

 elfloader inputfile1 inputfile2 -proc processor [-switch]

where:

• inputfile - Name of the executable (.dxe) �le to be processed into a single boot-loadable or non-bootable
�le. An input �le name can include the drive and directory. For multiprocessor or multi-input systems, specify
multiple input .dxe �les. Put the input �le names in the order in which you want the loader utility to process
the �les. Enclose long �le names within straight quotes, "long file name".

• -proc processor - Part number of the processor (for example, -proc ADSP-BF542) for which the loadable
�le is built. Provide a processor part number for every input .dxe if designing multiprocessor systems; see the
part numbers in ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

32 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

• -switch - One or more optional switches to process. Switches select operations and modes for the loader
utility.

i
Note:

Command-line switches can be placed on the command line in any order, except the order of input �les
for a multi-input system. For a multi-input system, the loader utility processes the input �les in the order
presented on the command line.

Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
A summary of the loader command-line switches for the ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n
processors appears in the following table. For a quick on-line help on the switches available for a speci�c
processor: for an ADSP-BF548 processor, use the following command line.

 elfloader -proc ADSP-BF548 -help

Table 7. ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Loader Command-Line Switches

Switch Description

-b {flash|prom|spimaster|spislave|

twimaster|twislave|uart|fifo|otp|

nand|ppi|hostdp}

�e -b switch directs the loader utility to prepare a boot-loadable
�le for the speci�ed boot mode. �e default boot mode for all
processors described in this chapter is PROM/FLASH.

Other valid boot modes include:

• SPI master (-b spimaster) for the ADSP-BF50x,
BF51x/52x/54x/54xM, and ADSP-BF59x processors.

• SPI slave (-b spislave) for the ADSP-BF50x, BF51x/52x/54x/
54xM, and ADSP-BF59x processors.

• UART (-b uart) for the ADSP-BF50x, BF51x/52x/54x/54xM,
and ADSP-BF59x processors.

• TWI master (-b twimaster) for the ADSP-BF52x/54x/54xM
processors.

• TWI slave (-b twislave) for the ADSP-BF52x/54x/54xM
processors.

• FIFO (-b fifo) for the ADSP-BF52x/54x/54xM processors.

• OTP (-b otp) for the ADSP-BF51x/52x/54x/54xM processors.

• NAND (-b nand) for the ADSP-BF52x/54x/54xM processors.

• PPI (-b ppi) - for the ADSP-BF50x and BF59x processors.

• HOSTDP (-b hostdp) for the ADSP-BF52x, BF544/7/8/9, and
BF544M/547M/548M/549M processors.

See additional information in this chapter on the HOSTDP,
NAND, and OTP boot modes.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

33

Switch Description

-CRC32 [polynomial] �e -CRC32 (polynomial coe�cient) switch directs the loader
utility to generate CRC32 checksum. Use a polynomial coe�cient
if speci�ed; otherwise, use default 0xD8018001.

�is switch inserts an initcode boot block that calls an
initialization routine residing in the on-chip boot ROM. �e
argument �eld of the boot block provides the used polynomial.
�e loader utility calculates the CRC checksum for all subsequent
data blocks and stores the result in the block header's argument
�eld.

-callback sym=symbol[arg=

const32]

�e -callback switch takes a sym=symbol (no spaces)
assignment.

�e switch directs the loader utility to isolate the named
subroutine into a separate block, set the block header's
BFLAG_CALLBACK �ag, and �ll in the block header's argument �eld
with the speci�ed constant 32-bit values. �e switch is used for
boot-time callbacks.

�e callback is guaranteed to be made prior to the target address
of sym=symbol.

i
Note:

�e -callback cannot be used with -CRC32.

-dmawidth {8|16|32}

�e -dmawidth {8|16|32} switch speci�es a DMA width (in
bits) for memory boot modes. It controls the DMACODE bit �eld
issued to the boot block headers by the -width switch.

For FIFO boot mode, 16 is the only DMA width. SPI, TWI, and
UART modes use 8-bit DMA.

-f {hex|ascii|binary|include}

�e -f {hex|ascii|binary|include} switch speci�es the
format of a boot-loadable �le: Intel hex-32, ASCII, binary, or
include. If the -f switch does not appear on the command line,
the default �le format is hex for �ash/PROM boot modes; and
ASCII for other boot modes.

-FillBlock FILL blocks are enabled by default for all boot modes, except -b
hostdp.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

34 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-h or -help

�e -help switch invokes the command-line help, outputs a list of
command-line switches to standard output, and exits. By default,
the -h switch alone provides help for the loader driver. To obtain a
help screen for your target Black�n processor, add the -proc
switch to the command line. For example, type elfloader -proc
ADSP-BF542 -h to obtain help for the ADSP-BF542 processor.

-init filename.dxe

�e -init filename.dxe switch directs the loader utility to
include the initialization code from the named executable �le. �e
loader utility places the code and data from the initialization
sections at the top of the boot stream. �e boot kernel loads the
code and then calls it. It is the code's responsibility to save/restore
state/registers and then perform an RTS back to the kernel.
Initcodes can be written in C language and are compliant to C
calling conventions.

�e -init filename.dxe switch can be used multiple times to
specify the same �le or di�erent �les a number of times. �e
loader utility will place the code from the initialization �les in the
order the �les appear on the command line.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader
Files

-initcall sym=sym_symbol

at=at_symbol [stride=DstAddrGap

count=times]

While the -init filename.dxe switch integrates initialization
codes managed by a separate application program, the -initcall
switch controls calls to initialization subroutines that are part of
the same application.

�e -initcall switch directs the loader utility to dispatch a
boot-time initialization call to the sym subroutine when the at
symbol is encountered and loaded. �e stride and count
parameters are optional:

• If an optional stride= constant 32-bit value is speci�ed, the
loader utility insets the target program call every stride= target
address locations.

• If an optional count= constant 32-bit value is speci�ed, the
loader utility insets the target program call count= times, every
stride= target address locations apart. A count value without a
stride value is an error.

For example, the following command line:

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

35

Switch Description

-initcall sym=_initcode at=_othersymbol stride=0x100

count=5

results in function _initcode being called �ve times the �rst
time, just prior to data in _othersymbol being booted.
�erea�er, every 256 destination load addresses _initcode is
called again until a total of �ve calls have been made.

-initcall restrictions:

• -initcall target (sym_symbol) must be a routine entry point,
end with an RTS. It can be written in C language and can rely on
the presence of a stack. However, the routine must not call any
libraries, not rely on compiler run-time environment (such as
heaps) - must be self-contained

• -initcall subroutine must be previously loaded and still in
memory

• -initcall subroutine cannot contain any forward references to
code not yet loaded

• sym_symbol address must be less than at_symbol address

For more information, see ADSP-BF50x/BF51x/BF52x/BF54x/
BF59x Multi-DXE Loader Files.

-kb {flash|prom|spimaster|

spislave|uart|twimaster|twislave|

fifo|nand|ppi}

�e -kb switch speci�es the boot mode for the initialization code
and/or boot kernel output �le if two output loader �les are
selected.

�e -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader
utility generates the �le for the init and/or boot kernel code in the
same boot mode as used to output the user application program.

Other valid boot modes include:

• PROM/FLASH (-kb prom or -kb flash) - the default boot
mode for all processors described in this chapter.

• SPI master (-kb spimaster) for the ADSP-BF50x,
BF51x/52x/54x/54xM, and ADSP-BF59x processors.

• SPI slave (-kb spislave) for the ADSP-BF50x, BF51x/52x/54x/
54xM, and ADSP-BF59x processors.

• UART (-kb uart) for the ADSP-BF50x, BF51x/52x/54x/54xM,
and ADSP-BF59x processors.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

36 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

• TWI master (-kb twimaster) for the ADSP-BF52x/54x/54xM
processors.

• TWI slave (-kb twislave) for the ADSP-BF52x/54x/54xM
processors.

• FIFO (-kb fifo) for the ADSP-BF52x/54x/54xM processors.

• NAND (-kb nand) - for the ADSP-BF52x/54x/54xM
processors.

• PPI (-kb ppi) for the ADSP-BF50x and BF59x processors.

-kf {hex|ascii|binary|include} �e -kf {hex|ascii|binary|include} switch speci�es the
output �le format (hex, ASCII, binary, include) for the
initialization and/or boot kernel code if two output �les from the
loader utility are selected: one �le for the init code and/or boot
kernel and one �le for user application code.

�e -kf switch must be used in conjunction with the-o2 switch.

If -kf is absent from the command line, the loader utility
generates the �le for the initialization and /or boot kernel code in
the same format as for the user application code.

-kp #

�e -kp # switch speci�es a hex �ash/PROM start address for the
initialization and/or boot kernel code. A valid value is between
0x0 and 0xFFFFFFFF. �e speci�ed value is ignored when neither
kernel nor initialization code is included in the loader �le.

-kwidth {8|16|32}

�e -kwidth {8|16|32} switch speci�es an external memory
device width (in bits) for the initialization code and/or the boot
kernel if two output �les from the loader utility are selected.

If -kwidth is absent from the command line, the loader utility
generates the boot kernel �le in the same width as the user
application program.

�e -kwidth # switch must be used in conjunction with the -o2
switch.

-l userkernel.dxe �e -l userkernel.dxe switch speci�es the user boot kernel �le.

�ere is no default kernel for the ADSP-BF50x/BF51x/BF52x/
BF54x/BF59x processors.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

37

Switch Description

-M �e -M switch generates make dependencies only, no output �le is
generated.

-maskaddr # �e -maskaddr # switch masks all EPROM address bits above or
equal to #. For example, -maskaddr 29 (default) masks all the
bits above and including A29 (ANDed by 0x1FFF FFFF). For
example, 0x2000 0000 becomes 0x0000 0000. �e valid #s are
integers 0 through 32, but based on your speci�c input �le, the
value can be within a subset of [0, 32].

�e -maskaddr# switch requires -romsplitter and a�ects the
ROM section address only.

-MaxBlockSize # �e -MaxBlockSize # switch speci�es the maximum block size
up to 0x7FFFFFF0. �e value must be a multiple of 4.

�e default maximum block size is 0xFFF0 or the value speci�ed
by the -MaxBlockSize switch.

-MaxFillBlockSize # �e -MaxFillBlockSize # switch speci�es the maximum �ll
block size up to 0xFFFFFF0. �e value must be a multiple of two.
�e default �ll block size is 0xFFF0.

-MM �e -MM switch generates make dependencies while producing the
output �les.

-Mo filename �e -Mo filename switch writes make dependencies to the
named �le. Use the -Mo switch with either -M or -MM. If -Mo is
absent, the default is a <stdout> display.

-Mt target

�e -Mt target switch speci�es the make dependencies target
output �le. Use the -Mt switch with either -M or -MM. If -Mt is not
present, the default is the name of the input �le with an .ldr
extension.

-NoFillBlock �e -NoFillBlock switch directs the loader utility not to produce
FILL blocks, zero, or repeated blocks.

�e -NoFillBlock switch is set automatically in the HOSTDP (-
b HOSTDP) boot mode.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

38 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-NoInitCode �e -NoInitCode switch directs the loader utility not to expect
an init code �le. �e loader utility may expect an init code �le,
speci�ed through the -init filename.dxe switch if the
application has an external memory section. �e init code �le
should contain the code to initialize registers for external memory
initialization.

-o filename �e -o filename switch directs the loader utility to use the
speci�ed �le as the name of the loader utility's output �le. If the
filename is absent, the default name is the root name of the
input �le with an .ldr extension.

-o2 �e -o2 switch directs the loader utility to produce two output
�les: one �le for code from the initialization block and/or boot
kernel and one �le for user application code.

To have a di�erent format, boot mode, or output width for the
application code output �le, use the -kb -kf -kwidth switches
to specify the boot mode, the boot format, and the boot width for
the output kernel �le, respectively.

Combine -o2 with -l filename and/or -init filename.dxe.

-p # �e -p # switch speci�es a hex �ash/PROM output start address
for the application code. A valid value is between 0x0 and
0xFFFFFFFF. A speci�ed value must be greater than that speci�ed
by -kp if both kernel and/or initialization and application code
are in the same output �le (a single output �le).

For boot mode -b OTP and -f hex format, use -p to supply the
o�set to the start address for the OTP page (page # multiplied by
16).

-proc processor �e -proc processor switch speci�es the target processor.

�e processor can be one of the processors listed in the ADSP-
BF50x/BF51x/BF52x/BF54x/BF59x Part Numbers table in ADSP-
BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting.

-quickboot sec=section �e -quickboot switch takes a sec=section (no spaces)
assignment.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

39

Switch Description

�e switch directs the loader utility to mark blocks within the
LDF-de�ned output section name with theBFLAG_QUICKBOOT
�ag. �e switch is used to mark blocks to skip on warm-boot
cycles.

-readall #

�e -readall # switch directs the loader utility to integrate �xed-
position ROM sections within the loader boot stream. �e switch
calls the splitter utility as a transparent sub-process to the loader
utility. Memory segments declared with the TYPE(ROM) command
in the LDF �le are processed by the splitter. Segments with the
TYPE(RAM) command emit to the boot stream.

�e valid switch argument is an integer between 0 and 32, where
29 is the default. In the resulting loader (.ldr) �le in Intel hex-32
format, the ROM-based splitter data is merged with the RAM-
based loader stream.

�e # argument is similar to the -maskaddr # switch, which
designates the upper PROM address bit position for extended
address mapping. �e splitter utility is required to provide the -
maskaddr # parameter to the loader utility to generate a ROM-
based splitter stream, but the required splitter parameter is not
available on the loader command line. �e loader utility solves
this requirement by supporting the -readall# switch.

-romsplitter

�e -romsplitter switch creates a non-bootable image only.
�is switch overwrites the -b switch and any other switch
bounded by the boot mode.

In the .ldf �le, declare memory segments to be `split' as type
ROM. �e splitter skips RAM segments, resulting in an empty �le if
all segments are declared as RAM. �e -romsplitter switch
supports Intel hex and ASCII formats.

-save [sec=section] �e -save switch takes a sec=section (no spaces) assignment.

�e switch directs the loader utility to mark blocks within the
LDF-de�ned section name with the BFLAG_SAVE �ag. �e switch
is used to mark blocks to archive for low-power or power-fail
cycles.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

40 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for
the processor hardware. If -si-revision is not used, the target is
a default revision from the supported revisions.

-v �e -v switch directs the loader utility to output verbose loader
messages and status information as the loader processes �les.

-width {8|16|32} �e -width {8|16|32} switch speci�es an external memory
device width (in bits) to the loader utility in �ash/PROM boot
mode (default is 8). For FIFO boot mode, the only valid width is
16. For SPI, TWI, and UART boot modes, the only valid width is
8.

ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files
An ADSP-BF50x/BF51x/BF52x/BF54x/BF59x loader (.ldr) �le can contain data of multiple application (.dxe)
�les. At boot time, the boot kernel boots one application �le exclusively, or one application �le initiates the boot
of the next application �le. In some cases, a single application can consist of multiple .dxe �les.

Initialization code is a subroutine called at boot time. Unlike the ADSP-BF53x/BF56x processors, the ADSP-
BF50x/BF51x/BF52x/BF54x/BF59x processors support initcode written in both assembly and C.

CrossCore Embedded Studio supports two methods of integrating multiple initcode subroutines:

• �e -init filename.dxecommand-line switch expects a .dxe �le. �e initcode is managed by a separate
project. If the initcode is written in C language, ensure that the .dxe �le does not include the CRT code
because the boot kernel expects a subroutine.

�e -init filename.dxe switch can be used multiple times to specify the same �le or di�erent �les a number
of times. �e loader utility places the code from the initialization �les in the order the �les appear on the
command line. All initcodes are inserted a�er the �rst regular .dxe �le.

�e loader utility equips every initcode with a dedicated �rst boot block, which has the BFLAG_FIRST �ag set.
Initcodes, however, do not feature a �nal block; they are terminated by a boot block, tagged by the BFLAG_INIT
�ag. �erefore, in absence of the BFLAG_FINAL �ag, the boot kernel continues processing of the
subsequent .dxe data a�er �nishing execution of the initcode.

• �e -initcall sym=sym_symbolcommand-line switch relies on initcode subroutines that are part of the
same project. Initcode subroutines invoked by the -initcall switch are not accompanied by any �rst boot
blocks with the BFLAG_FIRST �ag set. In the loader �le, the initcode subroutines translate to boot blocks
tagged by the BFLAG_INIT �ag.

When writing an initcode subroutine in C, ensure that the code does not rely on libraries or heap support, which
may not be available in memory by the time the initcode executes. An initcode routine is expected to return

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

41

properly to the boot kernel by an RTS instruction and to meet C-language calling conventions (see the C/C++
Compiler and Library Manual for Black�n Processors).

Refer to the initcode examples provided with the installation in <install_path>/Blackfin/ldr/init_code.

CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters (see Loader Command-Line Switches for ADSP- BF50x/BF51x/BF52x/
BF54x/BF59x). �e loader utility for Black�n processors also acts as a ROM splitter when evoked with the
corresponding switches.

�e loader pages (also called loader properties pages) show the default loader settings for the project's target
processor. Refer to the CCES online help for information about the loader/splitter interface.

Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Black�n Processors

42 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

4
Loader/Splitter for ADSP-BF53x/BF561 Blackfi
Processors

�is chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) �les
into boot-loadable or non-bootable �les for the ADSP-BF53x and ADSP-BF561 Black�n processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations speci�c to the ADSP-BF53x
and ADSP-BF561 Black�n processors are detailed in the following sections.

• ADSP-BF53x/BF561 Processor Booting

Provides general information on various boot modes.

• ADSP-BF53x/BF561 Processor Loader Guide

Provides reference information on the loader utility's command-line syntax and switches.

ADSP-BF53x/BF561 Processor Booting
At power-up, a�er a reset, the processor transitions into a boot mode sequence con�gured by the BMODE pins.
�e BMODE pins are dedicated mode-control pins; that is, no other functions are performed by these pins. �e
pins can be read through bits in the system reset con�guration register SYSCR.

An ADSP-BF53x or an ADSP-BF561 Black�n processor can be booted from an 8- or 16-bit �ash/PROM
memory or from an 8-,16-, or 24-bit addressable SPI memory. �e ADSP-BF561 processors does not support 24-
bit addressable SPI memory boot. �ere is also a no-boot option (bypass mode) in which execution occurs from
a 16-bit external memory. For more information, refer to:

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ BF538/BF539 Processor Booting

• ADSP-BF561 Processor Booting

So�ware developers who use the loader utility should be familiar with the following operations:

• ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

43

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting
Upon reset, an ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ BF538/BF539 processor jumps to the on-chip
boot ROM or jumps to 16-bit external memory for execution (if BMODE = 0) located at 0x2000 0000. �e ROM
description can be found in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip
Boot ROM.

�e Boot Mode Selections for ADSP-BF531/BF532/BF533/BF538/BF539 Processors table summarizes boot
modes and execution start addresses for the named processors.

Table 8. Boot Mode Selections for ADSP-BF531/BF532/BF533/BF538/BF539 Processors

Boot Source BMODE[1:0] Execution Start Address

ADSP-BF531

ADSP-BF532

ADSP-BF533

ADSP-BF538

ADSP-BF539

Executes from a 16-bit external ASYNC
bank 0 memory (no-boot mode); see
ADSP-BF531/BF532/BF533/BF534/BF536/
BF537/BF538/BF539 Processor No-Boot
Mode

00 0x2000 0000 0x2000 0000

8- or 16-bit �ash/PROM 01 0xFFA0 8000 0xFFA0 0000

SPI host in SPI slave mode 10 0xFFA0 8000 0xFFA0 0000

8-, 16-, or 24-bit addressable SPI memory
in SPI master boot mode with support for
Atmel AT45DB041B, AT45DB081B, and
AT45DB161B DataFlash devices

11 0xFFA0 8000 0xFFA0 0000

�e ADSP-BF534/BF536/BF537 Processor Boot Modes table summarizes boot modes for the ADSP-BF534/
BF536/BF537 processors, which in addition to all of theADSP-BF531/BF532/BF533 processor boot modes, also
boot from a TWI serial device, a TWI host, and a UART host.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

44 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Table 9. ADSP-BF534/BF536/BF537 Processor Boot Modes

Boot Source

BMODE[2:0]

Executes from an external 16-bit memory connected to ASYNC bank 0; (no-boot
mode or bypass on-chip boot ROM); see ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/BF539 Processor No-Boot Mode

000

8- or 16-bit �ash/PROM 001

Reserved 010

8-, 16-, or 24-bit addressable SPI memory in SPI master mode with support for
Atmel AT45DB041B, AT45DB081B, and AT45DB161B DataFlash devices

011

SPI host in SPI slave mode 100

TWI serial device 101

TWI host 110

UART host 111

• Execute from 16-bit external memory - execution starts from address 0x2000 0000 with 16-bit packing. �e
boot ROM is bypassed in this mode. All con�guration settings are set for the slowest device possible (3-cycle
hold time; 15-cycle R/W access times; 4-cycle setup).

• Boot from 8-bit or 16-bit external �ash memory - the 8-bit or 16-bit �ash boot routine located in boot ROM
memory space is set up using asynchronous memory bank 0. All con�guration settings are set for the slowest
device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup). �e boot ROM evaluates the �rst
byte of the boot stream at address 0x2000 0000. If it is 0x40, 8-bit boot is performed. A 0x60 byte assumes a
16-bit memory device and performs 8-bit DMA. A 0x20 byte also assumes 16-bit memory but performs 16-bit
DMA.

• Boot from serial SPI memory (EEPROM or �ash) - 8-, 16-, or 24-bit addressable devices are supported as well
as AT45DB041, AT45DB081, AT45DB161, AT45DB321, AT45DB642, and AT45DB1282 DataFlash devices
from Atmel. �e SPI uses the PF10/SPI SSEL1 output pin to select a single SPI EEPROM/�ash device, submits
a read command and successive address bytes (0x00) until a valid 8-, 16-, or 24-bit, or Atmel addressable
device is detected, and begins clocking data into the processor.

• Boot from SPI host device - the Black�n processor operates in SPI slave mode and is con�gured to receive the
bytes of the .ldr �le from an SPI host (master) agent. To hold o� the host device from transmitting while the
boot ROM is busy, the Black�n processor asserts a GPIO pin, called host wait (HWAIT), to signal the host device
not to send any more bytes until the �ag is deasserted. �e �ag is chosen by the user and this information is
transferred to the Black�n processor via bits 10:5 of the FLAG header.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

45

• Boot from UART - using an autobaud handshake sequence, a boot-stream-formatted program is downloaded
by the host. �e host agent selects a baud rate within the UART's clocking capabilities. When performing the
autobaud, the UART expects an "@" (boot stream) character (8 bits data, 1 start bit, 1 stop bit, no parity bit) on
the RXD pin to determine the bit rate. It then replies with an acknowledgment that is composed of 4 bytes:
0xBF, the value of UART_DLL, the value of UART_DLH, and 0x00. �e host can then download the boot stream.
When the processor needs to hold o� the host, it deasserts CTS. �erefore, the host must monitor this signal.

• Boot from serial TWI memory (EEPROM/�ash) - the Black�n processor operates in master mode and selects
the TWI slave with the unique ID 0xA0. It submits successive read commands to the memory device starting at
two byte internal address 0x0000 and begins clocking data into the processor. �e TWI memory device should
comply with Philips I2C Bus Speci�cation version 2.1 and have the capability to auto-increment its internal
address counter such that the contents of the memory device can be read sequentially.

• Boot from TWI host - the TWI host agent selects the slave with the unique ID 0x5F. �e processor replies with
an acknowledgment, and the host can then download the boot stream. �e TWI host agent should comply
with Philips I2C Bus Speci�cation version 2.1. An I2C multiplexer can be used to select one processor at a time
when booting multiple processors from a single TWI.

To augment the boot modes, a secondary so�ware loader can be added to provide additional booting
mechanisms. �e secondary loader could provide the capability to boot from �ash, variable baud rate, and other
sources.

�e following loader topics also are discussed in this chapter.

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processor Boot Streams

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processor Memory Ranges

i
Note:

Refer to the processor’s data sheet and hardware reference manual for more information on system
con�guration, peripherals, registers, and operating modes:

• Black�n processor data sheets can be found at

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/data-sheets/resources/
index.html.

• Black�n processor manuals can be found at

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/manuals/resources/
index.html or downloaded into the CCES IDE via Help > Install New So�ware.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot
ROM
�e on-chip boot ROM for the ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 processors does
the following.

1. Sets up supervisor mode by exiting the RESET interrupt service routine and jumping into the lowest priority
interrupt (IVG15).

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

46 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

Note that the on-chip boot ROM of the ADSP-BF534/BF536 and ADSP-BF537 processors executes at the
Reset priority level, does not degrade to the lowest priority interrupt.

2. Checks whether the RESET was a so�ware reset and, if so, whether to skip the entire sequence and jump to the
start of L1 memory (0xFFA0 0000 for the ADSP-BF533/BF534/BF536/BF537/BF538 and ADSP-BF539
processors; 0xFFA0 8000 for the ADSP-BF531/BF532 processors) for execution. �e on-chip boot ROM does
this by checking the NOBOOT bit (bit 4) of the system reset con�guration register (SYSCR). If bit 4 is not set, the
on-chip boot ROM performs the full boot sequence. If bit 4 is set, the on-chip boot ROM bypasses the full
boot sequence and jumps to the start of L1 memory.

3. �e NOBOOT bit, if bit 4 of the SYSCR register is not set, performs the full boot sequence; see the ADSP-BF531/
BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processors: Booting Sequence �gure).

�e boot ROM has the capability to parse address and count information for each bootable block.

�e loader utility converts the application code (.dxe) into the loadable �le by parsing the code and creating a
�le that consists of di�erent blocks. Each block is encapsulated within a 10-byte header, which is illustrated in
the booting sequence �gure and detailed in the following section. �e headers, in turn, are read and parsed by
the on-chip boot ROM during booting.

ADSP-BF531/32/33/34/36/37/39/39 Processor

10-Byte Header for Block 1

App.
Code/
Data

Block 1

PROM/Flash or SPI Device

L1 Memory
Block 1

SDRAM

Block 2

0xEF00 0000

Block 3
10-Byte Header for Block 2

Block 2

10-Byte Header for Block 3

Block 3

Block n

........

10-Byte Header for Block n

........

On-Chip
Boot ROM

Figure 3. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processors: Booting Sequence

�e 10-byte header provides all information the on-chip boot ROM requires-where to boot the block to, how
many bytes to boot in, and what to do with the block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams
�e following sections describe the boot stream, header, and �ag framework for the ADSP-BF531, ADSP-BF532,
ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, and ADSP-BF539 processors.

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Block Headers and Flags

• ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Initialization Blocks

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

47

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers and Flags

As the loader utility converts the code from an input .dxe �le into blocks comprising the output loader �le, each
block receives a 10-byte header (see the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Processors: Boot Stream Structure �gure), followed by a block body (if a non-zero block) or no-block body (if a
zero block). A description of the header structure can be found in the ADSP-BF531/BF532/BF533 Block Header
Structure table.

4-BYTE ADDRESS

4-BYTE COUNT

2-BYTE FLAG

10-BYTE HEADER

SEE FLAG INFORMATION

.DXE 1 BYTE COUNT

HEADER OF .DXE 1

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 BODY

......

......

......

......

.DXE 2 BYTE COUNT

BLOCK 1 BODYBOOT STREAM
OF THE

1st EXECUTABLE
(.DXE 1)

HEADER OF .DXE 2

BOOT STREAM
OF THE

2nd EXECUTABLE
 (.DXE 2)

Figure 4. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Boot Stream Structure

Table 10. ADSP-BF531/BF532/BF533 Block Header Structure

Bit Field Description

Address 4-byte address at which the block resides in memory

Count 4-byte number of bytes to boot

Flag 2-byte �ag containing information about the block; the following text describes the
�ag structure

Refer to the Flag Bit Assignments for 2-Byte Block Flag Word �gure and Flag Structure table for the �ag's bit
descriptions.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

48 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Zero-Fill:

 1 = Zero-Fill Block

 0 = No Zero-Fill Block

Processor Type:

 1 = ADSP-BF533/534/536/537/538/539

 0 = ADSP-BF531/BF532

Initialization Block:

 1 = Init Block, 0 = No Init Block

Ignore Block:

 1 = Ignore Block

 0 = Do Not Ignore Block

Last Block:

 1 = Last Block

 0 = Not Last Block

Compressed Block:

 1 = Compress ed Block

 0 = Not Compressed Block

Port Number:

 00 = Disabled, 01 =Port F

 10 = Port G, 11 = Port H

Programmable Flag:

 0 = Default, Selectable from 0–15

Bits 14, 12–11, 2 are reserved for future use

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 5. Flag Bit Assignments for 2-Byte Block Flag Word

Table 11. Flag Structure

Bit Field Description

Zero-�ll block Indicates that the block is for a bu�er �lled with zeros. �e body of a zero block is
not included within the loader �le. When the loader utility parses through
the .dxe �le and encounters a large bu�er with zeros, it creates a zero-�ll block to
reduce the .ldr �le size and boot time. If this bit is set, there is no block body in
the block.

Processor type Indicates the processor, either the ADSP-BF531/BF532/BF538 or the ADSP-BF533/
BF534/BF536/BF537/BF539. Once booting is complete, the on-chip boot ROM
jumps to 0xFFA0 0000 on the ADSP-BF533/BF536/BF537/BF538/BF539 processor
and to 0xFFA0 8000 on the ADSP-BF531/BF532/ processors.

Initialization block Indicates that the block is to be executed before booting. �e initialization block
indicator allows the on-chip boot ROM to execute a number of instructions before
booting the actual application code. When the on-chip boot ROM detects an init
block, it boots the block into internal memory and makes a CALL to it
(initialization code must have an RTS at the end).

�is option allows the user to run initialization code (such as SDRAM
initialization) before the full boot sequence proceeds.

�e �gures in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Initialization Blocks illustrate the process. Initialization code can be included
within the .ldr �le by using the -init switch (see -init filename.dxe).

Ignore block Indicates that the block is not to be booted into memory; skips the block and
moves on to the next one. Currently is not implemented for application code.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

49

Bit Field Description

i
Note:

�is �ag is equivalent to the FIRST �ag in boot streams on the ADSP-
BF51x/BF52x/BF54x processors. Because the IGNORE �ag is used for other
purposes on the ADSP-BF51x/BF52x/BF54x processors, the FIRST �ag is
invented to indicate the �rst header.

Compressed block Indicates that the block contains compressed data. �e compressed block can
include a number of blocks compressed together to form a single compressed
block.

Last block Indicates that the block is the last block to be booted into memory. A�er the last
block, the processor jumps to the start of L1 memory for application code
execution. When it jumps to L1 memory for code execution, the processor is still
in supervisor mode and in the lowest priority interrupt (IVG15).

Note that the ADSP-BF534/BF536/BF537 processor can have a special last block if the boot mode is two-wire
interface (TWI). �e loader utility saves all the data from 0xFF90 3F00 to 0xFF90 3FFF and makes the last
block with the data. �e loader utility, however, creates a regular last block if no data is in that memory range.
�e space of 0xFF90 3F00 to 0xFF90 3FFF is saved for the boot ROM to use as a data bu�er during a boot
process.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization Blocks

�e -init filename option directs the loader utility to produce the initialization blocks from the initialization
section's code in the named �le. �e initialization blocks are placed at the top of a loader �le. �ey are executed
before the rest of the code in the loader �le booted into the memory (see the ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/ BF539 Processors: Initialization Block Execution �gure).

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

50 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

ADSP-BF531/32/33/34/36/37/39/39 Processor
PROM/FLASH OR SPI
 DEVICE

L1 Memory
Init Blocks

SDRAM

0xEF00 0000

On-Chip
Boot ROM

Figure 6. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Initialization Block
Execution

Following execution of the initialization blocks, the boot process continues with the rest of data blocks until it
encounters a �nal block (see the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors:
Booting Application Code �gure). �e initialization code example follows in Initialization Block Code Example.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Processors: Booting Application Code

A

L1 Me mor y
Init Block

SDRAM

0x EF00 0 000

On-Ch p
BootROM

i

L1 Block

SDRAM Block

INIT BLOCK HEADER

APP.
CODE/
DATA

INIT BLOCKS

L1 BLOCK HEADER

L1 BLOCK

SDRAM BLOCK HEADER

BLOCK N

........

BLOCK N 10-BYTE HEADER

SDRAM BLOCK

PROM/FLASH OR SPI
 DEVICE

ADSP-BF531/32/33/34/36/37/39/39 Processor

Initialization Block Code Example

/* This file contains 3 sections: */

/* 1) A Pre-Init Section-this section saves off all the

 processor registers onto the stack.

 2) An Init Code Section-this section is the initialization

 code which can be modified by the customer

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

51

 As an example, an SDRAM initialization code is supplied.

 The example setups the SDRAM controller as required by

 certain SDRAM types. Different SDRAMs may require

 different initialization procedure or values.

 3) A Post-Init Section-this section restores all the register

 from the stack. Customers should not modify the Pre-Init

 and Post-Init Sections. The Init Code Section can be

 modified for a particular application.*/

#include <defBF532.h>

.SECTION program;

/**********************Pre-Init Section************************/

[--SP] = ASTAT; /* Stack Pointer (SP) is set to the end of */

[--SP] = RETS; /* scratchpad memory (0xFFB00FFC) */

[--SP] = (r7:0); /* by the on-chip boot ROM */

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/*******************Init Code Section**************************/

/*******Please insert Initialization code in this section******/

/***********************SDRAM Setup****************************/

Setup_SDRAM:

 P0.L = LO(EBIU_SDRRC);

 /* SDRAM Refresh Rate Control Register */

 P0.H = HI(EBIU_SDRRC);

 R0 = 0x074A(Z);

 W[P0] = R0;

 SSYNC;

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

52 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

 P0.L = LO(EBIU_SDBCTL);

 /* SDRAM Memory Bank Control Register */

 P0.H = HI(EBIU_SDBCTL);

 R0 = 0x0001(Z);

 W[P0] = R0;

 SSYNC;

 P0.L = LO(EBIU_SDGCTL);

 /* SDRAM Memory Global Control Register */

 P0.H = HI(EBIU_SDGCTL);

 R0.L = 0x998D;

 R0.H = 0x0091;

 [P0] = R0;

 SSYNC;

/*********************Post-Init Section************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++];

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/**/

RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor No-Boot Mode
�e hardware settings of BMODE = 00 for the ADSP-BF531, ADSP-BF532, and ADSP-BF533 processors select
the no-boot option. In this mode of operation, the on-chip boot kernel is bypassed a�er reset, and the processor
starts fetching and executing instructions from address 0x2000 0000 in the asynchronous memory bank 0. �e
processor assumes 16-bit memory with valid instructions at that location.

To create a proper .ldr �le that can be burned into either a parallel �ash or EPROM device, you must modify
the standard LDF �le in order for the reset vector to be located accordingly. �e Section Assignment (LDF File)

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

53

Example and ROM Segment De�nitions (LDF File) Example code fragments illustrate the required
modi�cations in case of an ADSP-BF533 processor.

Section Assignment (LDF File) Example

MEMORY

{

 /* Off-chip Instruction ROM in Async Bank 0 */

 MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF) WIDTH(8) }

 /* Off-chip constant data in Async Bank 0 */

 MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF) WIDTH(8) }

 /* On-chip SRAM data, is not booted automatically */

 MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF) WIDTH(8) }

ROM Segment De�nitions (LDF File) Example

PROCESSOR p0

{

 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS

 {

 program_rom

 {

 INPUT_SECTION_ALIGN(4)

 INPUT_SECTIONS($OBJECTS(rom_code))

 } >MEM_PROGRAM_ROM

 data_rom

 {

 INPUT_SECTION_ALIGN(4)

 INPUT_SECTIONS($OBJECTS(rom_data))

 } >MEM_DATA_ROM

 data_sram

 {

 INPUT_SECTION_ALIGN(4)

 INPUT_SECTIONS($OBJECTS(ram_data))

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

54 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

 } >MEM_DATA_RAM

With the LDF �le modi�ed this way, the source �les can now take advantage of the newly-introduced sections, as
in Section Handling (Source File) Example.

Section Handling (Source File) Example

.SECTION rom_code;

_reset_vector: l0 = 0;

 1 = 0;

 l2 = 0;

 l3 = 0;

 /* continue with setup and application code */

 /* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

 /* . . . */

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically */

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges
�e on-chip boot ROM on the ADSP-BF531/BF532/BF533/BF534/BF536/ BF537/BF538/BF539 Black�n
processors allows booting to the following memory ranges.

• L1 memory

• ADSP-BF531 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Instruction SRAM (0xFFA0 8000-0xFFA0 BFFF)

• ADSP-BF532 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 4000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 8000-0xFFA1 3FFF)

• ADSP-BF533 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF534 processor:

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

55

Data bank A SRAM (0xFF80 0000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 0000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF536 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 4000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF537 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 0000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• ADSP-BF538 processor:

Data bank A SRAM (0xFF80 4000-0xFF80 7FFF)

Data bank B SRAM (0xFF90 4000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 8000-0xFFA1 3FFF)

• ADSP-BF539 processor:

Data bank A SRAM (0xFF80 0000-0xFF80 3FFF)

Data bank B SRAM (0xFF90 2000-0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000-0xFFA1 3FFF)

• SDRAM memory:

• Bank 0 (0x0000 0000-0x07FF FFFF)

i
Note:

Booting to scratchpad memory (0xFFB0 0000) is not supported.

i
Note:

SDRAM must be initialized by user code before any instructions or data are loaded into it.

ADSP-BF561 Processor Booting
�e booting sequence for the ADSP-BF561 dual-core processors is similar to the ADSP-BF531/BF532/BF533
processor boot sequence described in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor
On-Chip Boot ROM. Di�erences occur because the ADSP-BF561 processor has two cores: core A and core B.
A�er reset, core B remains idle, but core A executes the on-chip boot ROM located at address 0xEF00 0000.

�e ADSP-BF561 ROM details can be found in ADSP-BF561 Processor On-Chip Boot ROM.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

56 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e ADSP-BF561 Processor Boot Mode Selections table summarizes the boot modes and execution start
addresses for the ADSP-BF561 processors.

Table 12. ADSP-BF561 Processor Boot Mode Selections

Boot Source BMODE[1:0]

16-bit external memory (bypass boot ROM) 00

8- or 16-bit �ash 01

SPI host 10

SPI serial EEPROM (16-bit address range) 11

• Execute from 16-bit external memory - execution starts from address 0x2000 0000 with 16-bit packing. �e
boot ROM is bypassed in this mode. All con�guration settings are set for the slowest device possible (3-cycle
hold time, 15-cycle R/W access times, 4-cycle setup).

• Boot from 8-bit/16-bit external �ash memory - the 8-bit/16-bit �ash boot routine located in boot ROM
memory space is set up using asynchronous memory bank 0. All con�guration settings are set for the slowest
device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup).

• Boot from SPI host - the ADSP-BF561 processor is con�gured as an SPI slave device and a host is used to boot
the processor. �e host drives the SPI clock and is therefore responsible for the timing. �e baud rate should be
equal to or less than one fourth of the ADSP-BF561 system clock (SCLK).

• Boot from SPI serial EEPROM (16-bit addressable) - the SPI uses the PF2 output pin to select a single SPI
EPROM device, submits a read command at address 0x0000, and begins clocking data into the beginning of L1
instruction memory. A 16-bit/24-bit addressable SPI-compatible EPROM must be used.

�e following loader topics also are discussed in this chapter.

• ADSP-BF561 Processor Boot Streams

• ADSP-BF561 Processor Initialization Blocks

• ADSP-BF561 Dual-Core Application Management

• ADSP-BF561 Processor Memory Ranges

i
Note:

Refer to the ADSP-BF561 Embedded Symmetric Multiprocessor data sheet and the ADSP-BF561 Black�n
Processor Hardware Reference manual for information about the processor’s operating modes and states,
including background information on system reset and booting.

ADSP-BF561 Processor On-Chip Boot ROM
�e boot ROM loads an application program from an external memory device and starts executing that
program by jumping to the start of core A's L1 instruction SRAM, at address 0xFFA0 0000.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

57

Similar to the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561 boot ROM uses the interrupt vectors to
stay in supervisor mode.

�e boot ROM code transitions from the RESET interrupt service routine into the lowest priority user interrupt
service routine (Int 15) and remains in the interrupt service routine. �e boot ROM then checks whether it has
been invoked by a so�ware reset by examining bit 4 of the system reset con�guration register (SYSCR).

If bit 4 is not set, the boot ROM presumes that a hard reset has occurred and performs the full boot sequence. If
bit 4 is set, the boot ROM understands that the user code has invoked a so�ware reset and restarts the user
program by jumping to the beginning of core A's L1 memory (0xFFA0 0000), bypassing the entire boot
sequence.

When developing an ADSP-BF561 processor application, you start with compiling and linking your application
code into an executable (.dxe) �le. �e debugger loads the .dxe �le into the processor's memory and executes
it. With two cores, two .dxe �les can be loaded at once. In the real-time environment, there is no debugger
which allows the boot ROM to load the executables into memory.

ADSP-BF561 Processor Boot Streams
�e loader utility converts the .dxe �le into a boot stream (.ldr) �le by parsing the executable and creating
blocks. Each block is encapsulated within a 10-byte header. �e .ldr �le is burned into the external memory
device (�ash memory, PROM, or EEPROM). �e boot ROM reads the external memory device, parsing the
headers and copying the blocks to the addresses where they reside during program execution. A�er all the blocks
are loaded, the boot ROM jumps to address 0xFFA0 0000 to execute the core A program.

i
Note:

When code is run on both cores, the core A program is responsible for releasing core B from the idle state
by clearing bit 5 in core A’s system con�guration register. �en core B begins execution at address 0xFF60
0000.

Multiple .dxe �les are o�en combined into a single boot stream (see ADSP-BF561 Dual-Core Application
Management and ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management).

Unlike the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561 boot stream begins with a 4-byte global
header, which contains information about the external memory device. A bit-by-bit description of the global
header is presented in the ADSP-BF561 Global Header Structure table. �e global header also contains a
signature in the upper 4 bits that prevents the boot ROM from reading in a boot stream from a blank device.

Table 13. ADSP-BF561 Global Header Structure

Bit Field Description

0 1 = 16-bit �ash, 0 = 8-bit �ash; default is 0

1-4 Number of wait states; default is 15

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

58 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Bit Field Description

5 Unused bit

6-7 Number of hold time cycles for �ash; default is 3

8-10 Baud rate for SPI boot: 00 = 500k, 01 = 1M, 10 = 2M

11-27 Reserved for future use

28-31 Signature that indicates valid boot stream

Following the global header is a .dxecount block, which contains a 32-bit byte count for the �rst .dxe �le in the
boot stream. �ough this block contains only a byte count, it is encapsulated by a 10-byte block header, just like
the other blocks.

�e 10-byte header instructs the boot ROM where, in memory, to place each block, how many bytes to copy, and
whether the block needs any special processing. �e block header structure is the same as that of the ADSP-
BF531/BF532/BF533 processors (described in ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539
Block Headers and Flags).). Each header contains a 4-byte start address for the data block, a 4-byte count for the
data block, and a 2-byte �ag word, indicating whether the data block is a "zero-�ll" block or a "�nal block" (the
last block in the boot stream).

For the .dxe count block, the address �eld is irrelevant since the block is not going to be copied to memory. �e
"ignore bit" is set in the �ag word of this header, so the boot loader utility does not try to load the .dxe count but
skips the count. For more details, see ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Block
Headers and Flags.

Following the .dxe count block are the rest of the blocks of the �rst .dxe.

A bit-by-bit description of the boot steam is presented in the ADSP-BF561 Processor Boot Stream Structure
table. When learning about the ADSP-BF561 boot stream structure, keep in mind that the count byte for
each .dxe is, itself, a block encapsulated by a block header.

Table 14. ADSP-BF561 Processor Boot Stream Structure

Bit Field Description

0-7 LSB of the global header 32-Bit Global
Header

8-15 8-15 of the global header

16-23 16-23 of the global header

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

59

Bit Field Description

24-31 MSB of the global header

32-39 LSB of the address �eld of 1st .dxe count
block (no care)

10-Byte .dxe1
Header

40-47 8-15 of the address �eld of 1st .dxe count
block (no care)

48-55 16-23 of the address �eld of 1st .dxe count
block (no care)

56-63 MSB of the address �eld of 1st .dxe count
block (no care)

64-71 LSB (4) of the byte count �eld of 1st .dxe
count block

72-79 8-15 (0) of the byte count �eld of 1st .dxe
count block

80-87 16-23 (0) of the byte count �eld of 1st .dxe
count block

88-95 MSB (0) of the byte count �eld of 1st .dxe
count block

96-103 LSB of the �ag word of 1st .dxe count
block - ignore bit set

104-111 MSB of the �ag word of 1st .dxe count
block

112-119 LSB of the �rst 1st .dxe byte count 32-Bit Block Byte
Count

120-127 8-15 of the �rst 1st .dxe byte count

128-135 16-23 of the �rst 1st .dxe byte count

136-143 24-31 of the �rst 1st .dxe byte count

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

60 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Bit Field Description

1-0-Byte Block
Header

144-151 LSB of the address �eld of the 1st data
block in 1st .dxe

.dxe1 Block Data

152-159 8-15 of the address �eld of the 1st data
block in 1st .dxe

160-167 16-23 of the address �eld of the 1st data
block in 1st .dxe

168-175 MSB of the address �eld of the 1st data
block in 1st .dxe

176-183 LSB of the byte count of the 1st data block
in 1st .dxe

184-191 8-15 of the byte count of the 1st data block
in 1st .dxe

192-199 16-23 of the byte count of the 1st data block
in 1st .dxe

200-207 MSB of the byte count of the 1st data block
in 1st .dxe

208-215 LSB of the �ag word of the 1st block in
1st .dxe

216-223 MSB of the �ag word of the 1st block in
1st .dxe

Block Data 224-231 Byte 3 of the 1st block of 1st .dxe

232-239 Byte 2 of the 1st block of 1st .dxe

240-247 Byte 1 of the 1st block of 1st .dxe

248-255 Byte 0 of the 1st block of 1st .dxe

256-263 Byte 7 of the 1st block of 1st .dxe

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

61

Bit Field Description

... And so on ...

10-Byte Block
Header

... LSB of the address �eld of the nth data
block in 1st .dxe

... 8-15 of the address �eld of the nth data
block in 1st .dxe

... 16-23 of the address �eld of the nth data
block in 1st .dxe

... MSB of the address �eld of the nth data
block in 1st .dxe

... LSB of the byte count of the nth data block
in 1st .dxe

... 8-15 of the byte count of the nth data block
in 1st .dxe

... 16-23 of the byte count of the nth data
block in 1st .dxe

... MSB of the byte count of the nth data block
in 1st .dxe

... LSB of the �ag word of the nth block in
1st .dxe

... MSB of the �ag word of the nth block in
1st .dxe

Block data ... And so on ...

... Byte 1 of the nth block of 1st .dxe

... Byte 0 of the nth block of 1st .dxe

... LSB of the address �eld of 2nd .dxe count
block (no care)

10-Byte .dxe2
Header

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

62 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Bit Field Description

... 8-15 of the address �eld of 2nd .dxe count
block (no care)

... And so on ...

ADSP-BF561 Processor Initialization Blocks
�e initialization block or a second-stage loader utility must be used to initialize the SDRAM memory of the
ADSP-BF561 processor before any instructions or data are loaded into it.

�e initialization blocks are identi�ed by a bit in the �ag word of the 10-byte block header. When the boot ROM
encounters the initialization blocks in the boot stream, it loads the blocks and executes them immediately. �e
initialization blocks must save and restore registers and return to the boot ROM, so the boot ROM can load the
rest of the blocks. For more details, see ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ BF539 Block
Headers and Flags.

Both the initialization block and second-stage loader utility can be used to force the boot ROM to load a
speci�c .dxe �le from the external memory device if the boot ROM stores multiple executable �les. �e
initialization block can manipulate the R0 or R3 register, which the boot ROM uses as the external memory
pointers for �ash/PROM or SPI memory boot, respectively.

A�er the processor returns from the execution of the initialization blocks, the boot ROM continues to load
blocks from the location speci�ed in the R0 or R3 register, which can be any .dxe �le in the boot stream. �is
option requires the starting locations of speci�c executables within external memory. �e R0 or R3 register must
point to the 10-byte count header, as illustrated in ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-
DXE) Management.

ADSP-BF561 Dual-Core Application Management
A typical ADSP-BF561 dual-core application is separated into two executable �les: one executable �le for each
core. �e default linker description (.ldf) �le for the ADSP-BF561 processor creates two separate executable
�les (p0.dxe and p1.dxe) and some shared memory �les (sml2.sm and sml3.sm). By modifying the LDF, it is
possible to create a dual-core application that combines both cores into a single .dxe �le. �is is not
recommended unless the application is a simple assembly language program which does not link any C run-time
libraries. When using shared memory and/or C run-time routines on both cores, it is best to generate a
separate .dxe �le for each core. �e loader utility combines the contents of the shared memory �les (sml2.sm,
sml3.sm) only into the boot stream generated from the .dxe �le for core A (p0.dxe).

By default, the boot ROM loads only one single executable before the ROM jumps to the start of core A
instruction SRAM (0xFFA0 0000). When two .dxe �les are loaded, a second-stage loader is used. (Or, when the
-noSecondStageKernel switch is called, the loader utility combines the two .dxe �les into one.) If the he
second-stage boot loader is used, it must start at 0xFFA0 0000. �e boot ROM loads and executes the second-
stage loader. A default second-stage loader is provided for each boot mode and can be customized by the user.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

63

Unlike the initialization blocks, the second-stage loader takes full control over the boot process and never
returns to the boot ROM.

�e second-stage loader can use the .dxe byte count blocks to �nd speci�c .dxe �les in external memory if a
loader �le includes the codes and data from a number of .dxe �les.

x
Attention:

�e default second-stage loader uses the last 1024 bytes of L2 memory. �e area must be reserved during
booting but can be reallocated at runtime.

ADSP-BF561 Processor Memory Ranges
�e on-chip boot ROM of the ADSP-BF561 processor can load a full application to the various memories of
both cores. Booting is allowed to the following memory ranges. �e boot ROM clears these memory ranges
before booting in a new application.

• Core A

• L1 instruction SRAM (0xFFA0 0000 - 0xFFA0 3FFF)

• L1 instruction cache/SRAM (0xFFA1 0000 - 0xFFA1 3FFF)

• L1 data bank A SRAM (0xFF80 0000 - 0xFF80 3FFF)

• L1 data bank A cache/SRAM (0xFF80 4000 - 0xFF80 7FFF)

• L1 data bank B SRAM (0xFF90 0000 - 0xFF90 3FFF)

• L1 data bank B cache/SRAM (0xFF90 4000 - 0xFF90 7FFF)

• Core B

• L1 instruction SRAM (0xFF60 0000 - 0xFF6 03FFF)

• L1 instruction cache/SRAM (0xFF61 0000 - 0xFF61 3FFF)

• L1 data bank A SRAM (0xFF40 0000 - 0xFF40 3FFF)

• L1 data bank A cache/SRAM (0xFF40 4000 - 0xFF40 7FFF)

• L1 data bank B SRAM (0xFF50 0000 - 0xFF50 3FFF)

• L1 data bank B cache/SRAM (0xFF50 4000 - 0xFF50 7FFF)

• 128K of shared L2 memory (FEB0 0000 - FEB1 FFFF)

• Four banks of con�gurable synchronous DRAM (0x0000 0000 - (up to) 0x1FFF FFFF)

x
Attention:

�e boot ROM does not support booting to core A scratch memory (0xFFB0 0000 - 0xFFB0 0FFF) and
to core B scratch memory (0xFF70 0000-0xFF70 0FFF). Data that needs to be initialized prior to
runtime should not be placed in scratch memory.

ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management
�is section describes how to generate and boot more than one .dxe �le for the ADSP-BF531/BF532/BF533/
BF534/BF536/BF537/ BF538/BF539 and ADSP-BF561 processors. For further information about the ADSP-
BF561 processors, refer to ADSP-BF561 Dual-Core Application Management.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

64 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 and ADSP-BF561 loader �le structure and
the silicon revision of 0.1 and higher allow generation and booting of multiple .dxe �les into a single processor
from external memory. As illustrated in the ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/ BF539/
BF561 Processors: Multi-Application Booting Streams �gure, each executable �le is preceded by a 4-byte count
header, which is the number of bytes within the executable, including headers. �is information can be used to
boot a speci�c .dxe �le into the processor. �e 4-byte .dxe count block is encapsulated within a 10-byte header
to be compatible with the silicon revision 0.0. For more information, see ADSP-BF531/BF532/BF533/BF534/
BF536/BF537/BF538/ BF539 Block Headers and Flags.

BLOCK 1

BLOCK 2 10-BYTE HEADER

BLOCK 3 10-BYTE HEADER

BLOCK 2

BLOCK 1 10-BYTE HEADER10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE1

.DXE 1 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 2

.DXE 2 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 3

.DXE 3 APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR .DXE 4

.......................

.......................

.DXE 1

.DXE 2

.DXE 3

.DXE 4

BLOCK 3

..............

Figure 7. ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/ BF539/BF561 Processors: Multi-Application
Booting Streams

Booting multiple executables can be accomplished by one of the following methods.

• Use the second-stage loader switch, -l userkernel.dxe. �e option allows you to use your own second-stage
loader.

A�er the second-stage loader is booted into internal memory via the on-chip boot ROM, the loader has full
control over the boot process. Now the second-stage loader can use the .dxe byte counts to boot in one or
more .dxe �les from external memory.

• Use the initialization block switch, -init filename.dxe, where filename.dxe is the name of the executable
�le containing the initialization code. �is option allows you to change the external memory pointer and boot

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

65

a speci�c .dxe �le via the on-chip boot ROM. On the ADSP-BF531 and ADSP-BF561 processors, the
initialization code is an assembly written subroutine.

A sample initialization code is included in Listing 3-5. �e R0 and R3 registers are used as external memory
pointers by the on-chip boot ROM. �e R0 register is for �ash/PROM boot, and R3 is for SPI memory boot.
Within the initialization block code, change the value of R0 or R3 to point to the external memory location at
which the speci�c application code starts. A�er the processor returns from the initialization block code to the
on-chip boot ROM, the on-chip boot ROM continues to boot in bytes from the location speci�ed in the R0 or R3
register.

Initialization Block Code Example for Multiple .dxe Boot

#include <defBF532.h>

.SECTION program;

/*******Pre-Init Section***************************************/

 [--SP] = ASTAT;

 [--SP] = RETS;

 [--SP] = (r7:0);

 [--SP] = (p5:0);

 [--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

 [--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

 [--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

 [--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/**/

/*******Init Code Section**************************************

R0.H = High Address of DXE Location (R0 for flash/PROM boot, R3 for SPI boot)

R0.L = Low Address of DXE Location. (R0 for flash/PROM boot, R3 for SPI boot)

***/

/*******Post-Init Section**************************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

 M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

 B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

 I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

 (p5:0) = [SP++];

 /* MAKE SURE NOT TO RESTORE R0 for flash/PROM Boot, R3 for SPI Boot */

 (r7:0) = [SP++];

RETS = [SP++];

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

66 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

ASTAT = [SP++];

/**/

 RTS;

ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support
�e loader utility for the ADSP-BF531/BF532/BF533/BF534/BF536/BF537 processors o�ers a loader �le (boot
stream) compression mechanism known as zLib. �e zLib compression is supported by a third party dynamic
link library, zLib1.dll. Additional information about the library can be obtained from the http://www.zlib.net
Web site.

�e zLib1.dll dynamic link library is included with CrossCore Embedded Studio. �e library functions
perform the boot stream compression and decompression procedures when the appropriate options are selected
for the loader utility. �e initialization executable �les with built-in decompression mechanism must perform
the decompression on a compressed boot stream in a boot process. �e default initialization executable �les with
decompression functions are included in CrossCore Embedded Studio.

�e loader -compression switch directs the loader utility to perform the boot stream compression from the
command line. �e IDE also includes a dedicated loader properties page to manage the compression. Refer to
the online help for details.

�e loader utility takes two steps to compress a boot stream. First, the utility generates the boot stream in the
conventional way (builds data blocks), then applies the compression to the boot stream. �e decompression
initialization is the reversed process: the loader utility decompresses the compressed stream �rst, then loads code
and data into memory segments in the conventional way.

�e loader utility compresses the boot stream on the .dxe-by-.dxe basis. For each input .dxe �le, the utility
compresses the code and data together, including all code and data from any associated overlay (.ovl) and
shared memory (.sm) �les.

Compressed Streams
�e Loader File with Compressed Streams �gure illustrates the basic structure of a loader �le with compressed
streams.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

67

http://www.zlib.net

INITIALIZATION CODE
(KERNEL WITH DECOMPRESSION ENGINE)

......

1st .dxe COMPRESSED STREAM

1st .dxe UNCOMPRESSED STREAM

2nd .dxe COMPRESSED STREAM

2nd .dxe UNCOMPRESSED STREAM

......

Figure 8. Loader File with Compressed Streams

�e initialization code is on the top of the loader �le. �e initialization code is loaded into the processor �rst and
is executed �rst when a boot process starts. Once the initialization code is executed, the rest of the stream is
brought into the processor. �e initialization code calls the decompression routine to perform the
decompression operation on the stream, and then loads the decompressed stream into the processor's memory
in the same manner a conventional boot kernel does when it encounters a compressed stream. Finally, the loader
utility loads the uncompressed boot stream in the conventional way.

�e Compressed Block �gure illustrates the structure of a compressed block.

COMPRESSED BLOCK HEADER

COMPRESSED STREAM

Figure 9. Compressed Block

Compressed Block Headers
A compressed stream always has a header, followed by the payload compressed stream. �e Compressed Block
Header �gure shows the structure of a compressed block header.

 16 BITS:
 PADDED BYTE COUNT
OF COMPRESSED STREAM

32 BITS:
TOTAL BYTE COUNT OF THE COMPRESSED STREAM

INCLUDING PADDED BYTES

16 BITS:
COMPRESSED BLOCK FLAG WORD

 16 BITS:
 SIZE OF USED COMPRESSION
 WINDOW

Figure 10. Compressed Block Header

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

68 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e �rst 16 bits of the compressed block header hold the padded byte count of the compressed stream. �e
loader utility always pads the byte count if the resulting compressed stream from the loader compression engine
is an odd number. �e loader utility rounds up the byte count of the compressed stream to be a next higher even
number. �is 16-bit value is either 0x0000 or 0x0001.

�e second 16 bits of the compressed block header hold the size of the compression window, used by the loader
compression engine. �e value range is 8-15 bits, with the default value of 9 bits. �e compression window size
speci�es to the compression engine a number of bytes taken from the window during the compression. �e
window size is the 2's exponential value.

As mentioned before, the compression/decompression mechanism for Black�n processors utilizes the open-
source lossless data-compression library zLib1. �e zLib1 de�ate algorithm, in turn, is a combination of a
variation of Hu�man coding and LZ77 compression algorithms.

LZ77 compression works by �nding sequences of data that are repeated within a sliding window. As expected,
with a larger sliding window, the compression algorithm is able to �nd more repeating sequences of data,
resulting in higher compression ratios. However, technical limitations of the zLib1 decompression algorithm
dictate that the window size of the decompressor must be the same as the window size of the compressor. For a
more detailed technical explanation of the compression/decompression implementation on a Black�n processor,
refer to the readme.txt �le in the <install_path>/Blackfin/ldr/zlib/src directory.

i
Note:

It is not recommended to use memory ranges used by the zlib kernel. �e memory ranges used by the
kernel, such as heap and static data, are de�ned in the LDF �le, for example in <install_- path>/
Blackfin/ldr/zlib/src/blkfin_zlib_init.ldf.

In the Black�n implementation, the decompressor is part of the decompression initialization �les (see
Decompression Initialization Files). �ese �les are built with a default decompressor window size of 9 bits (512
bytes). �us, if you choose a non-default window size for the compressor from the Compression window size (-
compressWS) drop-down list on the loader's Compression properties page, then the decompressor must be re-
built with the new window size. Refer to the CCES online help for information about the Compression
properties page. For details on re-building of the decompressor init project, refer to the readme.txt �le located
in the <install_path>/Blackfin/ldr/zlib/src directory.

While it is true that a larger compression window size results in better compression ratios, note that there are
counter factors that decrease the overall e�ective compression ratios with increasing window sizes for Black�n's
implementation of zlib. �is is because of the limited memory resources on an embedded target, such as a
Black�n processor. For more information, refer to the readme.txt �le in the <install_path>/Blackfin/ldr/
zlib/src directory.

�e last 16 bits of the compressed header is the �ag word. �e valid compression �ag assignments are shown in
the Flag Word of Compressed Block Header �gure.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

69

0

03151

Compression Flag:
Bit 13: 0 = Not Compression Mode
 1 = Compression Block

1

Figure 11. Flag Word of Compressed Block Header

Uncompressed Streams
Following the compressed streams (illustrated in the Loader File with Compressed Streams �gure in
Compressed Streams), the loader �le includes the uncompressed streams. �e uncompressed streams include
application codes, con�icted with the code in the initialization blocks in the processor's memory spaces, and a
�nal block. �e uncompressed stream includes only a �nal block if there is no con�icted code. �e �nal block
can have a zero byte count. �e �nal block indicates the end of the application to the initialization code.

Booting Compressed Streams
�e ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Compressed Stream: Booting Sequence �gure shows the
booting sequence of a loader �le with compressed streams. �e loader �le is prestored in the �ash memory.

1. �e boot ROM is pointing to the start of the �ash memory. �e boot ROM reads the initialization code
header and boots the initialization code.

2. �e boot ROM jumps to and starts executing the initialization code.

3. (A) �e initialization code scans the header for any compressed streams (see the compression �ag structure in
the Flag Word of Compressed Block Header �gure in Compressed Block Headers). �e code decompresses
the streams to the decompression window (in parts) and runs the initialization kernel on the decompressed
data.

(B) �e initialization kernel boots the data into various memories just as the boot ROM kernel does.

4. �e initialization code sets the boot ROM to boot the uncompressed blocks and the �nal block (FINAL �ag is
set in the block header's �ag word). �e boot ROM boots the �nal payload, overwriting any areas used by the
initialization code. Because the �nal �ag is set in the header, the boot ROM jumps to EVT1 (0xFFA0 0000 for
the ADSP-BF533/BF534/BF536/BF537/BF538 and ADSP-BF539 processors; 0xFFA0 8000 for the ADSP-
BF531/BF532 processors) to start application code execution.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

70 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

INIT CODE HEADER

 INIT CODE
PAYLOAD

(KERNEL AND
DECOMPRESSION

ENGINE)

COMPRESSED
HEADER

COMPRESSED
IMAGE PAYLOAD

FINAL SECTION
HEADER

FINAL PAYLOAD
(OVERWRITES LOCA-
TION FROM WHICH

INIT CODE EXE-
CUTES)

FLASH MEMORY

INITIALIZATION
KERNEL AND

 DECOMPRESSION
ENGINE

DECOMPRESSION
WINDOW

BOOT ROM BOOTS
FINAL PAYLOAD, OVER-
WRITING INITIALIATION

KERNEL AND
DECOMPRESSION WINDOW
IN L1, THEN JUMPS TO EVT1

L1 MEMORY

DECOMPRESSED
STREAM IN PARTS
BOOTS INTO VARI-

OUS MEMORIES
THROUGH INIT

1

2

3A

3B

4

BOOT ROM

Figure 12. ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Compressed Stream: Booting Sequence

Decompression Initialization Files
As stated before, a decompression initialization .dxe �le must be used when building a loader �le with
compressed streams. �e �le has a built-in decompression engine to decompress the compressed streams from
the loader �le.

�e decompression initialization �le can be speci�ed from the loader properties page or from the loader
command line via the -init filename.dxe switch. CrossCore Embedded Studio includes the default
decompression initialization �les, which the loader utility uses if no other initialization �le is speci�ed. �e
default decompression initialization �le is stored in the <install_path>/Blackfin/ldr/zlib directory. �e
default �le is built for the compression window size of 9 bits.

To use a di�erent compression window size, build your own decompression initialization �le. For details, refer to
the readme.txt �le located in the <install_path>/Blackfin/ldr/zlib/src directory. �e size can be
changed through the loader properties page or the -compressWS # command-line switch. �e valid range for
the window size is [8-15] bits.

ADSP-BF53x/BF561 Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE
(CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

71

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

�ese sections describe how to produce a bootable or non-bootable loader �le:

• Loader Command Line for ADSP-BF53x/BF561 Processors

• CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors

Loader Command Line for ADSP-BF53x/BF561 Processors
�e loader utility uses the following command-line syntax for the ADSP-BF53x/BF561 Black�n processors.

For a single input �le:

 elfloader inputfile -proc processor [-switch]

For multiple input �les:

 elfloader inputfile1 inputfile2 -proc processor [-switch]

where:

• inputfile - Name of the executable (.dxe) �le to be processed into a single boot-loadable or non-bootable
�le. An input �le name can include the drive and directory. For multiprocessor or multi-input systems, specify
multiple input .dxe �les. Put the input �le names in the order in which you want the loader utility to process
the �les. Enclose long �le names within straight quotes, "long file name".

• -proc processor - Part number of the processor (for example, -proc ADSP-BF531) for which the loadable
�le is built. Provide a processor part number for every input .dxe if designing multiprocessor systems.

• -switch - One or more optional switches to process. Switches select operations and modes for the loader
utility.

i
Note:

Command-line switches may be placed on the command line in any order, except the order of input �les
for a multi-input system. For a multi-input system, the loader utility processes the input �les in the order
presented on the command line.

Loader Command-Line Switches for ADSP-BF533/BF561 Processors
A summary of the loader command-line switches for the ADSP-BF53x/BF561 Black�n processors appears in the
following table.

Table 15. ADSP-BF53x/BF561 Loader Command-Line Switches

Switch Description

-b {prom|flash|spi|spislave|uart|

twi|fifo}

�e -b switch speci�es the boot mode and directs the loader
utility to prepare a boot-loadable �le for the speci�ed boot mode.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

72 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

If -b does not appear on the command line, the default is -b
flash.

Other valid boot modes include:

• SPI master (-b spi) for all processors described in this chapter.

• SPI slave (-b spislave) for the ADSP-BF531/2/3/4/6/7/9 and
ADSP-BF561 processors.

• UART (-b uart) for the ADSP-BF534/6/7 processors.

• TWI (-b twi) for the ADSP-BF534/6/7 processors.

• FIFO (-b fifo) for the ADSP-534/6/7 processors.

-compression �e -compression switch directs the loader utility to compress
the boot stream; see ADSP-BF531/BF532/BF533/BF534/BF536/
BF537 Processor Compression Support. Either a default or user
initialization .dxe �le with decompression code must be provided
for -compression.

�is switch is for �ash/PROM boot modes only and does not
apply to the ADSP-BF538, ADSP-BF539, or ADSP-BF561
processors.

-compressWS # �e -compressWS # switch speci�es a compression window size
in bytes. �e number is a 2's exponential value to be used by the
compression engine. �e valid values are [8,15] bits, with the
default of 9 bits.

�is switch is for �ash/PROM boot modes only and does not
apply to the ADSP-BF538, ADSP-BF539, or ADSP-BF561
processors.

-dmawidth {8|16}

�e -dmawidth {8|16} switch speci�es a DMA width (in bits) to
the loader utility.

For FIFO boot mode, 16 is the only DMA width. For other boot
modes, all DMA widths are valid with the default of 8.

�e switch does not apply to the ADSP-BF561 processors.

-enc dll_filename �e -enc dll_filename switch encrypts the data stream from
the application input .dxe �les with the encryption algorithms in
the dynamic library �le dll_filename. �e dll_filename is
required. Two functions with the following APIs are required in
the encryption DLL:

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

73

Switch Description

For setting the encryption initial value:

int EncryptInit(unsigned int FixedData);

For getting encrypted data:

int EncryptBlock(unsigned int * buffer, unsigned int

BlkSize, char * message);

�e loader calls the encryption routines as it is creating the ldr
output �le. �e loader sets reserved bit 2 in the block header to
indicate the payload is encrypted.

-f {hex|ascii|binary|include} �e -f {hex|ASCII|binary|include} switch speci�es the
format of a boot-loadable �le (Intel hex-32, ASCII, binary,
include). If the -f switch does not appear on the command line,
the default boot mode format is hex for �ash/PROM and ASCII
for SPI, SPI slave, UART, and TWI.

-ghc # �e -ghc # switch speci�es a 4-bit value (global header cookie)
for bits 31-28 of the global header (see the ADSP-BF561 Global
Header Structure �gure in ADSP-BF561 Processor Boot Streams).

i
Note:

�e switch applies to the ADSP-BF561 processors only.

-h or -help �e -h[elp] switch invokes the command-line help, outputs a list
of command-line switches to standard output, and exits. By
default, the -h switch alone provides help for the loader driver. To
obtain a help screen for your target Black�n processor, add the -
proc switch to the command line. For example, type elfloader
-proc ADSP-BF533 -h to obtain help for the ADSP-BF533
processor.

-init filename.dxe

�e -init filename.dxe switch directs the loader utility to
include the initialization code from the named �le. �e loader
utility places the code from the initialization sections of the
speci�ed .dxe �le in the boot stream. �e kernel loads the code
and then calls it. It is the responsibility of the code to save/restore
state/registers and then perform an RTS back to the kernel.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

74 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-kb {prom|flash|spi|spislave|uart|

twi|fifo}

�e -kb switch speci�es the boot mode for the boot kernel
output �le if you generate two output �les from the loader utility:
one for the boot kernel and another for user application code.

�e -kb switch must be used in conjunction with the -o2 switch.

If the -kb switch is absent from the command line, the loader
utility generates the �le for the boot kernel in the same boot mode
as used to output the user application program.

Valid boot modes include:

• PROM/FLASH (-kb prom or -kb flash) - the default boot
mode for all processors described in this chapter.

• SPI master (-kb spi) for all processors described in this
chapter.

• SPI slave (-kb spislave) for the ADSP-BF531/2/3/4/6/7/9 and
ADSP-BF561 processors.

• UART (-kb uart) for the ADSP-BF534/6/7 processors.

• TWI (-kb twi) for the ADSP-BF534/6/7 processors.

• FIFO (-kb fifo) for the ADSP-534/6/7 processors.

-kf {hex|ascii|binary|include}

�e -kf {hex|asci|binary|include} switch speci�es the
output �le format (hex, ASCII, binary, or include) for the boot
kernel if you output two �les from the loader utility: one for the
boot kernel and one for user application code.

�e -kf switch must be used in conjunction with the-o2 switch.

If the -kf switch is absent from the command line, the loader
utility generates the �le for the boot kernel in the same format as
for the user application program.

-kenc dll_filename �e -kenc dll_filename switch speci�es the user encryption
dynamic library �le for the encryption of the data stream from
the kernel �le. �e dll_filename is required. Two functions with
the following APIs are required in the encryption DLL:

For setting the encryption initial value: int EncryptInit
(unsigned int FixedData);

For getting encrypted data: int EncryptBlock (unsigned int
* buffer, unsigned int BlkSize, char * message);

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

75

Switch Description

�e loader calls the encryption routines as it is creating the .knl
output �le. �e loader sets reserved bit 2 in the block header to
indicate the payload is encrypted.

-kp #

�e -kp # switch speci�es a hex �ash/PROM output start address
for the kernel code. A valid value is between 0x0 and
0xFFFFFFFF. �e speci�ed value is ignored when no kernel
or/and initialization code is included in the loader �le.

-kwidth {8|16|32} �e -kwidth {8|16|32} switch speci�es the width of the boot
kernel output �le when there are two output �les: one for the boot
kernel and one for user application code.

Valid values are:

• 8 or 16 for PROM or �ash boot kernel

• 16 for FIFO boot kernel

• 8 for SPI and other boot kernels

If this switch is absent from the command line, the default �le
width is:

• the -width parameter for �ash/PROM boot mode

• 16 for FIFO boot mode

• 8 when booting from SPI and other boot modes

�e -kwidth switch must be used in conjunction with the -o2
switch.

-M �e -M switch generates make dependencies only, no output �le is
generated.

-maskaddr # �e -maskaddr # switch masks all EPROM address bits above or
equal to #. For example, -maskaddr 29 (default) masks all the
bits above and including A29 (ANDed by 0x1FFF FFFF). For
example, 0x2000 0000 becomes 0x0000 0000. �e valid #s are
integers 0 through 32, but based on your speci�c input �le, the
value can be within a subset of [0, 32].

�e -maskaddr # switch requires -romsplitter and a�ects the
ROM section address only.

-MaxBlockSize # �e -MaxBlockSize # switch speci�es the maximum block byte
count, which must be a multiple of 16.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

76 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-MaxZeroFillBlockSize # �e -MaxZeroFillBlockSize # switch speci�es the maximum
block byte count for zero-�lled blocks. �e valid values are from
0x0 to 0xFFFFFFF0, and the default value matches -
MaxBlockSize #.

-MM �e -MM switch generates make dependencies while producing the
output �les.

-Mo filename �e -Mo filename switch writes make dependencies to the
named �le. Use the -Mo switch with either -M or -MM. If -Mo is not
present, the default is a <stdout> display.

-Mt filename

�e -Mt filename switch speci�es the make dependencies target
output �le. Use the -Mt switch with either -M or -MM. If -Mt is not
present, the default is the name of the input �le with an .ldr
extension.

-noFinalBlock �e -noFinalBlock switch directs the loader utility not to make
a special �nal block for TWI boot.

�e switch applies to the ADSP-BF537 processors only.

-noFinalTag �e -noFinalTag switch directs the loader utility not to set the
�nal block tag for the �rst .dxe �le. As a result, the boot process
continues with code from the second .dxe �le, following the �rst
�le.

�e switch applies to the ADSP-BF56x processors only.

-noInitCode �e -noInitCode switch directs the loader utility not to expect
an initialization input �le even though an external memory
section is present in the input .dxe �le.

�e switch applies to the ADSP-BF531/BF532/BF533, ADSP-
BF534/BF536/BF537/BF538/BF539 processors only.

-noSecondStageKernel �e -noSecondStageKernel switch directs the loader utility not
to include a default second-stage kernel into the loader stream.

�e switch applies to the ADSP-BF56x processors only.

-o filename �e -o filename switch directs the loader utility to use the
speci�ed �le as the name of the loader utility's output �le. If the

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

77

Switch Description

filename is absent, the default name is the root name of the
input �le with an .ldr extension.

-o2 �e -o2 switch produces two output �les: one for the init block (if
present) and boot kernel and one for user application code.

To have a di�erent format, boot mode, or output width from the
application code output �le, use the -kb -kf -kwidth switches
to specify the boot mode, the boot format, and the boot width for
the output kernel �le, respectively.

Combine -o2 with -l filename and/or -init filename on the
ADSP-BF531/BF532/BF533, ADSP-BF534/BF536/BF537/BF538/
BF539, ADSP-BF561 processors.

-p # �e -p # switch speci�es a hex �ash/PROM output start address
for the application code. A valid value is between 0x0 and
0xFFFFFFFF. A speci�ed value must be greater than that speci�ed
by -kp if both kernel and/or initialization and application code
are in the same output �le (a single output �le).

-pflag {#|PF#|PG#|PH# } �e -pflag { #|PF#|PG#|PH# } switch speci�es a 4-bit hex value
for a strobe (programmable �ag) or for one of the ports: F, G, or H.
�ere is no default value. �e value is dynamic and varies with
processor, silicon revision, boot mode, and width. �e loader
generates warnings for illegal combinations.

�e -pFlag Values for ADSP-BF531/BF532/BF533 Processors, -
pFlag Values for ADSP-BF534/BF536/BF537, and -pFlag Values
for ADSP-BF538/BF539 Processors tables show the valid values
for the switch.

�e switch applies to the ADSP-BF531x and ADSP-BF561
processors only.

-proc processor �e -proc processor switch speci�es the target processor.

�e processor can be one of the following: ADSP-BF531, ADSP-
BF532, ADSP-BF533, ADSP-BF534, ADSP-BF536, ADSP-BF537,
ADSP-BF538, ADSP-BF539, ADSP-BF561.

-romsplitter �e -romsplitter switch creates a non-bootable image only.
�is switch overwrites the -b switch and any other switch
bounded by the boot mode.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

78 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

In the .ldf �le, declare memory segments to be `split' as type
ROM. �e splitter skips RAM segments, resulting in an empty �le if
all segments are declared as RAM. �e -romsplitter switch
supports hex and ASCII formats.

-ShowEncryptionMessage �e -ShowEncryptionMessage switch displays a message
returned from the encryption function.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for
the processor hardware. If -si-revision is not used, the target is
a default revision from the supported revisions.

-v �e -v switch directs the loader utility to output verbose loader
messages and status information as the loader processes �les.

-width {8|16|32} �e -width {8|16|32} switch speci�es the loader output �le's
width in bits. Valid values are 8 and 16, depending on the boot
mode. �e default value is 16 for FIFO boot mode and 8 for all
other boot modes.

• For �ash/PROM booting, the size of the output �le depends on
the -width switch.

• For FIFO booting, the only available width is 16.

• For SPI booting, the size of the output .ldr �le is the same for
both -width 8 and -width 16. �e only di�erence is the
header information.

-ZeroPadForced �e -ZeroPadForced switch forces the loader utility to pad each
data byte with a zero byte for 16-bit output. Use this switch only if
your system requires zero padding in a loader �le. Use this switch
with caution: arbitrating pad data with zeros can cause the loader
�le to fail. �e loader utility performs default zero padding
automatically in general.

�e switch applies to the ADSP-BF531/BF532/BF533/BF534,
ADSP-BF536/BF537/BF538/BF539 processors only.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

79

Table 16. -pFlag Values for ADSP-BF531/BF532/BF533 Processors. (The ADSP-BF531/BF532/BF533 processors
always have the RESVECT bit (bit 2 in the block header fla word) cleared.)

Silicon Revision 0.6

Width 8 16

Flash boot mode NONE NONE

SPI boot mode NONE

SPI slave boot mode 1-15

PF1-15

Table 17. -pFlag Values for ADSP-BF534/BF536/BF537. (The ADSP-BF534/BF536/BF537 processors always
have the RESVECT bit (bit 2 in the block header fla word) set.)

Silicon Revision 0.3

Width 8 16

Flash boot mode NONE

PF0-15

PG0-15

PH0-15

NONE

PF0-15

PG0-15

PH0-15

SPI boot mode NONE

PF0-9

PF15

PG0-15

PH0-15

SPI slave boot mode NONE

PF0-10

PF15

PG0-15

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

80 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Silicon Revision 0.3

PH0-15

TWI boot mode NONE

PF0-15

PG0-15

PH0-15

TWI slave boot mode NONE

PF0-15

PG0-15

PH0-15

UART boot mode NONE

PF2-15

PG0-15

PH0-15

FIFO boot mode NONE

PF0

PF2-15

PG0-15

PH0-15

Table 18. -pFlag Values for ADSP-BF538/BF539 Processors

Silicon Revision All

Width 8 16

Flash boot mode NONE NONE

SPI boot mode NONE

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

81

Silicon Revision All

SPI slave boot mode 1-15

PF1-15

i
Note:

�e ADSP-BF538/BF539 processors always have the RESVECT bit (bit 2 in the block header �ag word) set.

CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters (see Loader Command-Line Switches for ADSP-BF533/BF561
Processors). �e loader utility for Black�n processors also acts as a ROM splitter when evoked with the
corresponding switches.

�e loader pages (also called loader properties pages) show the default loader settings for the project's target
processor. Refer to the CCES online help for information about the loader/splitter interface.

Loader/Splitter for ADSP-BF53x/BF561 Black�n Processors

82 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

5
Loader/Splitter for ADSP-BF60x Blackfi Processors

�is chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) �les
into boot-loadable or non-bootable �les for the ADSP-BF60x Black�n processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations speci�c to the ADSP-BF60x
Black�n processors are detailed in the following sections.

• ADSP-BF60x Processor Booting

Provides general information on various boot modes.

• ADSP-BF60x Processor Loader Guide

Provides information on how to build loader �les.

ADSP-BF60x Processor Booting
For detailed information on the boot loader stream and modes for the ADSP-BF60x processors, refer to the
booting chapter of the ADSP-BF60x Black�n Processor Hardware Reference.

Refer to the processor's data sheet and hardware reference manual for detailed information on system
con�guration, peripherals, registers, and operating modes.

• Black�n processor data sheets can be found at:

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/data-sheets/resources/index.html.

• Black�n processor manuals can be found at:

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/manuals/resources/index.html or
downloaded into the CCES IDE via Help > Install New So�ware.

�e ADSP-BF60x Part Numbers table lists the part numbers that currently comprise the ADSP-BF60x family of
Black�n processors. Future releases of CrossCore Embedded Studio may support additional processors.

Loader/Splitter for ADSP-BF60x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

83

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/manuals/resources/index.html

Table 19. ADSP-BF60x Part Numbers

ADSP-BF606 ADSP-BF608

ADSP-BF607 ADSP-BF609

�is section covers the following topics:

• ADSP-BF60x Processor Boot Modes

• ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot

• Building a Dual-Core Application

• CRC32 Protection

• Block Sizes

ADSP-BF60x Processor Boot Modes

Table 20. ADSP-BF60x Processor Boot Modes

ADSP-BF60x Boot Mode Boot (-b) Boot Code (-bcode) Notes

MEMORY -b MEMORY -bcode #2 Generic memory boot mode.
Replaces -b FLASH. �e argument for
the -bcode switch is the MDMACODE,
one of the supported numeric values
speci�c to memory boot.

RSI0 master -b RSI -bcode # �e argument for the -bcode switch
is the RSICODE, one of the supported
numeric values speci�c to RSI master
boot.

SPI0 master -b SPI -bcode # �e argument for the -bcode switch
is the SPIMCODE, one of the supported
numeric values speci�c to SPI master
boot.

SPI0 slave -b SPISLAVE Boot code �eld in headers is not used
for slave boot modes.

2 Legal values for the -bcode # switch can be found in the booting chapter of the ADSP-BF60x Black�n
Processor Hardware Reference.

Loader/Splitter for ADSP-BF60x Black�n Processors

84 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

ADSP-BF60x Boot Mode Boot (-b) Boot Code (-bcode) Notes

LP0 slave -b LPSLAVE Boot code �eld in headers is not used
for slave boot modes.

UART0 slave -b UARTSLAVE Boot code �eld in headers is not used
for slave boot modes.

ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot
A bootable loader stream is a series of boot blocks, each block beginning with a block header. Bits 0:3 of the
ADSP-BF60x block header is a boot mode speci�c code �eld known as BCODE. �e -bcode # switch controls
what value is written to the BCODE �eld in the block headers in a bootable loader stream.

For detailed information on .ldr block headers, see the booting chapter of the ADSP-BF60x Black�n Processor
Hardware Reference.

�e loader requires an explicit BCODE value when creating loader streams for master boot modes. For the ADSP-
BF60x processors, this includes memory, RSI, and SPI master boot modes. When used in the context of a speci�c
boot mode, BCODE is referred to by its boot-speci�c name: MDMACODE for memory boot, RSICODE for RSI boot,
and SPIMCODE for SPI master boot.

i
Note:

�e -bcode switch is not used for slave boot modes. �e BCODE �eld is zero for slave boot modes.

When building loader streams, explicitly specify the BCODE �eld for the .ldr block headers:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. �e Tool Settings page appears.

3. Click General under CrossCore Black�n Loader. �e loader General properties page appears.

4. In Boot code (-bcode), enter the number.

�e BCODE is speci�c for that particular boot mode. For -bcode # valid values, see the booting chapter of the
ADSP-BF60x Black�n Processor Hardware Reference.

5. Click OK to close the dialog box.

6. Click Apply.

If you do not specify -bcode #, the loader reports Error ld0260. For example, if -bcode # is not present when
building a loader stream for RSI boot:

[Error ld0260]: Missing boot code header value for target ADSP-BF609 block headers.

 The -bcode # switch is required for specifying the boot code value

 for boot modes MEMORY, RSI, and SPI.

 For MEMORY boot, consult the MDMACODE table.

 For RSI boot, consult the RSICODE table.

Loader/Splitter for ADSP-BF60x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

85

 For SPI boot, consult the SPIMCODE table.

Building a Dual-Core Application
When building a dual-core application, use the -NoFinalTag switch to append the core 1 processing to core 0.
�e loader processes the input executables (.dxe) in order. If building at the command-line, place
DualCoreApp_Core1.dxe a�er DualCoreApp.dxe:

elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 DualCoreApp.dxe -NoFinalTag="DualCoreApp.dxe"

DualCoreApp_Core1.dxe -o DualCoreApp.ldr -f HEX -Width 8

i
Note:

Since the default startup code does not include functionality to allow core 0 to enable core 1, a convenient
way to enable core 1 is to use the adi_core_1_enable function in the main program of DualCoreApp.

-NoFinalTag
Use the -NoFinalTag switch for multi-core booting.

Syntax

 -NoFinalTag[="DxeFile"]

i
Note:

Note there is no white space around = when specifying the executable name.

�e -NoFinalTag switch directs the loader utility not to set the FINAL �ag on the last code block from the .dxe
�le. When building an .ldr �le with multiple .dxe �les, this prevents the boot from halting a�er the �rst .dxe
completes.

�e loader processes the input .dxe �les in the order they appear on the elfloader command-line. If the -
NoFinalTag doesn't include the DxeFile �le argument, it defaults to the �rst application .dxe �le. �us, the
following command applies -NoFinalTag to Core0.dxe:

elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 -init BF609_init_v00.dxe Core0.dxe
-NoFinalTag Core1.dxe -o DualCoreApp.ldr -f HEX -Width 8

You can explicitly specify the .dxe �le to which -NoFinalTag applies. �e following example is equivalent to the
previous command:

elfloader -proc ADSP-BF609 -b SPI -bcode 0x1 -init BF609_init_v00.dxe Core0.dxe
-NoFinalTag="Core0.dxe" Core1.dxe -o DualCoreApp.ldr -f HEX -Width 8

�e -NoFinalTag with a .dxe argument can appear multiple times. In the following example, there are four
application .dxe �les, and the -NoFinalTag switch appears twice, scoped to the appropriate .dxe:

elfloader -proc ADSP-BF609 -b spi -bcode 0x1 -f hex -width 8 -o multicore.ldr
Rel/App0_Core0.dxe Rel/App0_Core1.dxe Rel/App1_Core0.dxe Rel/App1_Core1.dxe
-NoFinalTag="App0_Core0.dxe" -NoFinalTag="App1_Core0.dxe"

Loader/Splitter for ADSP-BF60x Black�n Processors

86 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

As long as the .dxe �les on the command line are uniquely named, you only need to specify the .dxe �le name,
without a full path. If the .dxe �les are not uniquely named, the -NoFinalTag .dxe �les must be matched by
paths. When specifying pathnames, use forward slash (/).

elfloader -proc ADSP-BF609 -b spi -bcode 0x1 -f hex -width 8 -o multicore.ldr
AppA/App_Core0.dxe AppA/App_Core1.dxe AppB/App_Core0.dxe AppB/App_Core1.dxe
-NoFinalTag="AppA/App_Core0.dxe" -NoFinalTag="AppB/App_Core0.dxe" -verbose

Use -verbose to get a "per dxe �le" build summary from elfloader:

*** Summary of -NoFinalTag usage

 NoFinalTag AppA/App_Core0.dxe was successful

 -NoFinalTag AppB/App_Core0.dxe was successful

Any -NoFinalTag .dxe �le that did not get a match gets a warning, with or without -verbose:

[Warning ld0265]: 'unknown.dxe' from -NoFinalTag switch resulted in no matches.

Programming Memory on a Target Board
Use the CCES Device Programmer utility (cldp) for programming the memory on a target board.

In the building a dual-core application example above, DualCoreApp.ldr was built for boot mode SPIO master
with format hex.

Driver:

ADSP-BF609_EZBoard/Examples/Device_Programmer/serial/w25q32bv_dpia/w25q32bv_dpia.dxe

cldp -proc ADSP-BF609 -emu HPUSB -driver w25q32bv_dpia.dxe
-cmd prog -erase affected -offset 0 -format hex -file DualCoreApp.ldr

i
Note:

You can save the device programmer commands to a �le:

cldp -@ myPath/SPI_Flash_Programming.txt

See the Device Programmer section in the CCES online help for more information (search help for "device
programmer").

CRC32 Protection
ADSP-BF60x CRC32 protection is implemented in hardware. �e boot kernel provides mechanisms to allow
each block to be veri�ed using a 32-bit CRC.

When building a LDR �le for CRC32 protection, use the -CRC32 <PolynomialCoefficient> switch.

-CRC32 (PolynomialCoe�cient)

�e -CRC32 switch directs the loader to generate CRC32 checksums. It uses the polynomial coe�cient if
speci�ed, otherwise uses the default coe�cient (0xD8018001).

Loader/Splitter for ADSP-BF60x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

87

Block Sizes
�e loader creates blocks with payload and �ll blocks using default maximum size and alignment that meets the
requirements of the target hardware. Switches are available to override the defaults.

Table 21. ADSP-BF60x Processor Block Sizes

Switch Description Default Requirements

-MaxBlockSize # Specify the maximum
block byte count

Loader uses maximum
block size 0x7FFFFFF0 as
default

�e maximum block size
is limited to 0xFFFFFFFC
bytes and must be a
multiple of 4.

-MaxFillBlockSize # Specify the maximum �ll
block byte count

Loader uses maximum �ll
block size 0x7FFFFFF0 as
default

�e maximum �ll block
size is limited to
0xFFFFFFFC bytes and
must be a multiple of 4.

ADSP-BF60x Processor Loader Guide
�e loader utility post processes executable (.dxe) �les and generates loader (.ldr) �les. A loader �le can be
formatted as binary, ASCII or Intel hex style. An .ldr �le contains the boot stream in a format expected by the
on-chip boot kernel.

Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE
(CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

�ese sections describe how to produce a bootable (single and multiple) or non-bootable loader �le:

• CCES Loader and Splitter Interface for ADSP-BF60x Processors

• ROM Splitter Capabilities for ADSP-BF60x Processors

• ADSP-BF60x Loader Collateral

CCES Loader and Splitter Interface for ADSP-BF60x Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

Loader/Splitter for ADSP-BF60x Black�n Processors

88 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters. Refer to the online help for more information.

ROM Splitter Capabilities for ADSP-BF60x Processors

i
Note:

�e readall feature is available for the automatic merging of �xed-position ROM data with code blocks
within the bootable loader stream and typically supersedes the use of the legacy romsplitter feature
described below.

When the loader utility is invoked with the splitter capabilities, it does not format the application data when
transforming a .dxe �le to an .ldr �le. �e splitter emits raw data only. Whether data and/or instruction
sections are processed by the loader or by the splitter depends upon the LDF's TYPE() command. Sections
declared with TYPE(RAM) are consumed by the loader, and sections declared by TYPE(ROM) are consumed by the
splitter.

�e contents of the ROM memory segments are extracted from the .dxe. �e contents of the ROM segments get
written to the .ldr �le in raw format, each segment preceded by header words. �e header consists of the
following four 32-bit words written in unpre�xed hex format:

Address Start address of ROM memory segment (as de�ned in LDF)

Length # of bytes extracted from the DXE for this segment

Control Word 32 bit control word

00

xx address multiply

xx logical width

xx physical width

Reserved word All zeros

Example - ASCII Formatted Splitter .ldr File

�is is an example of the header preceding the raw content extracted from the .dxe for segment MEM1.

Assume 256 bytes were written to the .ldr �le and MEM1 was de�ned in the LDF as:

 MEM1 { TYPE(ROM) WIDTH(8) START(0xB0000000) END(0xB3FFFFFF) }

The -romsplitter .ldr output will be:

Loader/Splitter for ADSP-BF60x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

89

B0000000

00000100

00010101

00000000

00 <- content starts here

01

02

03

...

ADSP-BF60x Loader Collateral
�e CrossCore Embedded Studio installation contains additional �les and projects to assist with development
and debugging of ADSP-BF60x applications which rely on booting functionality.

ROM Code

ROM code is available in Blackfin/ldr/rom_code of the CrossCore Embedded Studio installation.

Init Code

�e sources and prebuilt executables for the init codes for the ADSP-BF609 EZ-KIT Lite are available in
Blackfin/ldr/init_code of the CrossCore Embedded Studio installation.

�e list of boot kernel symbols can be found in the booting chapter of the ADSP-BF60x Black�n Processor
Hardware Reference. Instructions for loading symbols can be found in the online help (search for "debugging the
boot process").

Con�guration information can be found in the init_platform.h �le located in the corresponding part/silicon
revision project. For example, for a ADSP-BF609 processor, -si-revision 0.1, see Blackfin/ldr/
init_code/BF609_init/BF609_init_v01/src/include/init_platform.h.

You can include an init code dxe into the *.ldr �le built for your application . To do so, use the Initialization
�le option in the IDE or the -init filename switch on the command line. Multiple -init switches are
supported.

ROM Programming

ROM API headers for Black�n processors, including the ADSP-BF609, are available in the CrossCore Embedded
Studio installation. Build macros automatically con�gure bfrom.h (Blackfin/include/bfrom.h) for your
build target processor.

�e boot programming model is documented in the ADSP-BF60x Black�n Processor Hardware Reference.

Loader/Splitter for ADSP-BF60x Black�n Processors

90 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

6
Loader/Splitter for ADSP-BF70x Blackfi Processors

�is chapter explains how the loader/splitter utility (elfloader.exe) is used to convert executable (.dxe) �les
into boot-loadable or non-bootable �les for the ADSP-BF70x Black�n processors.

Refer to the Introduction chapter for the loader utility overview. Loader operations speci�c to the ADSP-BF70x
Black�n processors are detailed in the following sections.

• ADSP-BF70x Processor Booting

Provides general information on various boot modes.

• ADSP-BF70x Processor Loader Guide

Provides information on how to build loader �les.

ADSP-BF70x Processor Booting
For detailed information on the boot loader stream and modes for the ADSP-BF70x processors, refer to the
booting chapter of the ADSP-BF70x Black�n+ Processor Hardware Reference.

Refer to the processor's data sheet and hardware reference manual for detailed information on system
con�guration, peripherals, registers, and operating modes.

• Black�n processor data sheets can be found at:

http://www.analog.com/en/embedded-processing-dsp/black�n/processors/data-sheets/resources/index.html.

�e ADSP-BF70x Part Numbers table lists the part numbers that currently comprise the ADSP-BF70x family of
Black�n processors. Future releases of CrossCore Embedded Studio may support additional processors.

Table 22. ADSP-BF70x Part Numbers

ADSP-BF700 ADSP-BF701 ADSP-BF702

ADSP-BF702 ADSP-BF704 ADSP-BF706

Loader/Splitter for ADSP-BF70x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

91

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/data-sheets/resources/index.html

ADSP-BF703 ADSP-BF705 ADSP-BF707

�is section covers the following topics:

• ADSP-BF70x Processor Boot Modes

• ADSP-BF70x BCODE Field for SPI Boot

• CRC32 Protection

• Block Sizes

ADSP-BF70x Processor Boot Modes

Table 23. ADSP-BF70x Processor Boot Modes

ADSP-BF70x Boot Mode Boot (-b) Boot Code (-bcode) Notes

SPI master -b SPI -bcode #3 �e argument for the -
bcode switch is the
SPIMCODE, one of the
supported numeric values
speci�c to SPI master
boot.

SPI slave -b SPISLAVE Not applicable Boot code �eld in headers
is not used for slave boot
modes.

UART slave -b UARTSLAVE Not applicable Boot code �eld in headers
is not used for slave boot
modes.

ADSP-BF70x BCODE Field for SPI Boot
A bootable loader stream is a series of boot blocks, each block beginning with a block header. Bits 0:3 of the
ADSP-BF70x block header is a boot mode speci�c code �eld known as BCODE. �e -bcode # switch controls
what value is written to the BCODE �eld in the block headers in a bootable loader stream.

For detailed information on .ldr block headers, see the booting chapter of the ADSP-BF70x Black�n+
Processor Hardware Reference manual.

3 Values for the -bcode # switch can be found in the booting chapter of the ADSP-BF70x Black�n+
Processor Hardware Reference.

Loader/Splitter for ADSP-BF70x Black�n Processors

92 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e loader requires an explicit BCODE value when creating loader streams for master boot modes. For the ADSP-
BF70x processors, this is SPI master boot mode. When used in the context of SPI mater boot mode, BCODE is
referred to by its boot-speci�c name, SPIMCODE.

i
Note:

�e -bcode switch is not used for slave boot modes. �e BCODE �eld is zero for slave boot modes.

When building loader streams, explicitly specify the BCODE �eld for the .ldr block headers:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. �e Tool Settings page appears.

3. Click General under CrossCore Black�n Loader. �e loader General properties page appears.

4. In Boot code (-bcode), enter the number.

�e BCODE is speci�c for that particular boot mode. For -bcode # valid values, see the booting chapter of the
ADSP-BF70x Black�n+ Processor Hardware Reference.

5. Click OK to close the dialog box.

6. Click Apply.

If you do not specify -bcode #, the loader reports Error ld0274. For example, if -bcode # is not present when
building a loader stream for SPI boot:

[Error ld0274]: Missing boot code header value for target ADSP-BF707 block headers.

 The -bcode # switch is required for specifying the boot code value for

 the SPI boot modes. Consult the SPIMCODE table.

Secure Boot and Encrypted Images
�e ADSP-BF70x processors provide security features for secure booting and encryption. Creating signed and
optionally encrypted images is a multistage process using the Black�n loader and signing utility
(signtool.exe). �e Black�n loader builds the boot image in binary format, while the signtool protects that
boot image.

1. LDR �le creation:

Build an .ldr �le in CrossCore Embedded Studio or via the command-line.

i
Note:

For secure booting, the .ldr �le must be built in binary format (-f binary). �e signtool utility treats
it as raw binary data with no interpretation. If the .ldr �le is not built in binary format, the resulting
secure-boot image is not be usable.

2. Secure-boot image creation:

To sign/encrypt the boot image, use the signtool utility, either as a post-build step in the .ldr �le build in the
IDE or via the command-line. Refer to the signtool documentation in the Utilities appendix.

Using signtool to build a signed and optionally encrypted images in CCES:

Loader/Splitter for ADSP-BF70x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

93

�e CCES IDE invokes the signtool utility a�er the main build, in a user-speci�ed post-build step. �e post-
build step is helpful for the repetitive steps of creating a binary .ldr �le and signing and optionally encrypting it:

To specify the post-build step:

i
Note:

�e post-build step is executed only if the main build has executed successfully.

1. It is assumed that the project's Build Artifact type is a Loader File

2. Select the project in a navigation view:

a. From the context menu, choose Properties > C++ Build > Settings. �e Settings dialog box appears.

b. Click Build Steps. �e Build Steps dialog box appears.

3. In Post-build steps, type the signtool command for signing and optional encrypting:

 signtool genkeypair –algo ecdsa224 –outfile keypair.der

i
Note:

�e signtool sign step requires the keypair �le as input in addition to the .ldr stream. Typically the
keypair �le is created in a one-time up-front setup operation.

4. Click OK

CRC32 Protection
ADSP-BF70x CRC32 protection is implemented in hardware. �e boot kernel provides mechanisms to allow
each block to be veri�ed using a 32-bit CRC.

When building a LDR �le for CRC32 protection, use the -CRC32 <PolynomialCoefficient> switch.

-CRC32 (PolynomialCoe�cient)

�e -CRC32switch directs the loader to generate CRC32 checksums. It uses the polynomial coe�cient if
speci�ed, otherwise uses the default coe�cient (0xD8018001).

Block Sizes
�e loader creates blocks with payload and �ll blocks using default maximum size and alignment that meets the
requirements of the target hardware. Switches are available to override the defaults.

Loader/Splitter for ADSP-BF70x Black�n Processors

94 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Table 24. ADSP-BF70x Processor Block Sizes

Switch Description Default Requirements

-MaxBlockSize # Specify the maximum
block byte count

Loader uses maximum
block size 0x7FFFFFF0 as
default

�e maximum block size
is limited to 0xFFFFFFFC
bytes and must be a
multiple of 4.

-MaxFillBlockSize # Specify the maximum �ll
block byte count

Loader uses maximum �ll
block size 0x7FFFFFF0 as
default

�e maximum �ll block
size is limited to
0xFFFFFFFC bytes and
must be a multiple of 4.

ADSP-BF70x Processor Loader Guide
�e loader utility post processes executable (.dxe) �les and generates loader (.ldr) �les. A loader �le can be
formatted as binary, ASCII or Intel hex style. An .ldr �le contains the boot stream in a format expected by the
on-chip boot kernel.

Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE (the
CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

�ese sections describe how to produce a bootable or non-bootable loader �le:

• CCES Loader and Splitter Interface for ADSP-BF70x Processors

• ROM Splitter Capabilities for ADSP-BF70x Processors

• ADSP-BF70x Loader Collateral

CCES Loader and Splitter Interface for ADSP-BF70x Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters. Refer to the online help for more information.

Loader/Splitter for ADSP-BF70x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

95

ROM Splitter Capabilities for ADSP-BF70x Processors

i
Note:

�e readall feature is available for the automatic merging of �xed-position ROM data with code blocks
within the bootable loader stream and typically supersedes the use of the legacy romsplitter feature
described below.

When the loader utility is invoked with the splitter capabilities, it does not format the application data when
transforming a .dxe �le to an .ldr �le. �e splitter emits raw data only. Whether data and/or instruction
sections are processed by the loader or by the splitter depends upon the LDF's TYPE() command. Sections
declared with TYPE(RAM) are consumed by the loader, and sections declared by TYPE(ROM) are consumed by the
splitter.

�e contents of the ROM memory segments are extracted from the .dxe. �e contents of the ROM segments get
written to the .ldr �le in raw format, each segment preceded by header words. �e header consists of the
following four 32-bit words written in unpre�xed hex format:

Address Start address of ROM memory segment (as de�ned in LDF)

Length # of bytes extracted from the DXE for this segment

Control Word 32 bit control word

00

xx address multiply

xx logical width

xx physical width

Reserved word All zeros

Example - ASCII Formatted Splitter .ldr File

�is is an example of the header preceding the raw content extracted from the .dxe for segment MEM1.

Assume 256 bytes were written to the .ldr �le and MEM1 was de�ned in the LDF as:

 MEM1 { TYPE(ROM) WIDTH(8) START(0xB0000000) END(0xB3FFFFFF) }

The -romsplitter .ldr output will be:

B0000000

00000100

00010101

Loader/Splitter for ADSP-BF70x Black�n Processors

96 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

00000000

00 <- content starts here

01

02

03

...

ADSP-BF70x Loader Collateral
�e CrossCore Embedded Studio installation contains additional �les and projects to assist with development
and debugging of ADSP-BF70x applications which rely on booting functionality.

ROM Code

�e sources for ROM code are not available in the CrossCore Embedded Studio to protect the ADSP-BF70x
secure booting and encryption details.

Init Code

�e sources and prebuilt executables for the init codes for the ADSP-BF707 EZ-KIT Lite are available in
Blackfin/ldr/init_code of the CrossCore Embedded Studio installation.

�e list of boot kernel symbols can be found in the booting chapter of the ADSP-BF70x Black�n+ Processor
Hardware Reference. Instructions for loading symbols can be found in the online help (search for "debugging the
boot process").

Con�guration information can be found in the init_platform.h �le located in the corresponding part/silicon
revision project. For example, for a ADSP-BF707 processor, -si-revision 0.0, see Blackfin/ldr/
init_code/BF707_init/BF707_init_v00/src/include/init_platform.h.

You can include an init code dxe into the .ldr �le built for your application . To do so, use the Initialization
�le option in the IDE or the -init filename switch on the command line. Multiple -init switches are
supported.

ROM Programming

i
Note:

�e ADSP-BF707 sample init code example is provided for non-secure booting. Init code or any form of
callback is not supported in secure boot because the code is inherently insecure.

ROM API headers for Black�n processors, including the ADSP-BF707 processors, are available in the CrossCore
Embedded Studio installation. Build macros automatically con�gure bfrom.h (Blackfin/include/bfrom.h)
for your build target processor.

�e boot programming model is documented in the ADSP-BF70x Black�n+ Processor Hardware Reference.

Loader/Splitter for ADSP-BF70x Black�n Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

97

7
Loader for ADSP-21160 SHARC Processors

�is chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) �les into
boot-loadable �les for the ADSP-21160 SHARC processors.

Refer to the Introduction chapter for the loader utility overview; the introductory material applies to all
processor families. Refer to Loader for ADSP-21161 SHARC Processors chapter for information about the
ADSP-21161 processors. Refer to Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors chapter for
information about the ADSP-2126x and ADSP-2136x processors.

Loader operations speci�c to the SHARC processors are detailed in the following sections.

• ADSP-21160 Processor Booting

Provides general information about various booting modes, including information about boot kernels.

• ADSP-21160 Processor Loader Guide

Provides reference information about the loader utility's graphical user interface, command-line syntax, and
switches.

ADSP-21160 Processor Booting
�e processors support three boot modes: EPROM, host, link port, and no-boot (see the ADSP-21160 Boot
Mode Pins and ADSP-21160 Boot Modes tables in Boot Mode Selection). Boot-loadable �les for these modes
pack boot data into 48-bit instructions and use an appropriate DMA channel of the processor's DMA controller
to boot-load the instructions.

i
Note:

�e ADSP-21160 processors use DMAC8 for link port booting and DMAC10 for the host and EPROM
booting.

• When booting from an EPROM through the external port, the processor reads boot data from an 8-bit
external EPROM.

• When booting from a host processor through the external port, the processor accepts boot data from a 8- or
16-bit host microprocessor.

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

99

• When booting through the link port, the processor receives boot data as 4-bit wide data in link bu�er 4.

• In no-boot mode, the processor begins executing instructions from external memory.

So�ware developers who use the loader utility should be familiar with the following operations.

• Power-Up Booting Process

• Boot Mode Selection

• ADSP-21160 Boot Modes

• ADSP-21160 Boot Kernels

• ADSP-21160 Interrupt Vector Table

• ADSP-21160 Multi-Application (Multi-DXE) Management

• ADSP-21160 Processor ID Numbers

Power-Up Booting Process
�e ADSP-21160 processors include a hardware feature that boot-loads a small, 256-instruction program into
the processor's internal memory a�er power-up or a�er the chip reset. �ese instructions come from a program
called boot kernel. When executed, the boot kernel facilitates booting of user application code. �e combination
of the boot kernel and application code comprise the boot-loadable (.ldr) �le.

At power-up, a�er the chip reset, the booting process includes the following steps.

1. Based on the boot type, an appropriate DMA channel is automatically con�gured for a 256-instruction (48-
bit) transfer. �is transfer boot-loads the boot kernel program into the processor memory. DMA channels
used by various processor models are shown in the Processor DMA Channels table.

Table 25. Processor DMA Channels

Processor PROM Booting Host Booting Link Booting

ADSP-21160 DMAC104 DMAC10 DMAC8

2. �e boot kernel runs and loads the application executable code and data.

3. �e boot kernel overwrites itself with the �rst 256 words of the application at the end of the booting process.
A�er that, the application executable code begins to execute from location 0x40000 (ADSP-21160). �e start
addresses and reset vector addresses are summarized in the Processor Start Addresses table.

4 See the DMA Settings for ADSP-21160 EPROM Booting table in EPROM Boot Mode.

Loader for ADSP-21160 SHARC Processors

100 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Table 26. Processor Start Addresses

Processor Start Address Reset Vector Address5

ADSP-21160 0x40000 0x40004

�e boot type selection directs the system to prepare the appropriate boot kernel.

Boot Mode Selection
�e state of various pins selects the processor boot mode. See the ADSP-21160 Boot Mode Pins and
ADSP-21160 Boot Modes tables.

Table 27. ADSP-21160 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot. When EBOOT is high, the processor boot-loads
from an 8-bit EPROM through the processor's external port.
When EBOOT is low, the LBOOT and BMS pins determine the
booting mode.

LBOOT I Link port boot. When LBOOT is high and EBOOT is low, the
processor boots from another SHARC through the link port.
When LBOOT is low and EBOOT is low, the processor boots from a
host processor through the processor's external port.

BMS I/O/T6 Boot memory select. When boot-loading from an EPROM
(EBOOT=1 and LBOOT=0), this pin is an output and serves as the
chip select for the EPROM. In a multiprocessor system, BMS is
output by the bus master. When host-booting or link-booting
(EBOOT=0), BMS is an input and must be high.

5 �e reset vector address must not contain a valid instruction since it is not executed during the booting
sequence. Place a NOP or IDLE instruction at this location.

6 �ree-statable in EPROM boot mode (when BMS is an output).

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

101

Table 28. ADSP-21160 Boot Modes

EBOOT LBOOT BMS Boot Mode

0 0 0 (Input) No-boot (processor executes from external
memory)

0 0 1 (Input) Host processor

0 1 0 (Input) Reserved

0 1 1 (Input) Link port

1 0 Output EPROM (BMS is chip select)

1 1 x (Input) Reserved

ADSP-21160 Boot Modes
�e processors support these boot modes: EPROM, host, and link. �e following sections describe each of the
modes.

• EPROM Boot Mode

• Host Boot Mode

• Link Port Boot Mode

• No-Boot Mode

For multiprocessor booting, refer to ADSP-21160 Multi-Application (Multi-DXE) Management.

EPROM Boot Mode
�e processor is con�gured for EPROM boot through the external port when the EBOOT pin is high and the
LBOOT pin is low. �ese settings cause the BMS pin to become an output, serving as chip select for the EPROM.
�e PROM Connections to Processors table lists all PROM-to-processor connections.

Table 29. PROM Connections to Processors

Processor Connection

ADSP-21160 PROM/EPROM connects to DATA39-32 pins

ADSP-21xxx Address pins of PROM connect to lowest address pins of any processor

Loader for ADSP-21160 SHARC Processors

102 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Processor Connection

ADSP-21xxx Chip select connects to the BMS pin

ADSP-21160 Output enable connects to RDH pin

During reset, the ACK line is pulled high internally with a 2K ohm equivalent resistor and is held high with an
internal keeper latch. It is not necessary to use an external pull-up resistor on the ACK line during booting or at
any other time.

�e DMA channel parameter registers are initialized at reset for EPROM booting as shown in the DMA Settings
for ADSP-21160 EPROM Booting table. �e count is initialized to 0x0100 to transfer 256 words to internal
memory. �e external count register (ECx), which is used when external addresses (BMS space) are generated by
the DMA controller, is initialized to 0x0600 (0x100 words at six bytes per word).

Table 30. DMA Settings for ADSP-21160 EPROM Booting

DMA Setting ADSP-21160 Processor

BMS space 8M x 8-bit

DMA channel DMAC10 = 0x4A1

II10 0x40000

IM10 0x1 (implied)

C10 0x100

EI10 0x800000

EM10 0x1 (implied)

EC10 0x600

IRQ vector 0x40050

A�er the processor's RESET pin goes inactive on start-up, a SHARC system con�gured for EPROM boot
undergoes the following boot-loading sequence:

1. �e processor BMS pin becomes the boot EPROM chip select.

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

103

2. �e processor goes into an idle state, identical to that caused by the IDLE instruction. �e program counter
(PC) is set to the processor reset vector address (refer to the Processor Start Addresses table in Power-Up
Booting Process).

3. �e DMA controller reads 8-bit EPROM words, packs them into 48-bit instruction words, and transfers them
into internal memory (low-to-high byte packing order) until the 256 words are loaded.

4. �e DMA parameter registers for appropriate DMA channels are initialized, as shown in the DMA Settings
for ADSP-21160 EPROM Booting table. �e external port DMA channel (6 or 10) becomes active following
reset; it is initialized to set external port DMA enable and selects DTYPE for instruction words. �e packing
mode bits (PMODE) are ignored, and 48- to 8-bit packing is forced with least signi�cant word �rst. �e UBWS
and UBWM �elds of the WAIT register are initialized to generate six wait states for the EPROM access in
unbanked external memory space.

5. �e processor begins 8-bit DMA transfers from the EPROM to internal memory using the D39-32 external
port data bus lines.

6. Data transfers begin and increment a�er each access. �e external address lines (ADDR31-0) start at 0x80
0000.

7. �e processor RD pin asserts as in a normal memory access, with six wait states (seven cycles).

8. A�er �nishing DMA transfers to load the boot kernel into the processor, theBSO bit is cleared in the SYSCON
register, deactivating the BMS pin and activating normal external memory select.

�e boot kernel uses three copies of SYSCON-one that contains the original value of SYSCON, a second that
contains SYSCON with the BSO bit set (allowing the processor to gain access to the boot EPROM), and a third
with the BSO bit cleared.

When BSO=1, the EPROM packing mode bits in the DMACx control register are ignored and 8- to 48-bit
packing is forced. (8-bit packing is available only during EPROM booting or when BSO is set.) When an
external port DMA channel is being used in conjunction with the BSO bit, none of the other three channels
may be used. In this mode, BMS is not asserted by a core processor access but only by a DMA transfer. �is
allows the boot kernel to perform other external accesses to non-boot memory.

�e EPROM is automatically selected by the BMS pin a�er reset, and other memory select pins are disabled. �e
processor's DMA controller reads the 8-bit EPROM words, packs them into 48-bit instruction words, and
transfers them to internal memory until 256 words have been loaded. �e master DMA internal and external
count registers (Cx and ECx) decrement a�er each EPROM transfer. When both counters reach zero, DMA
transfer has stopped and RTI returns the program counter to the address where the kernel starts.

i
Note:

To EPROM boot a single-processor system, include the executable on the command-line without a switch.
Do not use the -id#exe switch with ID=0 (see ADSP-21160 Processor ID Numbers).

�e WAIT register UBWM (used for EPROM booting) is initialized at reset to both internal wait and external
acknowledge required. �e internal keeper latch on the ACK pin initially holds acknowledge high (asserted). If
acknowledge is driven low by another device during an EPROM boot, the keeper latch may latch acknowledge
low.

Loader for ADSP-21160 SHARC Processors

104 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e processor views the deasserted (low) acknowledge as a hold o� from the EPROM. In this condition, wait
states are continually inserted, preventing completion of the EPROM boot. When writing a custom boot kernel,
change the WAIT register early within the boot kernel so UBWM is set to internal wait mode (01).

Host Boot Mode
�e ADSP-21160 processors accept data from a 8- and 16-bit host microprocessor (or other external device)
through the external port EPB0 and pack boot data into 48-bit instructions using an appropriate DMA channel.
�e host is selected when the EBOOT and LBOOT inputs are low and BMS is high. Con�gured for host booting, the
processor enters the slave mode a�er reset and waits for the host to download the boot program. �e Host
Connections to ADSP-21160 Processors table lists host connections to processors.

Table 31. Host Connections to ADSP-21160 Processors

Processor Connection/Data Bus Pins

ADSP-21160 Host connected toDATA63-32 or DATA47-31 pins (based on HPM bits)

ADSP-21160 ADSP-21160 host address to IOP registers and internal memory

A�er reset, the processor goes into an idle stage with PC set to address 0x40004.

�e parameter registers for the external port DMA channel (0, 6, or 10) are initialized as shown in the DMA
Settings for ADSP-21160 EPROM Booting table (in EPROM Boot Mode), except that registers EIx, EMx and ECx
are not initialized and no DMA transfers start.

�e DMA channel control register (DMAC10) for the ADSP-21160 processor is initialized, which allows external
port DMA enable and selects DTYPE for instruction words, PMODE for 16- to 48-bit word packing, and least
signi�cant word �rst.

Because the host processor is accessing the EPB0 external port bu�er, the HPM host packing mode bits of the
SYSCON register must correspond to the external bus width speci�ed by the PMODE bits of DMACx control register.

For a di�erent packing mode, the host must write to DMACx and SYSCON to change the PMODE and HBW setting.
�e host boot �le created by the loader utility requires the host processor to perform the following sequence of
actions:

1. �e host initiates the synchronous booting operation by asserting the processor HBR input pin, informing the
processor that the default 8-/16-bit bus width is used. �e host may optionally assert the CS chip select input
to allow asynchronous transfers.

2. A�er the host receives the HBG signal (and ACK for synchronous operation or READY for asynchronous
operation) from the processor, the host can start downloading instructions by writing directly to the external
port DMA bu�er 0 or the host can change the reset initialization conditions of the processor by writing to any
of the IOP control registers. �e host must use data bus pins as shown in the Host Connections to
ADSP-21160 Processors table.

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

105

3. �e host continues to write 16-bit words to EPB0 until the entire program is boot-loaded. �e host must wait
between each host write to external port DMA bu�er 0.

A�er the host boot-loads the �rst 256 instructions of the boot kernel, the initial DMA transfers stop, and the
boot kernel:

1. Activates external port DMA channel interrupt (EP0I), stores the DMACx control setting in R2 for later
restore, clears DMACx for new setting, and sets the BUSLCK bit in the MODE2 register to lock out the host.

2. Stores the SYSCON register value in R12 for restore.

3. Enables interrupts and nesting for DMA transfer, sets up the IMASK register to allow DMA interrupts, and sets
up the MODE1 register to enable interrupts and allow nesting.

4. Loads the DMA control register with 0x00A1 and sets up its parameters to read the data word by word from
external bu�er 0. Each word is read into the reset vector address (refer to the Processor Start Addresses table
in Power-Up Booting Process) for dispatching. �e data through this bu�er has a structure of boot section
which could include more than one initialization block.

5. Clears the BUSLCK bit in the MODE2 register to let the host write in the external bu�er 0 right a�er the
appropriate DMA channel is activated.

For information on the data structure of the boot section and initialization, see Boot Kernels.

6. Loads the �rst 256 words of target the executable �le during the �nal initialization stage, and then the kernel
overwrites itself.

�e �nal initialization works the same way as with EPROM booting, except that the BUSLCK bit in the MODE2
register is cleared to allow the host to write to the external port bu�er.

�e default boot kernel for host booting assumes IMDW is set to 0 during boot-loading, except during the �nal
initialization stage. When using any power-up booting mode, the reset vector address (refer to the Processor
Start Addresses table in Power-Up Booting Process) must not contain a valid instruction because it is not
executed during the booting sequence. Place a NOP or IDLE instruction at this location.

If the boot kernel initializes external memory, create a custom boot kernel that sets appropriate values in the
SYSCON and WAIT register. Be aware that the value in the DMA channel register is non-zero, and IMASK is set to
allow DMA channel register interrupts. Because the DMA interrupt remains enabled in IMASK, this interrupt
must be cleared before using the DMA channel again. Otherwise, unintended interrupts may occur.

A master SHARC processor may boot a slave SHARC processor by writing to its DMACx control register and
setting the packing mode (PMODE) to 00. �is allows instructions to be downloaded directly without packing. �e
wait state setting of 6 on the slave processor does not a�ect the speed of the download since wait states a�ect bus
master operation only.

Link Port Boot Mode
When link-boot the SHARC processors, the processor receives data from 4-bit link bu�er 4 and packs boot data
into 48-bit instructions using the appropriate DMA channels (DMA channel 8).

Link port mode is selected when the EBOOT is low and LBOOT and BMS are high. �e external device must provide
a clock signal to the link port assigned to link bu�er 4. �e clock can be any frequency, up to a maximum of the
processor clock frequency. �e clock falling edges strobe the data into the link port. �e most signi�cant 4-bit

Loader for ADSP-21160 SHARC Processors

106 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

nibble of the 48-bit instruction must be downloaded �rst. �e link port acknowledge signal generated by the
processor can be ignored during booting since the link port cannot be preempted by another DMA channel.

Link booting is similar to host booting-the parameter registers (IIx and Cx) for DMA channels are initialized to
the same values. �e DMA channel 6 control register (DMAC6) is initialized to 0x00A0, and the DMA channel 10
control register (DMAC10) is initialized to 0x100000. �is disables external port DMA and selects DTYPE for
instruction words. �e LCTL and LCOM link port control registers are overridden during link booting to allow
link bu�er 4 to receive 48-bit data.

A�er booting completes, the IMASK remains set, allowing DMA channel interrupts. �is interrupt must be
cleared before link bu�er 4 is again enabled; otherwise, unintended link interrupts may occur.

No-Boot Mode
No-boot mode causes the processor to start fetching and executing instructions at address 0x800004 in external
memory space for ADSP-21160 processors. All DMA control and parameter registers are set to their default
initialization values. �e loader utility is not intended to support no-boot mode.

ADSP-21160 Boot Kernels
�e boot-loading process starts with a transfer of the boot kernel program into the processor memory. �e boot
kernel sets up the processor and loads boot data. A�er the boot kernel �nishes initializing the rest of the system,
the boot kernel loads boot data over itself with a �nal DMA transfer.

Boot kernels are loaded at reset into program segment seg_ldr, which is de�ned in 160_ldr.ldf. �e �les are
stored in the SHARC/ldr directory of CCES. �e �les shipped are listed in the Default Boot Kernel Files table.

Table 32. Default Boot Kernel Files

Processor PROM Booting Link Booting Host Booting

ADSP-21160 160_prom.asm 160_link.asm 160_host.asm

Once the boot kernel has been loaded successfully into the processor, the kernel follows the following sequence:

1. Each boot kernel begins with general initializations for the DAG registers, appropriate interrupts, processor ID
information, and various SDRAM orWAIT state initializations.

2. Once the boot kernel has �nished the task of initializing the processor, the kernel initializes processor
memory, both internal and external, with user application code.

Processor Boot Steams
�e structure of a loader �le enables the boot kernel to load code and data, block by block. In the loader �le,
each block of code or data is preceded by a block header, which describes the block -length, placement, and data
or instruction type. A�er the block header, the loader utility outputs the block body, which includes the actual
data or instructions for placement in the processor memory. �e loader utility, however, does not output a block

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

107

body if the actual data or instructions are all zeros in value. �is type of block called a zero block. �e Boot
Block Format table describes the block header and body formats.

Table 33. Boot Block Format

Block header First word Bits 16-47 are not used Bits 0-15
de�ne the type of data block (tag)

Second word Bits 16-47 are the start address of
the block Bits 0-15 are the word
count for the block

Block body (if not a zero block) Word 1 (48 bits) Word 2 (48 bits)

�e loader utility identi�es the data type in the block header with a 16-bit tag that precedes the block. Each type
of initialization has a unique tag number. �e tag numbers and block types are shown in the ADSP-21160
Processor Loader Block Tags table.

Table 34. ADSP-21160 Processor Loader Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000A zero pm48

0x0001 zero dm16 0x000B init pm16

0x0002 zero dm32 0x000C init pm32

0x0003 zero dm40 0x000E init pm48

0x0004 init dm16 0x000F zero dm64

0x0005 init dm32 0x0010 init dm64

0x0007 zero pm16 0x0011 zero pm64

0x0008 zero pm32 0x0012 init pm64

0x0009 zero pm40

Loader for ADSP-21160 SHARC Processors

108 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e kernel enables the boot port (external or link) to read the block header. A�er reading information from the
block header, the kernel places the body of the block in the appropriate place in memory if the block has a block
body, or initializes in the appropriate place with zero values in the memory if the block is a zero block.

�e �nal section, which is identi�ed by a tag of 0x0, is called the �nal initialization section. �is section has self-
modifying code that, when executed, facilitates a DMA over the kernel, replacing it with user application code
that actually belongs in that space at run time. �e �nal initialization code also takes care of interrupts and
returns the processor registers, such as SYSCON and DMAC orLCTL, to their default values.

When the loader utility detects the �nal initialization tag, it reads the next 48-bit word. �is word indicates the
instruction to load into the 48-bit Px register a�er the boot kernel �nishes initializing memory.

�e boot kernel requires that the interrupt, external port (or link port address, depending on the boot mode)
contains an RTI instruction. �is RTI is inserted automatically by the loader utility to guarantee that the kernel
executes from the reset vector, once the DMA that overwrites the kernel is complete. A last remnant of the kernel
code is le� at the reset vector location to replace the RTI with the user's intended code. Because of this last kernel
remnant, user application code should not use the �rst location of the reset vector. �is �rst location should be a
NOP or IDLE instruction. �e kernel automatically completes, and the program controller begins sequencing the
user application code at the second location in the processor reset vector space.

When the boot process is complete, the processor automatically executes the user application code. �e only
remaining evidence of the boot kernel is at the �rst location of the interrupt vector. Almost no memory is
sacri�ced to the boot code.

Boot Kernel Modificatio and Loader Issues
Some systems require boot kernel customization. �e operation of other tools (such as the C/C++ compiler) is
in�uenced by whether the boot kernel is used.

When producing a boot-loadable �le, the loader utility reads a processor executable �le and uses information in
it to initialize the memory. However, the loader utility cannot determine how the processor SYSCON and WAIT
registers are to be con�gured for external memory loading in the system.

If you modify the boot kernel by inserting values for your system, you must rebuild it before generating the
boot-loadable �le. �e boot kernel contains default values for SYSCON. �e initialization code can be found in the
comments in the boot kernel source �le.

A�er modifying the boot kernel source �le, rebuild the boot kernel (.dxe) �le. Do this from the IDE (refer to
online help for details), or rebuild the boot kernel �le from the command line.

i
Note:

Specify the name of the modi�ed kernel executable in the Kernel �le (-l) �eld on the CrossCore SHARC
Loader > General page of the Tool Settings dialog box.

If you modify the boot kernel for EPROM, host, or link boot modes, ensure that the seg_ldr memory segment
is de�ned in the .ldf �le. Refer to the source of the segment in the .ldf �le located in the <install_path>/
SHARC/ldr directory.

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

109

�e loader utility generates a warning when vector address 0x40004 does not contain NOP or IDLE. Because the
boot kernel uses this address for the �rst location of the reset vector during the boot-load process, avoid placing
code at this address. When using any of the processor's power-up boot modes, ensure that the address does not
contain a critical instruction. Because the address is not executed during the booting sequence, place a NOP or
IDLE instruction at this location.

�e boot kernel project can be rebuilt from the IDE. �e command-line can also be used to rebuild various
default boot kernels for the processors.

EPROM Booting. �e default boot kernel source �le for the ADSP-21161 EPROM booting is 161_prom.asm.
Copy this �le to my_prom.asm and modify it to suit your system. �en use the following commands to rebuild
the boot kernel:

 easm21k -21161 my_prom.asm

or

 easm21k -proc ADSP-21161 my_prom.asm

 linker -T 161_ldr.ldf my_prom.doj

Host Booting. �e default boot kernel source �le for the ADSP-21161 host booting is 161_host.asm. Copy this
�le to my_host.asm and modify it to suit your system. �en use the following commands to rebuild the boot
kernel:

 easm21k -21161 my_host.asm

or

 easm21k -proc ADSP-21161 my_host.asm

 linker -T 161_ldr.ldf my_host.doj

Link Port Booting. �e default boot kernel source �le for the ADSP-21160 link port booting is 161_link.asm.
Copy this �le to my_link.asm and modify it to suit your system. �en use the following commands to rebuild
the boot kernel:

 easm21k -21161 my_link.asm

or

 easm21k -proc ADSP-21161 my_link.asm

 linker -T 161_ldr.ldf my_link.doj

Rebuilding Boot Kernels

To rebuild the PROM boot kernel for the ADSP-21160 processors, use these commands:

 easm21k -21160 my_prom.asm

or

 easm21k -proc ADSP-21160 my_prom.asm

 linker -T 160_ldr.ldf my_prom.doj

Loader for ADSP-21160 SHARC Processors

110 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

ADSP-21160 Interrupt Vector Table
If an SHARC processor is booted from an external source (EPROM, host, or another SHARC processor), the
interrupt vector table is located in internal memory. If, however, the processor is not booted and executes from
external memory, the vector table must be located in external memory.

�e IIVT bit of the SYSCON control register can be used to override the boot mode in determining where the
interrupt vector table is located. If the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT to 0 selects an external vector table. If the processor is booted from an
external source (any mode other than no-boot mode), IIVT has no e�ect. �e IIVT default initialization value is
0.

Refer to EE-189: Link Port Tips and Tricks for ADSP-2116x on the Analog Devices Web site for more
information.

ADSP-21160 Multi-Application (Multi-DXE) Management
Currently, the loader utility generates single-processor loader �les for host and link port boot modes. As a result,
the loader utility supports multiprocessor EPROM boot mode only. �e application code must be modi�ed for a
multiprocessor system boot in host and link port modes.

�e loader utility can produce boot-loadable �les that permit the SHARC processors in a multiprocessor system
to boot from a single EPROM. In such a system, the BMS signals from each SHARC processor are OR'ed together
to drive the chip select pin of the EPROM. Each processor boots in turn, according to its priority. When the last
processor �nishes booting, it must inform the processors to begin program execution.

Besides taking turns when booting, EPROM boot of multiple processors is similar to a single-processor EPROM
boot.

When booting a multiprocessor system through a single EPROM:

• Connect all BMS pins to EPROM.

• Processor with ID# of 1 boots �rst. �e other processors follow.

• �e EPROM boot kernel accepts multiple .dxe �les and reads the ID �eld inSYSTAT to determine which area
of EPROM to read.

• All processors require a so�ware �ag or hardware signal (FLAG pins) to indicate that booting is complete.

When booting a multiprocessor system through an external port:

• �e host can use the host interface.

• A SHARC processor that is EPROM-, host-, or link-booted can boot the other processors through the external
port (host boot mode).

For multiprocessor EPROM booting, select the CrossCore SHARC Loader > Multiprocessor page of the Tool
Settings dialog box or specify the -id1exe= switch on the loader command line. �ese options specify the
executable �le targeted for a speci�c processor.

Do not use the -id1exe= switch to EPROM-boot a single processor whose ID is 0. Instead, name the executable
�le on the command line without a switch. For a single processor with ID=1, use the -id1exe= switch.

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

111

ADSP-21160 Processor ID Numbers
A single-processor system requires only one input (.dxe) �le without any pre�x and su�x to the input �le name,
for example:

 elfloader -proc ADSP-21160 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each input �le on the command line. A
processor ID is provided via the -id#exe=filename.dxe switch, where # is 0 to 6.

In the following example, the loader utility processes the input �le Input1.dxe for the processor with an ID of 1
and the input �le Input2.dxe for the processor with an ID of 2.

 elfloader -proc ADSP-21160 -bprom -id1exe=Input1.dxe -id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N processor, the output loader �le
contains only one copy of the code from the input �le.

 elfloader -proc ADSP-21160 -bprom -id1exe=Input.dxe -id2ref=1

�e loader utility points the id(2)exe loader jump table entry to the id(1)exe image, e�ectively reducing the
size of the loader �le.

Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE
(CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

For detailed information about the processor loader properties page, refer to the online help.

�ese sections describe how to produce a bootable loader (.ldr) �le:

• Loader Command Line for ADSP-21160 Processors

• CCES Loader Interface for ADSP-21160 Processors

Loader Command Line for Processors
�e loader utility uses the following command-line syntax for the ADSP-21160 SHARC processors.

 elfloader inputfile -proc part_number -switch [-switch]

where:

• inputfile - Name of the executable (.dxe) �le to be processed into a single boot-loadable �le. An input �le
name can include the drive and directory. Enclose long �le names within straight quotes, "long file name".

• -proc part_number - Part number of the processor (for example, -proc ADSP-21160) for which the loadable
�le is built. �e -proc switch is mandatory.

Loader for ADSP-21160 SHARC Processors

112 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

• -switch - One or more optional switches to process. Switches select operations and boot modes for the loader
utility. A list of all switches and their descriptions appear in Loader Command-Line Switches for ADSP-21160
Processors.

i
Note:

Command-line switches are not case-sensitive and placed on the command line in any order.

�e following command line,

 elfloader p0.dxe -bprom -fhex -l 160_prom.dxe -proc ADSP-21160

runs the loader utility with:

• p0.dxe - Identi�es the executable �le to process into a boot-loadable �le. �e absence of the -o switch causes
the output �le name to default to p0.ldr.

• -bprom - Speci�es EPROM booting as the boot type for the boot-loadable �le.

• -fhex - Speci�es Intel hex-32 format for the boot-loadable �le.

• -l 160_prom.exe - Speci�es 160_prom.exe as the boot kernel �le to be used in the boot-loadable �le.

• -proc ADSP-21160 - Identi�es the processor model as ADSP-21160.

Loader Command-Line Switches for Processors
�e Loader Command-Line Switches table is a summary of the loader switches for the ADSP-21160 processors.

Table 35. Loader Command-Line Switches

Switch Description

-bprom

-bhost

-blink

-bJTAG

Speci�es the boot mode. �e -b switch directs the loader utility to
prepare a boot-loadable �le for the speci�ed boot mode. Valid
boot modes include PROM, host, and link.

If -b does not appear on the command line, the default is -bprom.
To use a custom boot kernel, the boot type selected with the -b
switch must correspond to the boot kernel selected with the -l
switch. Otherwise, the loader utility automatically selects a default
boot kernel based on the selected boot type (see ADSP-21160
Boot Kernels).

-e filename Except shared memory. �e -e switch omits the speci�ed shared
memory (.sm) �le from the output loader �le. Use this option to
omit the shared parts of the executable �le intended to boot a
multiprocessor system.

To omit multiple.sm �les, repeat the switch and parameter
multiple times on the command line. For example, to omit two
�les, use: -e fileA.sm -e fileB.sm.

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

113

Switch Description

In most cases, it is not necessary to use the -e switch: the loader
utility processes the .sm �les e�ciently-includes a single copy of
the code and data from each .sm �le in a loader �le.

-fhex

-fASCII

-fbinary

-finclude

-fS1

-fS2

-fS3

Speci�es the format of the boot-loadable �le (Intel hex-32, ASCII,
S1, S2, S3, binary, or include). If the -f switch does not appear on
the command line, the default boot �le format is Intel hex-32 for
PROM, and ASCII for host or link.

Available formats depend on the boot type selection (-b switch):

• For PROM boot type, select a hex, ASCII, S1, S2, S3, or include
format.

• For host or link boot type, select an ASCII, binary, or include
format.

-h

or

-help

Command-line help. Outputs a list of the command-line switches
to standard out and exits. Type elfloader -proc ADSP-21xxx
-h, where xxx is 160 to obtain help for SHARC processors. By
default, the -h switch alone provides help for the loader driver.

-id#exe=filename Speci�es the processor ID. �e -id#exe= switch directs the loader
utility to use the processor ID (#) for the corresponding
executable �le (filename parameter) when producing a boot-
loadable �le for a multiprocessor system. �is switch is used to
produce a boot-loadable �le that boots multiple processors from a
single EPROM. Valid values for # are 1, 2, 3, 4, 5, and 6.

Do not use this switch for single-processor systems. For single-
processor systems, use filename as a parameter without a switch.
For more information, refer to ADSP-21160 Processor ID
Numbers.

-id#ref=N Points the processor ID (#) loader jump table entry to the ID (N)
image. If the executable �le for the (#) processor is identical to the
executable of the (N) processor, the switch can be used to set the
PROM start address of the processor with ID of # to be the same
as for the processor with ID of N. �is e�ectively reduces the size
of the loader �le by providing a single copy of an executable to
two or more processors in a multiprocessor system. For more
information, refer to ADSP-21160 Processor ID Numbers.

Loader for ADSP-21160 SHARC Processors

114 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-l kernelfile Directs the loader utility to use the speci�ed kernelfile as the
boot-loading routine in the output boot-loadable �le. �e boot
kernel selected with this switch must correspond to the boot type
selected with the -b switch.

If the -l switch does not appear on the command line, the loader
searches for a default boot kernel �le. Based on the boot type (-b
switch), the loader utility searches in the processor-speci�c loader
directory for the boot kernel �le as described in ADSP-21160
Boot Kernels.

-o filename Directs the loader utility to use the speci�ed filename as the
name for the loader output �le. If not speci�ed, the default name
is inputfile.ldr.

-p address PROM start address. Places the boot-loadable �le at the speci�ed
address in the EPROM.

If the -p switch does not appear on the command line, the loader
utility starts the EPROM �le at address 0x0; this EPROM address
corresponds to 0x800000 on ADSP-21160 processors.

-proc processor Speci�es the processor. �is a mandatory switch.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for
the processor hardware. If -si-revision is not used, the target is
a default revision from the supported revisions.

-t # (Host boot only) Speci�es timeout cycles; for example, -t100.
Limits the number of cycles that the processor spends initializing
external memory with zeros. Valid timeout values (#) range from
3 to 32765 cycles; 32765 is the default. �e # is directly related to
the number of cycles the processor locks the bus for boot-loading,
instructing the processor to lock the bus for no more than two
times the timeout number of cycles. When working with a fast
host that cannot tolerate being locked out of the bus, use a
relatively small timeout value.

-use32bitTagsfor

ExternalMemoryBlocks

Directs the loader utility to treat the external memory sections as
32-bit sections, as speci�ed in the .ldf �le and does not pack
them into 48-bit sections before processing. �is option is useful

Loader for ADSP-21160 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

115

Switch Description

if the external memory sections are packed by the linker and do
not need the loader utility to pack them again.

-v Outputs verbose loader utility messages and status information as
the utility processes �les.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.
Add the -proc switch, for example, elfloader -proc
ADSP-21160 -version to display version information of both
loader drive and SHARC loader utility.

CCES Loader Interface for Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters (see Loader Command-Line Switches for ADSP-21160 Processors).

�e loader pages (also called loader properties pages) show the default loader settings for the project's target
processor. Refer to the CCES online help for information about the loader interface.

�e CCES splitter interface for the ADSP-21160 processors is documented in the Splitter for SHARC Processors
chapter.

Loader for ADSP-21160 SHARC Processors

116 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

8
Loader for ADSP-21161 SHARC Processors

�is chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) �les into
boot-loadable �les for the ADSP-21161 SHARC processors.

Refer to the Introduction chapter for the loader utility overview; the introductory material applies to all
processor families. Refer to the Loader for ADSP-21160 SHARC Processors chapter for information about the
ADSP-21160 processors. Refer to the Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors chapter
for information about the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x, and
ADSP-2148x processors.

Loader operations speci�c to the SHARC processors are detailed in the following sections.

• ADSP-21161 Processor Booting

Provides general information about various boot modes, including information about boot kernels.

• ADSP-21161 Processor Loader Guide

Provides reference information about the loader utility's graphical user interface, command-line syntax, and
switches.

ADSP-21161 Processor Booting
�e processors support �ve boot modes: EPROM, host, link port, SPI port, and no-boot (see tables ADSP-21161
Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection). Boot-loadable �les for these
modes pack boot data into words of appropriate widths and use an appropriate DMA channel of the processor's
DMA controller to boot-load the words.

• When booting from an EPROM through the external port, the ADSP-21161 processor reads boot data from an
8-bit external EPROM.

• When booting from a host processor through the external port, the ADSP-21161 processor accepts boot data
from 8- or 16-bit host microprocessor.

• When booting through the link port, the ADSP-21161 processor receives boot data through the link port as 4-
bit wide data in link bu�er 4.

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

117

• When booting through the SPI port, the ADSP-21161 processor uses DMA channel 8 of the IO processor to
transfer instructions to internal memory. In this boot mode, the processor receives data in the SPIRx register.

• In no-boot mode, the ADSP-21161 processors begin executing instructions from external memory.

So�ware developers who use the loader utility should be familiar with the following operations:

• Power-Up Booting Process

• Boot Mode Selection

• ADSP-21161 Processor Boot Modes

• ADSP-21161 Processor Boot Kernels

• Boot Kernel Modi�cation and Loader Issues

• ADSP-21161 Processor Interrupt Vector Table

• ADSP-21161 Multi-Application (Multi-DXE) Management

Power-Up Booting Process
�e processors include a hardware feature that boot-loads a small, 256-instruction program into the processor's
internal memory a�er power-up or a�er the chip reset. �ese instructions come from a program called boot
kernel. When executed, the boot kernel facilitates booting of user application code. �e combination of the boot
kernel and application code comprises the boot-loadable (.ldr) �le.

At power-up, a�er the chip reset, the booting process includes the following steps.

1. Based on the boot mode, an appropriate DMA channel is automatically con�gured for a 256-instruction
transfer. �is transfer boot-loads the boot kernel program into the processor memory.

2. �e boot kernel runs and loads the application executable code and data.

3. �e boot kernel overwrites itself with the �rst 256 words of the application at the end of the booting process.
A�er that, the application executable code starts running.

�e boot mode selection directs the system to prepare the appropriate boot kernel.

Boot Mode Selection
�e state of the LBOOT, EBOOT, and BMS pins selects the processor's boot mode. �e ADSP-21161 Boot Mode Pins
and ADSP-21161 Boot Mode Pin States tables show how the pin states correspond to the modes.

Table 36. ADSP-21161 Boot Mode Pins

Pin Type Description

EBOOT I EPROM boot - when EBOOT is high, the processor boot-loads
from an 8-bit EPROM through the processor's external port.
When EBOOT is low, the LBOOT and BMS pins determine booting
mode.

Loader for ADSP-21161 SHARC Processors

118 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Pin Type Description

LBOOT I Link port boot - when LBOOT is high and EBOOT is low, the
processor boots from another SHARC processor through the
processor's link port. When LBOOT is low and EBOOT is low, the
processor boots from a host processor through the processor's
external port.

BMS I/O/T7 Boot memory select - when boot-loading from EPROM (EBOOT=1
and LBOOT=0), the pin is an output and serves as the chip select
for the EPROM. In a multiprocessor system, BMS is output by the
bus master. When host-booting, link-booting, or SPI-booting
(EBOOT=0), BMS is an input and must be high.

Table 37. ADSP-21161 Boot Mode Pin States

EBOOT LBOOT BMS Booting Mode

1 0 Output EPROM (connects BMS to EPROM chip
select)

0 0 1 (Input) Host processor

0 1 1 (Input) Link port

0 1 0 (Input) Serial port (SPI)

0 0 0 (Input) No-boot (processor executes from external
memory)

ADSP-21161 Processor Boot Modes
�e processors support these boot modes: EPROM, host, link, and SPI. �e following section describe each of
the modes.

• EPROM Boot Mode

• Host Boot Mode

• Link Port Boot Mode

• SPI Port Boot Mode

• No-Boot Mode

7 �ree-statable in EPROM boot mode (when BMS is an output).

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

119

i
Note:

For multiprocessor booting, refer to ADSP-21161 Multi-Application (Multi-DXE) Management.

EPROM Boot Mode
EPROM boot via the external port is selected when the EBOOT input is high and the LBOOT input is low. �ese
settings cause the BMS pin to become an output, serving as chip select for the EPROM.

�e DMAC10 control register is initialized for booting packing boot data into 48-bit instructions. EPROM boot
mode uses channel 10 of the IO processor's DMA controller to transfer the instructions to internal memory. For
EPROM booting, the processor reads data from an 8-bit external EPROM.

A�er the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the processor begins
to execute instructions. Because most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for the application. CrossCore Embedded
Studio includes loading routines (boot kernels) that can load entire programs; see ADSP-21161 Processor Boot
Kernels for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system
con�gurations.

i
Note:

Be aware that DMA channel di�erences between the ADSP-21161 and previous SHARC processors
account for boot di�erences. Even with these di�erences, the ADSP-21161 processor supports the same
boot capability and con�guration as previous SHARC processors. �e DMACx register default values di�er
because the ADSP-21161 processor has additional parameters and di�erent DMA channel assignments.
EPROM boot mode uses EPB0, DMA channel 10. Similar to previous SHARC processors, the
ADSP-21161 processor boots from DATA23—16.

�e processor determines the booting mode at reset from the EBOOT, LBOOT, andBMS pin inputs. When EBOOT=1
and LBOOT=0, the processor boots from an EPROM through the external port and uses BMS as the memory select
output. For information on boot mode selection, see the boot memory select pin descriptions in tables
ADSP-21161 Boot Mode Pins and ADSP-21161 Boot Mode Pin States (in Boot Mode Selection).

i
Note:

When using any of the power-up boot modes, address 0x40004 should not contain a valid instruction
since it is not executed during the booting sequence. Place a NOP or IDLE instruction at this location.

EPROM boot (boot space 8M x 8-bit) through the external port requires that an 8-bit wide boot EPROM be
connected to the processor data bus pins 23-16 (DATA23-16). �e processor's lowest address pins should be
connected to the EPROM address lines. �e EPROM's chip select should be connected to BMS, and its output
enable should be connected to RD.

In a multiprocessor system, the BMS output is driven by the ADSP-21161 processor bus master only. �is allows
the wired OR of multiple BMS signals for a single common boot EPROM.

i
Note:

Loader for ADSP-21161 SHARC Processors

120 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Systems can boot up to six ADSP-21161 processors from a single EPROM using the same code for each
processor or di�ering code for each processor.

During reset, the ACK line is internally pulled high with the equivalent of an internal 20K ohm resistor and is
held high with an internal keeper latch. It is not necessary to use an external pull-up resistor on the ACK line
during booting or at any other time.

�e RBWS and RBAM �elds of theWAIT register are initialized to perform asynchronous access and generate seven
wait states (8 cycles total) for the EPROM access in external memory space. Note that wait states de�ned for
boot memory are applied to BMS asserted accesses.

�e DMA Channel 10 Parameter Registers for EPROM Booting table shows how DMA channel 10 parameter
registers are initialized at reset. �e count register (CEP0) is initialized to 0x0100 to transfer 256 words to
internal memory. �e external count register (ECEP0), used when external addresses (BMS space) are generated
by the DMA controller, is initialized to 0x0600 (0x0100 words at six bytes per word). �e DMAC10 control
register is initialized to 0x00 0561.

Table 38. DMA Channel 10 Parameter Registers for EPROM Booting

Parameter Register Initialization Value

IIEP0 0x40000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 0x800000

EMEP0 Uninitialized (increment by 1 is automatic)

ECEP0 0x600 (256 words x 6 bytes/word)

�e default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSB �rst

• PMODE = 101, 8-bit to 48-bit packing, Master = 1

• DTYPE = 1, three column data

�e following sequence occurs at system start-up, when the processor RESET input goes inactive.

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

121

1. �e processor goes into an idle state, identical to that caused by the IDLE instruction. �e program counter
(PC) is set to address 0x40004.

2. �e DMA parameter registers for channel 10 are initialized as shown in the DMA Channel 10 Parameter
Registers for EPROM Booting table.

3. �e BMS pin becomes the boot EPROM chip select.

4. 8-bit master mode DMA transfers from EPROM to the �rst internal memory address on the external port
data bus lines 23-16.

5. �e external address lines (ADDR23-0) start at 0x800000 and increment a�er each access.

6. �e RD strobe asserts as in a normal memory access with seven wait states (8 cycles).

�e processor's DMA controller reads the 8-bit EPROM words, packs them into 48-bit instruction words, and
transfers them to internal memory until 256 words have been loaded. �e EPROM is automatically selected by
the BMS pin; other memory select pins are disabled.

�e master DMA internal and external count registers (CEP0)ECEP0/ decrement a�er each EPROM transfer.
When both counters reach zero, the following wake-up sequence occurs:

1. DMA transfers stop.

2. External port DMA channel 10 interrupt (EP0I) is activated.

3. �e BMS pin is deactivated, and normal external memory selects are activated.

4. �e processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot and is executing instructions normally. �e �rst instruction at
the EP0Iinterrupt vector location, address 0x40050, should be an RTI (return from interrupt). �is process
returns execution to the reset routine at location 0x40005 where normal program execution can resume. A�er
reaching this point, a program can write a di�erent service routine at the EP0I vector location 0x40050.

Host Boot Mode
�e processor can boot from a host processor through the external port. Host booting is selected when theEBOOT
and LBOOT inputs are low and BMS is high. Con�gured for host booting, the processor enters the slave mode a�er
reset and waits for the host to download the boot program.

�e DMAC10 control register is initialized for booting, packing boot data into 48-bit instructions. Channel 10 of
the IO processor's DMA controller is used to transfer instructions to internal memory. Processors accept data
from 8- or 16-bit host microprocessor (or other external devices).

A�er the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the processor begins
executing instructions. Because most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for the application. CrossCore Embedded
Studio includes loading routines (boot kernels) that can load entire programs; refer to ADSP-21161 Processor
Boot Kernels for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system
con�gurations.

Loader for ADSP-21161 SHARC Processors

122 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

i
Note:

DMA channel di�erences between the ADSP-21161 and previous SHARC family processors account for
boot di�erences. Even with these di�erences, the ADSP-21161 processors support the same boot
capability and con�guration as previous SHARC processors. �e DMAC10 register default values di�er
because the ADSP-21161 processor has additional parameters and di�erent DMA channel assignments.
Host boot mode uses EPB0, DMA channel 10.

�e processor determines the boot mode at reset from the EBOOT, LBOOT, and BMS pin inputs. When EBOOT=0,
LBOOT=0, and BMS=1, the processor boots from a host through the external port. Refer to tables ADSP-21161
Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection for boot mode selections.

When using any of the power-up boot modes, address 0x40004 should not contain a valid instruction. Because it
is not executed during the boot sequence, place a NOP or IDLE instruction at this location.

During reset, the processor ACK line is internally pulled high with an equivalent 20K ohm resistor and is held
high with an internal keeper latch. It is not necessary to use an external pull-up resistor on the ACK line during
booting or at any other time.

�e DMA Channel 10 Parameter Register for Host Boot table shows how the DMA channel 10 parameter
registers are initialized at reset for host boot. �e internal count register (CEP0) is initialized to 0x0100 to
transfer 256 words to internal memory. �e DMAC10 control register is initialized to 0000 0161.

Table 39. DMA Channel 10 Parameter Register for Host Boot

Parameter Register Initialization Value

IIEP0 0x0004 0000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256-instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 Uninitialized

EMEP0 Uninitialized

ECEP0 Uninitialized

�e default value sets up external port transfers as follows:

• DEN = 1, external port enabled

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

123

• MSWF = 0, LSB �rst

• PMODE = 101, 8-bit to 48-bit packing

• DTYPE = 1, three column data

At system start-up, when the processor RESET input goes inactive, the following sequence occurs.

1. �e processor goes into an idle state, identical to that caused by the IDLE instruction. �e program counter
(PC) is set to address 0x40004.

2. �e DMA parameter registers for channel 10 are initialized as shown in the DMA Channel 10 Parameter
Register for Host Boot table.

3. �e host uses HBR and CS to arbitrate for the bus.

4. �e host can write to SYSCON (if HBG and READY are returned) to change boot width from default.

5. �e host writes boot information to external port bu�er 0.

�e slave DMA internal count register (CEP0) decrements a�er each transfer. When CEP0 reaches zero, the
following wake-up sequence occurs:

1. �e DMA transfers stop.

2. �e external port DMA channel 10 interrupt (EP0I) is activated.

3. �e processor vectors to the EP0I interrupt vector at 0x40050.

At this point, the processor has completed its boot mode and is executing instructions normally. �e �rst
instruction at the EP0Iinterrupt vector location, address 0x40050, should be an RTI (return from interrupt).
�is process returns execution to the reset routine at location 0x40005 where normal program execution can
resume. A�er reaching this point, a program can write a di�erent service routine at the EP0I vector location
0x40050.

Link Port Boot Mode
Link port boot uses DMA channel 8 of the IO processor to transfer instructions to internal memory. In this boot
mode, the processor receives 4-bit wide data in link bu�er 0.

A�er the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the processor begins
to execute instructions. Because most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for the application. CrossCore Embedded
Studio includes loading routines (boot kernels) that load an entire program through the selected port; refer to
ADSP-21161 Processor Boot Kernels for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system
con�gurations.

i
Note:

DMA channel di�erences between the ADSP-21161 and previous SHARC family processors account for
boot di�erences. Even with these di�erences, the ADSP-21161 processors support the same boot
capabilities and con�guration as the previous SHARC processors.

Loader for ADSP-21161 SHARC Processors

124 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e processor determines the boot mode at reset from the EBOOT, LBOOT and BMS pin inputs. When EBOOT=0,
LBOOT=1, and BMS=1, the processor boots through the link port. For information on boot mode selection, see
tables ADSP-21161 Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection.

i
Note:

When using any of the power-up booting modes, address 0x40004 should not contain a valid instruction.
Because it is not executed during the boot sequence, place a NOP or IDLE instruction at this location.

In link port boot, the processor gets boot data from another processor link port or 4-bit wide external device
a�er system power-up.

�e external device must provide a clock signal to the link port assigned to link bu�er 0. �e clock can be any
frequency up to the processor clock frequency. �e clock falling edges strobe the data into the link port. �e
most signi�cant 4-bit nibble of the 48-bit instruction must be downloaded �rst.

�e DMA Channel 8 Parameter Register for Link Port Boot table shows how the DMA channel 8 parameter
registers are initialized at reset. �e count register (CLB0) is initialized to 0x0100 to transfer 256 words to
internal memory. �e LCTL register is overridden during link port boot to allow link bu�er 0 to receive 48-bit
data.

Table 40. DMA Channel 8 Parameter Register for Link Port Boot

Parameter Register Initialization Value

IILB0 0x0004 0000

IMLB0 Uninitialized (increment by 1 is automatic)

CLB0 0x0100 (256-instruction words)

CPLB0 Uninitialized

GPLB0 Uninitialized

In systems where multiple processors are not connected by the parallel external bus, booting can be
accomplished from a single source through the link ports. To simultaneously boot all the processors, make a
parallel common connection to link bu�er 0 on each of the processors. If a daisy chain connection exists
between the processors' link ports, each processor can boot the next processor in turn. Link bu�er 0 must always
be used for booting.

SPI Port Boot Mode
Serial peripheral interface (SPI) port booting uses DMA channel 8 of the IO processor to transfer instructions to
internal memory. In this boot mode, the processor receives 8-bit wide data in the SPIRx register.

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

125

During the boot process, the program loads 256 words into memory locations 0x40000 through 0x400FF. �e
processor subsequently begins executing instructions. Because most processor programs require more than 256
words of instructions and initialization data, the 256 words typically serve as a loading routine for the
application. CrossCore Embedded Studio includes loading routines (boot kernels) which load an entire program
through the selected port. See ADSP-21161 Processor Boot Kernels for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed information on DMA and system
con�gurations.

�e processor determines the boot mode at reset from the EBOOT, LBOOT, and BMS pin inputs. When EBOOT=0,
LBOOT=1, and BMS=0, the processor boots through its SPI port. For information on the boot mode selection, see
tables ADSP-21161 Boot Mode Pins and ADSP-21161 Boot Mode Pin States in Boot Mode Selection.

i
Note:

When using any of the power-up booting modes, address 0x40004 should not contain a valid instruction.
Because it is not executed during the boot sequence, place a NOP or IDLE instruction placed at this
location.

For SPI port boot, the processor gets boot data a�er system power-up from another processor's SPI port or
another SPI compatible device.

�e DMA Channel 8 Parameter Register for SPI Port Boot table shows how the DMA channel 8 parameter
registers are initialized at reset. �e SPI control register (SPICTL) is con�gured to 0x0A001F81 upon reset during
SPI boot.

�is con�guration sets up the SPIRx register for 32-bit serial transfers. �e SPIRx DMA channel 8 parameter
registers are con�gured to DMA in 0x180 32-bit words into internal memory normal word address space
starting at 0x40000. Once the 32-bit DMA transfer completes, the data is accessed as 3 column, 48-bit
instructions. �e processor executes a 256 word (0x100) boot kernel upon completion of the 32-bit, 0x180 word
DMA.

For 16-bit SPI hosts, two words are shi�ed into the 32-bit receive shi� register before a DMA transfer to internal
memory occurs. For 8-bit SPI hosts, four words are shi�ed into the 32-bit receive shi� register before a DMA
transfer to internal memory occurs.

Table 41. DMA Channel 8 Parameter Register for SPI Port Boot

Parameter Register Initialization Value

IISRX 0x0004 0000

IMSRX Uninitialized (increment by 1 is automatic)

CSRX 0x0180 (256-instruction words)

GPSRX Uninitialized

Loader for ADSP-21161 SHARC Processors

126 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

No-Boot Mode
No-boot mode causes the processor to start fetching and executing instructions at address 0x200004 in external
memory space. In no-boot mode, the processor does not boot-load and all DMA control and parameter registers
are set to their default initialization values. �e loader utility does not produce the code for no-boot execution.

ADSP-21161 Processor Boot Kernels
�e boot-loading process starts with a transfer of the boot kernel program into the processor memory. �e boot
kernel sets up the processor and loads boot data. A�er the boot kernel �nishes initializing the rest of the system,
the boot kernel loads boot data over itself with a �nal DMA transfer.

Four boot kernels are shipped with CrossCore Embedded Studio; refer to the Default Boot Kernel Files table.

Table 42. Default Boot Kernel Files

PROM Booting Link Booting Host Booting SPI Booting

161_PROM.dxe 161_LINK.dxe 161_HOST.dxe 161_SPI.dxe

Boot kernels are loaded at processor reset into the seg_ldr memory segment, which is de�ned in the
161_ldr.ldf. �e �le is stored in the <install_path>/SHARC/ldr directory.

Processor Boot Streams
�e loader utility produces the boot stream in blocks and inserts header words at the beginning of data blocks in
the loader (.ldr) �le. �e boot kernel uses header words to properly place data and instruction blocks into
processor memory. �e header format for PROM, host, and link boot-loader �les is as follows.

 0x00000000DDDD

 0xAAAAAAAALLLL

In the above example, D is a data block type tag, A is a block start address, and L is a block word length.

For single-processor systems, the data block header has three 32-bit words in SPI boot mode, as follows.

0xLLLLLLLL First word. Data word length or data word count of the data block.

0xAAAAAAAA Second word. Data block start address.

0x000000DD �ird word. Tag of data block type.

�e boot kernel examines the tag to determine the type of data or instruction being loaded. �e ADSP-21161N
Processor Block Tags table lists the ADSP-21161N processor block tags.

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

127

Table 43. ADSP-21161N Processor Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000E init pm48

0x0001 zero dm16 0x000F zero dm64

0x0002 zero dm32 0x0010 init dm64

0x0003 zero dm40 0x0012 init pm64

0x0004 init dm16 0x0013 init pm8 ext

0x0005 init dm32 0x0014 init pm16 ext

0x0007 zero pm16 0x0015 init pm32 ext

0x0008 zero pm32 0x0016 init pm48 ext

0x0009 zero pm40 0x0017 zero pm8 ext

0x000A zero pm48 0x0018 zero pm16 ext

0x000B init pm16 0x0019 zero pm32 ext

0x000C init pm32 0x001A zero pm48 ext

0x0011 zero pm64

Boot Kernel Modificatio and Loader Issues
Some systems require boot kernel customization. In addition, the operation of other tools (such as the C/C++
compiler) is in�uenced by whether the loader utility is used.

If you do not specify a boot kernel �le via the loader pages of the Tool Settings dialog box in the IDE (or via the -
l kernelfile command-line switch), the loader utility places a default boot kernel in the loader output �le (see
ADSP-21161 Processor Boot Kernels)) based on the speci�ed boot mode.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) �le by inserting correct values for your system, you must rebuild the
boot kernel (.dxe) before generating the boot-loadable (.ldr) �le. �e boot kernel source �le contains default

Loader for ADSP-21161 SHARC Processors

128 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

values for the SYSCON register. �e WAIT, SDCTL, and SDRDIV initialization code is in the boot kernel �le
comments.

To Modify a boot kernel source �le

1. Copy the applicable boot kernel source �le (161_link.asm, 161_host.asm, 161_prom.asm, or
161_spi.asm).

2. Apply the appropriate initializations of the SYSCON and WAIT registers.

A�er modifying the boot kernel source �le, rebuild the boot kernel (.dxe) �le. Do this from the IDE (refer to
online help for details), or rebuild the boot kernel �le from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

EPROM Boot. �e default boot kernel source �le for EPROM booting is 161_prom.asm. A�er copying the
default �le to my_prom.asm and modifying it to suit your system, use the following command lines to rebuild the
boot kernel.

 easm21k -proc ADSP-21161 my_prom.asm

 linker -T 161_ldr.ldf my_prom.doj

Host Boot. �e default boot kernel source �le for host booting is 161_host.asm. A�er copying the default �le to
my_host.asm and modifying it to suit your system, use the following command lines to rebuild the boot kernel.

 easm21k -proc ADSP-21161 my_host.asm

 linker -T 161_ldr.ldf my_host.doj

Link Boot. �e default boot kernel source �le for link booting is 161_link.asm. A�er copying the default �le to
my_link.asm and modifying it to suit your system, use the following command lines to rebuild the boot kernel.

 easm21k -proc ADSP-21161 my_link.asm

 linker -T 161_ldr.ldf my_link.doj

SPI Boot. �e default boot kernel source �le for link booting is 161_SPI.asm. A�er copying the default �le to
my_SPI.asm and modifying it to suit your system, use the following command lines to rebuild the boot kernel:

 easm21k -proc ADSP-21161 my_SPI.asm

 linker -T 161_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the EPROM, host, SPI, or link booting modes, ensure that the seg_ldr
memory segment is de�ned in the .ldf �le. Refer to the source of this memory segment in the .ldf �le located
in the ldr directory of the of the target processor.

Because the loader utility uses the address of 0x40004 for the �rst location of the reset vector during the boot-
load process, avoid placing code at this address. When using any of the processor's power-up boot modes, ensure
that this address does not contain a critical instruction. Because this address is not executed during the booting

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

129

sequence, place a NOP or IDLE in this location. �e loader utility generates a warning if the vector address
0x40004 does not contain NOP or IDLE.

i
Note:

When creating the loader �le, specify the name of the customized boot kernel executable in the Kernel �le
(-l) �eld on the CrossCore SHARC Loader page of the Tool Settings dialog box.

ADSP-21161 Processor Interrupt Vector Table
If the processor is booted from an external source (EPROM, host, link port, or SPI), the interrupt vector table is
located in internal memory. If the processor is not booted and executes from external memory (no-boot mode),
the vector table must be located in external memory.

�e IIVT bit in the SYSCON control register can be used to override the booting mode in determining where the
interrupt vector table is located. If the processor is not booted (no-boot mode), setting IIVT to 1 selects an
internal vector table, and setting IIVT to zero selects an external vector table. If the processor is booted from an
external source (any boot mode other than no-boot), IIVT has no e�ect. �e default initialization value of IIVT
is zero.

ADSP-21161 Multi-Application (Multi-DXE) Management
Currently, the loader utility generates single-processor loader �les for host, link, and SPI port boot. �e loader
utility supports multiprocessor EPROM boot only. �e application code must be modi�ed to properly set up
multiprocessor booting in host, link, and SPI port boot modes.

�ere are two methods by which a multiprocessor system can be booted:

• Boot From a Single EPROM

• Sequential EPROM Boot

Regardless of the method, the processors perform the following steps.

1. Arbitrate for the bus

2. Upon becoming bus master, DMA the 256-word boot stream

3. Release the bus

4. Execute the loaded instructions

Boot From a Single EPROM
�e loader utility can produce boot-loadable �les that permit SHARC processors in a multiprocessor system to
boot from a single EPROM. �e BMS signals from each processor may be wire ORed together to drive the
EPROM's chip select pin. Each processor can boot in turn, according to its priority. When the last processor has
�nished booting, it must inform the other processors (which may be in the idle state) that program execution
can begin (if all processors are to begin executing instructions simultaneously).

Loader for ADSP-21161 SHARC Processors

130 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

When multiple processors boot from a single EPROM, the processors can boot identical code or di�erent code
from the EPROM. If the processors load di�ering code, use a jump table in the loader �le (based on processor
ID) to select the code for each processor.

Sequential EPROM Boot
Set the EBOOT pin of the processor with ID# of 1 high for EPROM booting. �e other processors should be
con�gured for host boot (EBOOT=0, LBOOT=0, and BMS=1), leaving them in the idle state at startup and allowing
the processor with ID=1 to become bus master and boot itself. Connect the BMS pin of processor #1 only to the
EPROM's chip select pin. When processor #1 has �nished booting, it can boot the remaining processors by
writing to their external port DMA bu�er 0 (EPB0) via the multiprocessor memory space.

Processor ID Numbers
A single-processor system requires only one input (.dxe) �le without any pre�x and su�x to the input �le name,
for example:

 elfloader -proc ADSP-21161 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each input �le on the command line. A
processor ID is provided via the -id#exe=filename.dxe switch, where # is 1 to 6.

In the following example, the loader utility processes the input �le Input1.dxe for the processor with an ID of 1
and the input �le Input2.dxe for the processor with an ID of 2.

 elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe -id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N processor, the output loader �le
contains only one copy of the code from the input �le, as directed by the command-line switch -id#ref=N used
in the example:

 elfloader -proc ADSP-21161 -bprom -id1exe=Input.dxe -id2ref=1

where 2 is the processor ID, and 1 is another processor ID referenced by processor 2.

�e loader utility points the id(2)exe loader jump table entry to the id(1)exe image, e�ectively reducing the
size of the loader �le.

ADSP-21161 Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE
(CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

�ese sections describe how to produce a bootable loader (.ldr) �le:

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

131

• Loader Command Line for ADSP-21161 Processors

• CCES Loader Interface for ADSP-21161 Processors

Loader Command Line for Processors
�e loader utility uses the following command-line syntax for the ADSP-21161 SHARC processors.

 elfloader inputfile -proc ADSP-21161 -switch [-switch]

where:

• inputfile - Name of the executable �le (.dxe) to be processed into a single boot-loadable �le. An input �le
name can include the drive and directory. Enclose long �le names within straight quotes, "long file name".

• -proc ADSP-21161 - Part number of the processor for which the loadable �le is built. �e -proc switch is
mandatory.

• -switch - One or more optional switches to process. Switches select operations and boot modes for the loader
utility. A list of all switches and their descriptions can be found in Loader Command-Line Switches for
ADSP-21161 Processors.

i
Note:

Command-line switches are not case-sensitive and placed on the command line in any order.

Single-Processor Systems

�e following command line,

 elfloader Input.dxe -bSPI -proc ADSP-21161

runs the loader utility with:

• Input.dxe - Identi�es the executable �le to process into a boot-loadable �le for a single-processor system.
Note that the absence of the -o switch causes the output �le name to default to Input.ldr.

• -bSPI - Speci�es SPI port booting as the boot type for the boot-loadable �le.

• -proc ADSP-21161 - Speci�es ADSP-21161 as the target processor.

Multiprocessor Systems

�e following command line,

 elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe -id2exe=Input2.dxe

runs the loader utility with:

• -proc ADSP-21161 - Speci�es ADSP-21161 as the target processor.

• -bprom - Speci�es EPROM booting as the boot type for the boot-loadable �le.

• -id1exe=Input1.dxe - Identi�es Input1.dxe as the executable �le to process into a boot-loadable �le for a
processor with ID of 1 (see Processor ID Numbers)).

• -id2exe=Input2.dxe - Identi�es Input2.dxe. as the executable �le to process into a boot-loadable �le for a
processor with ID of 2 (see Processor ID Numbers)).

Loader for ADSP-21161 SHARC Processors

132 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Loader Command-Line Switches for ADSP-21161 Processors
�e ADSP-21161 Loader Command Line Switches table is a summary of the loader switches for the
ADSP-21161processors.

Table 44. ADSP-21161 Loader Command Line Switches

Switch Description

-bprom

-bhost

-blink

-bspi

Speci�es the boot mode. �e -b switch directs the loader utility to
prepare a boot-loadable �le for the speci�ed boot mode. �e valid
modes (boot types) are PROM, host, link, and SPI. If the switch
does not appear on the command line, the default is -bprom. To
use a custom boot kernel, the boot mode selected with the -b
switch must correspond with the boot kernel selected with the -l
kernelfile switch. Otherwise, the loader utility automatically
selects a default boot kernel based on the selected boot type (see
ADSP-21161 Processor Boot Kernels).

-e filename Except shared memory. �e -e switch omits the speci�ed shared
memory (.sm) �le from the output loader �le. Use this option to
omit the shared parts of the executable �le intended to boot a
multiprocessor system.

To omit multiple .sm �les, repeat the switch and its parameter
multiple times on the command line. For example, to omit two
�les, use: -efileA.SM -efileB.SM.

In most cases, it is not necessary to use the -e switch: the loader
utility processes the .sm �les e�ciently (includes a single copy of
the code and data from each .sm �le in a loader �le).

-fhex

-fASCII

-fbinary

-finclude

-fS1

-fS2

-fS3

Speci�es the format of the boot-loadable �le (Intel hex-32, ASCII,
include, binary, S1, S2, and S3 (Motorola S-records). If the -f
switch does not appear on the command line, the default boot �le
format is hex for PROM, and ASCII for host, link, or SPI.

Available formats depend on the boot mode selection (-b switch):

• For a PROM boot, select a hex-32, S1, S2, S3, ASCII, or include
format.

• For host or link boot, select an ASCII, binary, or include format.

• For SPI boot, select an ASCII or binary format.

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

133

Switch Description

-h

or

-help

Command-line help. Outputs the list of command-line switches
to standard output and exits. Combining the -h switch with -
proc ADSP-21161; for example, elfloader -proc ADSP-21161
-h, yields the loader syntax and switches for the ADSP-21161
processors. By default, the -h switch alone provides help for the
loader driver.

-hostwidth {8|16|32} Sets up the word width for the .ldr �le. By default, the word
width for PROM and host is 8, for link is 16, and for SPI is 32. �e
valid word widths for the various boot modes are:

• PROM - 8 for hex or ASCII format, 8 or 16 for include format

• host - 8 or 16 for ASCII or binary format, 16 for include format

• link - 16 for ASCII, binary, or include format

• SPI - 8, 16, or 32 for Intel hex 32 or ASCII format

-id#exe=filename Speci�es the processor ID. �e -id#exe= switch directs the loader
utility to use the processor ID (#) for the corresponding
executable �le (filename) when producing a boot-loadable �le
for EPROM boot of a multiprocessor system. �is switch is used
only to produce a boot-loadable �le that boots multiple
processors from a single EPROM.

Valid values for # are 1, 2, 3, 4, 5, and 6.

Do not use this switch for single-processor systems. For single-
processor systems, use filename as a parameter without a switch.
For more information, refer to Processor ID Numbers.

-id#ref=N

Points the processor ID (#) loader jump table entry to the ID (N)
image. If the executable �le for the (#) processor is identical to the
executable of the (N) processor, the switch can be used to set the
PROM start address of the processor with ID of # to be the same
as for the processor with ID of N. �is e�ectively reduces the size
of the loader �le by providing a single copy of an executable to
two or more processors in a multiprocessor system. For more
information, refer to Processor ID Numbers.

-l kernelfile Directs the loader utility to use the speci�ed kernelfile as the
boot-loading routine in the output boot-loadable �le. �e boot
kernel selected with this switch must correspond to the boot
mode selected with the -b switch.

Loader for ADSP-21161 SHARC Processors

134 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

If the -l switch does not appear on the command line, the loader
utility searches for a default boot kernel �le. Based on the boot
mode (-b switch), the loader utility searches in the processor-
speci�c loader directory for the boot kernel �le as described in
ADSP-21161 Processor Boot Kernels.

-o filename Directs the loader utility to use the speci�ed filename as the
name for the loader output �le. If not speci�ed, the default name
is inputfile.ldr.

-noZeroBlock �e -noZeroBlock switch directs the loader utility not to build
zero blocks.

-p address Directs the loader utility to start the boot-loadable �le at the
speci�ed address in the EPROM. �is EPROM address
corresponds to 0x8000000 on the processor. If the -p switch does
not appear on the command line, the loader utility starts the
EPROM �le at address 0x0.

-proc ADSP-21161 Speci�es the processor. �is is a mandatory switch.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for
the processor hardware. If -si-revision is not used, the target is
a default revision from the supported revisions.

-t # (Host boot type only) Speci�es timeout cycles. �e -t switch (for
example, -t100) limits the number of cycles that the processor
spends initializing external memory with zeros. Valid values range
from 3 to 32765 cycles; 32765 is the default value.

�e timeout value (#) is related directly to the number of cycles
the processor locks the bus for boot-loading, instructing the
processor to lock the bus for no more than two times the timeout
number of cycles. When working with a fast host that cannot
tolerate being locked out of the bus, use a relatively small timeout
value.

-v Outputs verbose loader messages and status information as the
loader utility processes �les.

Loader for ADSP-21161 SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

135

Switch Description

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.
Add the -proc switch, for example, elfloader -proc
ADSP-21161 -version to display version information of both
loader drive and SHARC loader.

CCES Loader Interface for Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters (see Loader Command-Line Switches for ADSP-21161 Processors).

�e loader pages (also called loader properties pages) show the default loader settings for the project's target
processor. Refer to the CCES online help for information about the loader interface.

�e CCES splitter interface for the ADSP-21161 processors is documented in the Splitter for SHARC Processors
chapter.

Loader for ADSP-21161 SHARC Processors

136 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

9
Loader for ADSP-2126x/2136x/2137x/214xx SHARC
Processors

�is chapter explains how the loader utility (elfloader.exe) is used to convert executable (.dxe) �les into
boot-loadable �les for the ADSP-2126x, ADSP- 2136x, ADSP-2137x, and ADSP-214xx SHARC processors.

i
Note:

For information on speci�c SHARC processors, refer to the product- speci�c hardware reference,
programming reference, and data sheet.

Refer to the Introduction chapter for the loader utility overview; the introductory material applies to all
processor families. Refer to the Loader for ADSP-21160 SHARC Processors chapter for information about the
ADSP-21160 processors. Refer to the Loader for ADSP-21161 SHARC Processors chapter for information about
the ADSP-21161 processors.

Loader operations speci�c to the ADSP-2126x/2136x/2137x/214xx SHARC processors are detailed in the
following sections.

• ADSP-2126x/2136x/2137x/214xx Processor Booting

Provides general information about various booting modes, including information about boot kernels.

• ADSP-2126x/2136x/2137x/214xx Processor Loader Guide

Provides reference information about the graphical user interface, command-line syntax, and switches.

ADSP-2126x/2136x/2137x/214xx Processor Booting
ADSP-2126x, ADSP-2136x, ADSP-2137x and ADSP-214xx processors can be booted from various sources:

• �e boot source is selected via the boot con�guration pins during power-up.

• All processors do support 8-bit parallel �ash boot mode and SPI master/slave boot modes.

• �e ADSP-2146x processor does support link port boot mode.

• In no-boot mode, the processor fetches and executes instructions directly from the internal ROM memory,
bypassing the boot kernel entirely. �e loader utility does not produce a �le supporting the no-boot mode.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

137

• SPI master boot does support three cases: SPI master (no address), SPI PROM (16-bit address), and SPI �ash
(24-bit address).

• �e ADSP-21367/21368/21369, ADSP-21371/21375, and ADSP-214xx processors support parallel �ash
multiprocessing boot by decoding the processor ID number from the boot stream.

i
Note:

Only the ADSP-21367/21368/21369, ADSP-21371/21375, and ADSP-214xx processors are supporting
multiprocessing, so the loader can use an ID lookup table between the kernel and the rest of the
application.

i
Note:

Upon ADSP-2126x processors, no boot mode from external memory with internal/external IVT option is
no longer supported.

So�ware developers who use the loader utility should be familiar with the following operations.

• Power-Up Booting Process

• ADSP-2126x/2136x/2137x/214xx Processors Interrupt Vector Table

• General Boot De�nitions

• Boot Mode Selection

• Boot DMA Con�guration Settings

• ADSP-2126x/2136x/2137x/214xx Processors Boot Kernels

• ADSP-2126x/2136x/2137x/214xx Processor Boot Streams

Power-Up Booting Process
�e ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-214xx processors include a hardware feature that boot-
loads a small, 256-instruction, program into the processor's internal memory a�er power-up or a�er the chip
reset. �ese instructions come from a program called a boot kernel. When executed, the boot kernel facilitates
booting of user application code. �e combination of the boot kernel and application code comprise the boot-
loadable (.ldr) �le.

At power-up, a�er the chip reset, the booting process includes the following steps.

1. Based on the boot type, an appropriate DMA channel is automatically con�gured for a 384-word (32-bit)
transfer or a 256-word (48-bit) transfer. �is transfer boot-loads the boot kernel program into the processor
memory.

2. �e boot kernel runs and loads the application executable code and data.

3. �e boot kernel overwrites itself with the �rst 256 (48-bit) words of the application at the end of the booting
process. A�er that, the application executable code starts running.

�e boot type selection directs the system to prepare the appropriate boot kernel. Note that the DAI/DPI pins
are enabled by default for correct booting over the peripherals.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

138 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table
If the ADSP-2126x, ADSP-2136x, ADSP-2137x or ADSP-214xx processor is booted from an external source
(PROM or SPI or link port), the IVT is always located in internal memory.

General Boot Definition
�e boot source is determined by sampling the state of the boot con�guration pins.

On the ADSP-2126x/2136x/2137x/214xx processors, the boot type is determined by sampling the state of the
BOOT_CFG1-0 pins (BOOT_CFG2-0 pins for ADSP-214xx processors). �e truth table for boot con�guration pins
can be found in the processor data sheet.

Note all referred RESET vector locations in this chapter are dependent on the processor type and are de�ned as
follows:

ADSP-2126x 0x80004

ADSP-2136x/2137x 0x90004

ADSP-214xx 0x8C004

All processors operate with an interrupt vector table (IVT) located in internal memory block0 which is used to
load and execute the kernel (256x48-bit words) located at the following address:

ADSP-2126x 0x80000 - 0x800FF

ADSP-2136x/2137x 0x90000 - 0x900FF

ADSP-214xx 0x8C000 - 0x8C0FF

Boot Mode Selection

i
Note:

On the ADSP-2126x/2136x/2137x/214xx processors, the boot type is determined by sampling the state of
the BOOTCFGx pins, described in the ADSP-2126x/2136x/2137x Boot Mode Selection and ADSP-214xx
Boot Mode Selection tables, and the selection of the corresponding boot kernel in the el�oader.

A description of each boot type follows the tables.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

139

Table 45. ADSP-2126x/2136x/2137x Boot Mode Selection

HW Pins BOOT_CFG[1-0] Boot Mode SW El�oader Settings Boot Mode
Selection

00 SPI slave -bspislave

01 SPI master (SPI �ash, SPI PROM,
or a host processor via SPI master
mode)

-bspiflash

-bspiprom

-bspimaster

10 EPROM boot via the parallel port -bprom

11 No boot (not available on all
processors)

Does not use the loader utility

Table 46. ADSP-214xx Boot Mode Selection

HW Pins BOOT_CFG[2-0] Boot Mode SW El�oader Settings Boot Mode
Selection

000 SPI slave -bspislave

001 SPI master (SPI �ash, SPI PROM,
or a host processor via SPI master
mode)

-bspiflash

-bspiprom

-bspimaster

010 EPROM boot via the parallel port -bprom

011 No boot (not available on all
processors)

Does not use the loader utility

100 Link Port 0 boot -blink

Boot DMA Configuratio Settings
All peripheral boot mode use a 256 words instruction length DMA (as described in "power-up booting process"
which does load the kernel into the internal memory. At reset, the control and parameter registers settings of the
peripheral's boot DMA can be found at:

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

140 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

• For ADSP-2126x products refer to the ADSP-2126x SHARC Processor Hardware Reference

• For ADSP-2136x products refer to the ADSP-2136x SHARC Processor Hardware Reference

• For ADSP-21367/8/9 and ADSP-2137xx products refer to the ADSP-2137x SHARC Processor Hardware
Reference

• For ADSP-214xx products refer to the ADSP-214xx SHARC Processor Hardware Reference

PROM Boot Mode
All processors which support external memory typically have memory I/O size which is di�erent to normal
word of 32-bit. �e linker's width command takes care about logical and physical addressing.

Packing Options for External Memory

�eWIDTH() command in the linker speci�es which packing mode should be used to initialize the external
memory: WIDTH(8) for 8-bit memory or WIDTH(16) for 16-bit memory.

�e loader utility packs the external memory data from the .dxe �le according to the linker's WIDTH()
command. �e loader utility unpacks the data from the executable �le and packs the data again in the loader �le
if the data is packed in the .dxe �le due to the packing command in the linker description (.ldf) �le.

�e next section lists the di�erent packing options depending on model, and data versus instruction fetch.

Multiplexed Parallel Port

�e ADSP-2126x/2136x processors do use a parallel port which does multiplex the address and data (in order to
save pin count). �e Data Packing Options for Parallel Port table and following sections list the di�erent packing
options, depending on part numbers and data versus instructions.

Table 47. Data Packing Options for Parallel Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-2126x Yes Yes No

ADSP-2136x Yes Yes No

For ADSP-2126x processors, the external memory address ranges are 0x10 00000-0x2F FFFFF. For
ADSP-2136x processors, the external memory address ranges are 0x12 00000-0x1203FFF. External instruction
fetch is not supported by these processors.

AMI/SDRAM/DDR2

�e ADSP-21367/8/9 processors external port is used to arbitrate between AMI and SDRAM/DDR2 access.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

141

Table 48. Data Packing Options for External Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-21367/8/9 AMI AMI/SDRAM AMI/SDRAM

ADSP-2137x AMI AMI/SDRAM AMI/SDRAM

ADSP-214xx AMI AMI/SDRAM/DDR2 No

For ADSP-2137x/214xx processors, the external memory address range for ISA instruction fetch (bank0 only) is
0x20 0000-0x5FFFFF.

For ADSP-214xx processors, the external memory address range for VISA instruction fetch (bank0 only) is 0x60
0000-0xFFFFFF.

Table 49. Instruction Fetch Packing Options for External Port

Packing Options WIDTH (8) WIDTH (16) WIDTH (32)

ADSP-2137x AMI AMI/SDRAM AMI/SDRAM

ADSP-214xx AMI AMI/SDRAM/DDR2 No

Packing and Padding Details

For ZERO_INIT sections in a .dxe �le, no data packing or padding in the .ldr �le is required because only the
header itself is included in the .ldr �le. However, for other section types, additional data manipulation is
required. It is important to note that in all cases, the word count placed into the block header in the loader �le is
the original number of words. �at is, the word count does not include the padded word.

SPI Port Boot Modes
Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices. In all SPI boot modes, the data word
size in the shi� register is hardwired to 32 bits. �erefore, for 8- or 16-bit devices, data words are packed into the
SPI shi� register to generate 32-bit words least signi�cant bit (LSB) �rst, which are then shi�ed into internal
memory.

When booting, the ADSP-2126x/2136x/2137x/214xx processor expects to receive words into the RXSPI bu�er
seamlessly. �is means that bits are received continuously without breaks in the SPIDS link. For di�erent SPI
host sizes, the processor expects to receive instructions and data packed in a least signi�cant word (LSW)
format.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

142 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

SPI Slave Boot Mode

In SPI slave boot mode, the host processor initiates the booting operation by activating the SPICLK signal and
asserting the SPIDS signal to the active low state. �e 256-word boot kernel is loaded 32 bits at a time, via the SPI
receive shi� register. To receive 256 instructions (48-bit words) properly, the SPI DMA initially loads a DMA
count of 384 32-bit words, which is equivalent to 256 48-bit words.

i
Note:

�e processor’s SPIDS pin should not be tied low. When in SPI slave mode, including booting, the SPIDS
signal is required to transition from high to low. SPI slave booting uses the default bit settings shown in
the SPI Slave Boot Bit Settings table.

Table 50. SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

MS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB �rst

WL 10, 32-bit SPI Receive Shi� register word length

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the �rst bit

SPI Master Boot Modes

In SPI master boot mode, the ADSP-2126x/2136x/2137x/214xx processor initiates the booting operation by:

1. Activating the SPICLK signal and asserting the FLAG0 signal to the active low state

2. Writing the read command 0x03 and 24-bit address 0x00000 to the slave device

i
Note:

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

143

�e processor's SPIDS pin should not be tied low. When in SPI slave mode, including booting, the
SPIDS signal is required to transition from high to low. SPI slave booting uses the default bit settings
shown in the SPI Slave Boot Bit Settings table (see SPI Slave Boot Mode).

From the perspective of the processor, there is no di�erence between booting from the three types of SPI slave
devices. Since SPI is a full-duplex protocol, the processor is receiving the same amount of bits that it sends as a
read command. �e read command comprises a full 32-bit word (which is what the processor is initialized to
send) comprised of a 24-bit address with an 8-bit opcode. �e 32-bit word, received while the read command is
transmitted, is thrown away in hardware and can never be recovered by the user. Consequently, special measures
must be taken to guarantee that the boot stream is identical in all three cases.

i
Note:

SPI master boot mode is used when the processor is booting from an SPI compatible serial PROM, serial
�ash, or slave host processor.

�e processor boots in least signi�cant bit �rst (LSB) format, while most serial memory devices operate in most
signi�cant bit �rst (MSB) format. �erefore, it is necessary to program the device in a fashion that is compatible
with the required LSB format. See Bit-Reverse Option for SPI Master Boot Modes for details.

Also, because the processor always transmits 32 bits before it begins reading boot data from the slave device, the
loader utility must insert extra data into the byte stream (in the loader �le) if using memory devices that do not
use the LSB format. �e loader utility includes an option for creating a boot stream compatible with both endian
formats, and devices requiring 16-bit and 24-bit addresses, as well as those requiring no read command at all.
See Initial Word Option for SPI Master Boot Modes for details.

�e SPI Master Mode Booting Using Various Serial Devices �gure shows the initial 32-bit word sent out from
the processor. As shown in the �gure, the processor initiates the SPI master boot process by writing an 8-bit
opcode (LSB �rst) to the slave device to specify a read operation. �is read opcode is �xed to 0xC0 (0x03 in MSB
�rst format). Following that, a 24-bit address (all zeros) is always driven by the processor. On the following
SPICLK cycle (cycle 32), the processor expects the �rst bit of the �rst word of the boot stream. �is transfer
continues until the boot kernel has �nished loading the user program into the processor.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

144 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

SPICLK

MOSI

SPI FLASH
MISO

SPI PROM
MISO

SPI MASTER
MISO

FLAG0

51ADMC TIB-8 -8A23- 7A61 -0

BYTE0
(0XA5) BYTE1

MSB LSB

BYTE0
(0XA5) BYTE1

BYTE0
(0XA5)

BYTE0
(0XA5) BYTE1BYTE3BYTE1 BYTE2BYTE0

VALID DATADATA IGNORED

24-BIT ADDRESS

16-BIT ADDRESS

Figure 13. SPI Master Mode Booting Using Various Serial Devices

Bit-Reverse Option for SPI Master Boot Modes

SPI PROM. For the SPI PROM boot type, the entirety of the SPI master .ldr �le needs the option of bit-
reversing when loading to SPI PROMs. �is is because the default setting of the MSBF bit (SPICTL register) is
cleared which sets order to be LSB �rst. sets the bit order to be LSB �rst. SPI EPROMs are usually MSB �rst, so
the .ldr �le must be sent in bit-reversed order.

SPI Master and SPI Slave. When loading to other slave devices, the SPI master and SPI slave boot types do not
need bit reversing necessarily. For SPI slave and SPI master boots to non-PROM devices, the same default exists
(bit-reversed); however, the host (master or slave) can simply be con�gured to transmit LSB �rst.

Initial Word Option for SPI Master Boot Modes

Before �nal formatting (binary, include, etc.) the loader must prepend the word 0xA5 to the beginning of the
byte stream. During SPI read command, the SPI port discards the �rst byte read from the SPI via the MISO line
(see the Initial Word for SPI Master and SPI PROM in .ldr File table).

Table 51. Initial Word for SPI Master and SPI PROM in .ldr File

Boot Mode Additional Word -hostwidth

32 16 8

SPI master8 0xA5000000 A5000000 0000 00

8 Initial word for SPI master boot type is always 32 bits. See the SPI Master Mode Booting Using Various
Serial Devices �gure in Bit-Reverse Option for SPI Master Boot Modes for explanation.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

145

Boot Mode Additional Word -hostwidth

32 16 8

A500 00

00

A5

SPI PROM9 0xA5 A5 A5 A5

SPI PROM. For the SPI PROM boot type, the word 0xA5 prepended to the stream is one byte in length. SPI
PROMs receives a 24-bit read command before any data is sent to the processor, the processor then discards the
�rst byte it receives a�er this 24-bit opcode is sent (totaling one 32-bit word).

SPI Master. For the SPI master boot type, the word 0xA5000000 prepended to the stream is 32 bits in length. An
SPI host con�gured as a slave begins sending data to the processor while the processor is sending the 24-bit
PROM read opcode. �ese 24-bits must be zero-�lled because the processor discards the �rst 32-bit word that it
receives from the slave.

i
Note:

Initial word option is only required for SPI master/prom boot mode. �e CrossCore Embedded Studio
tools automatically handle this in the loader �le generation process for SPI boot devices.

With bit reversing for SPI master boot mode, the 32-bit word is handled according to the host width. With bit
reversing for SPI PROM boot, the 8-bit word is reversed as a byte and prepended (see the Default Settings for
PROM and SPI Boot Modes table).

Table 52. Default Settings for PROM and SPI Boot Modes

Boot Type Selection Host Width Output Format Bit Reverse Initial Word

-bprom 8 Intel hex No -

-bspislave 32 ASCII No -

-bspiflash 32 ASCII No -

-bspimaster 32 ASCII No 0x000000a5

9 Initial word for SPI PROM boot type is always 8 bits. See the SPI Master Mode Booting Using Various
Serial Devices �gure in Bit-Reverse Option for SPI Master Boot Modes for explanation

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

146 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Boot Type Selection Host Width Output Format Bit Reverse Initial Word

-bspiprom 8 Intel hex Yes 0xa5

Booting From an SPI Flash (24-Bit Address)

For SPI �ash devices, the format of the boot stream is identical to that used in SPI slave mode, with the �rst byte
of the boot stream being the �rst byte of the kernel. �is is because SPI �ash devices do not drive out data until
they receive an 8-bit command and a 24-bit address.

Booting From an SPI PROM (16-Bit Address)

�e the SPI Master Mode Booting Using Various Serial Devices �gure in Bit-Reverse Option for SPI Master Boot
Modes shows the initial 32-bit word sent out from the processor from the perspective of the serial PROM device.

As shown in the �gure, SPI EEPROMs only require an 8-bit opcode and a 16-bit address. �ese devices begin
transmitting on clock cycle 24. However, because the processor is not expecting data until clock cycle 32, it is
necessary for the loader to pad an extra byte to the beginning of the boot stream when programming the PROM.
In other words, the �rst byte of the boot kernel is the second byte of the boot stream.

Booting From an SPI Host Processor (No Address)

Typically, host processors in SPI slave mode transmit data on every SPICLK cycle. �is means that the �rst four
bytes that are sent by the host processor are part of the �rst 32-bit word that is thrown away by the processor (see
the SPI Master Mode Booting Using Various Serial Devices �gure in Bit-Reverse Option for SPI Master Boot
Modes). �erefore, it is necessary for the loader to pad an extra four bytes to the beginning of the boot stream
when programming the host; for example, the �rst byte of the kernel is the ��h byte of the boot stream.

Reserved (No Boot) Mode
In no boot mode, upon reset, the processor starts executing the application stored in the internal boot kernel.

ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels
�e boot-loading process starts with a transfer of the boot kernel program into the processor memory. �e boot
kernel sets up the processor and loads boot data. A�er the boot kernel �nishes initializing the rest of the system,
the boot kernel loads boot data over itself with a �nal DMA transfer.

�e ADSP-2126x/2136x/2137x/214xx Default Boot Kernel Files table lists the ADSP-2126x/2136x/2137x/214xx
boot kernels shipped with CrossCore Embedded Studio.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

147

Table 53. ADSP-2126x/2136x/2137x/214xx Default Boot Kernel Files

Processor PROM SPI Slave, SPI Flash, SPI
Master, SPI PROM

Link Port Boot
(ADSP-2146x)

ADSP-2126x 26x_prom.dxe 26x_spi.dxe N/A

ADSP-21362,
ADSP-21363,
ADSP-21364,
ADSP-21365,
ADSP-21366

36x_prom.dxe 36x_spi.dxe N/A

ADSP-21367,
ADSP-21368,
ADSP-21369

369_prom.dxe 369_spi.dxe N/A

ADSP-21371 371_prom.dxe 371_spi.dxe N/A

ADSP-21375 375_prom.dxe 375_spi.dxe N/A

ADSP-21467,
ADSP-21469

469_prom.dxe 469_spi.dxe 469_link.dxe

ADSP-21477,
ADSP-21478,
ADSP-21479

479_prom.dxe 479_spi.dxe N/A

ADSP-21483,
ADSP-21486,
ADSP-21487,
ADSP-21488,
ADSP-21489

489_prom.dxe 489_spi.dxe N/A

At processor reset, a boot kernel is loaded into the seg_ldr memory segment as de�ned in the Linker
Description File for the default loader kernel that corresponds to the target processor, for example,
2126x_ldr.ldf, which is stored in the <install_path>/SHARC/ldr/26x_prom directory of the target
processor.

Boot Kernel Modificatio and Loader Issues
Boot kernel customization is required for some systems. In addition, the operation of other tools (such as the
C/C++ compiler) is in�uenced by whether the loader utility is used.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

148 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

If you do not specify a boot kernel �le via the Loader > General page of theTool Settings dialog box in the IDE
(or via the-l command-line switch), the loader utility places a default boot kernel (see the ADSP-2126x/2136x/
2137x/214xx Default Boot Kernel Files table in ADSP-2126x/2136x/2137x/214xx Processors Boot Kernels) in the
loader output �le based on the speci�ed boot type.

If you do not want to use any boot kernel �le, check the No kernel (-nokernel) box (or specify the -nokernel
command-line switch). �e loader utility places no boot kernel in the loader output �le.

• To omit a boot kernel. �e -nokernel switch denotes that a running on the processor (already booted)
subroutine imports the .ldr �le. �e loader utility does not insert a boot kernel into the .ldr �le-a similar
subroutine is present already on the processor. Instead, the loader �le begins with the �rst header of the �rst
block of the boot stream.

• To omit any interrupt vector table (IVT) handling. In internal boot mode, the boot stream is not imported by a
boot kernel executing from within the IVT; no self-modifying FINAL_INIT code (which overwrites itself with
the IVT) is needed. �us, the loader utility does not give any special handling to the 256 instructions located in
the IVT (0x80000-0x800FF for ADSP-2126x processors and 0x90000-0x900FF for ADSP-2136x processors).
Instead, the IVT code or data are handled like any other range of memory.

• To omit an initial word of 0xa5. When -nokernel is selected, the loader utility does not place an initial word
(A5) in the boot stream as required for SPI master booting.

• To replace the FINAL_INIT block with a USER_MESG header. �e FINAL_INIT block (which typically contains
the IVT code) should not be included in the .ldr �le because the contents of the IVT (if any) is incorporated
in the boot stream. Instead, the loader utility appends one �nal bock header to terminate the loader �le.

�e �nal block header has a block tag of 0x0 (USER_MESG). �e header indicates to a subroutine processing the
boot stream that this is the end of the stream. �e header contains two 32-bit data words, instead of count and
address information (unlike the other headers). �e words can be used to provide version number, error
checking, additional commands, return addresses, or a number of other messages to the importing subroutine
on the processor.

�e two 32-bit values can be set on the command line as arguments to the -nokernel[message1, message2]
switch (see the ADSP-2126x/2136x/2137x/214xx Loader Switches table in Loader Command-Line Switches for
ADSP-2126x/2136x/2137x/214xx Processors. �e �rst optional argument is msg_word1, and the second
optional argument is msg_word2, where the values are interpreted as 32-bit unsigned numbers. If only one
argument is issued, that argument is msg_word1. It is not possible to specify msg_word2 without specifying
msg_word1.) If one or no arguments are issued at the command line, the default values for the arguments are
0x00000000.

�e Internal Booting: USER_MESG Block Header Format listing shows a sample format for the USER_MESG
header.

Internal Booting: USER_MESG Block Header Format

0x00000000 /* USER_MESG tag */

0x00000000 /* msg_word1 (1st cmd-line parameter) */

0x00000000 /* msg_word2 (2nd cmd-line parameter) */

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

149

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.asm) �le by inserting appropriate settings for your system, you must
rebuild the boot kernel (.dxe) before generating the boot-loadable (.ldr) �le. Note the boot kernel source �le
already contains default register con�gurations for the external memories (AMI/SDRAM/DDR2).

To Modify a Boot Kernel Source File

1. Copy the applicable boot kernel source �le (26x_prom.asm, 26x_spi.asm, 36x_prom.asm, 36x_spi.asm,
369_prom.asm, 369_spi.asm).

2. Apply the appropriate changes.

i
Note:

Any modi�cation requires that the RTI instruction should still be located at the required peripheral ISR,
otherwise the booting may fail.

A�er modifying the boot kernel source �le, rebuild the boot kernel (.dxe) �le. Do this from within the IDE
(refer to online help for details) or rebuild a boot kernel �le from the command line.

Rebuilding a Boot Kernel Using Command Lines

Rebuild a boot kernel using command lines as follows.

PROM Booting. �e default boot kernel source �le for PROM booting is 26x_prom.asm for the ADSP-2126x
processors. A�er copying the default �le to my_prom.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel.

easm21k -proc ADSP-21262 my_prom.asm

linker -T 2162x_ldr.ldf my_prom.doj

SPI Booting. �e default boot kernel source �le for link booting is 2126x_SPI.asm for the ADSP-2126x
processors. A�er copying the default �le to my_SPI.asm and modifying it to suit your system, use the following
command lines to rebuild the boot kernel:

easm21k -proc ADSP-21262 my_SPI.asm

linker -T 2126x_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the PROM or SPI booting modes, ensure that the seg_ldr memory segment is
de�ned in the .ldf �le. Refer to the source of this memory segment in the .ldf �le located in the ldr
installation directory of the target processor.

Because the loader utility uses the RESET vector location during the boot-load process, avoid placing code at the
address. When using any of the processor's power-up booting modes, ensure that the address does not contain a
critical instruction, because the address is not executed during the booting sequence. Place a NOP or IDLE in this
location. �e loader utility generates a warning if the RESET vector location does not contain NOP or IDLE.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

150 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

i
Note:

When creating the loader �le, specify the name of the customized boot kernel executable in the Kernel �le
(-l) �eld on the CrossCore SHARC Loader > General page of the Tool Settings dialog box.

ADSP-2126x/2136x/2137x/214xx Processor Boot Streams
�e loader utility generates and inserts a header at the beginning of a block of contiguous data and instructions
in the loader �le. �e kernel uses headers to properly place blocks into processor memory. �e architecture of
the header follows the convention used by other SHARC processors.

For all of the ADSP-2126x/2136x/2137x/214xx processor boot types, the structures of block header are the same.
�e header consists of three 32-bit words: the block tag, word count, and destination address. �e order of these
words is as follows.

0x000000TT First word. Tag of the data block (T)

0x0000CCCC Second word. Data word length or data word count (C) of the data block.

0xAAAAAAAA �ird word. Start address (A) of the data block.

Boot Stream Block Tags
�e ADSP-2126x/2136x/2137x/214xx Processor Block Tags table details the processor block tags.

Table 54. ADSP-2126x/2136x/2137x/214xx Processor Block Tags

Tag Count 1 Address Padding

0x0 FINAL_INIT None

0x1 ZERO_LDATA Number of 16-, 32-, or 64-
bit words

Logical short, normal, or
long word address

None

0x2 ZERO_L48 2 Number of 48-bit words Logical normal word
(ISA) or Short word
(VISA) address

None

0x3 INIT_L16 Number of 16-bit words Logical short word
address

If count is odd, pad with
16-bit zero word; see
INIT_L16 Blocks for
details.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

151

Tag Count 1 Address Padding

0x4 INIT_L32 Number of 32-bit words Logical normal word
address

None

0x5 INIT_L48 2 Number of 48-bit words Logical normal word
(ISA) or Short word
(VISA) address

If count is odd, pad with
48-bit zero word; see
INIT_L48 Blocks for
details.

0x6 INIT_L64 Number of 64-bit words Logical long word address None; see INIT_L64
Blocks for details.

0x7 ZERO_EXT8 Number of 32-bit words Physical external address None

0x8 ZERO_EXT16 Number of 32-bit words Physical external address None

0x9 INIT_EXT8 Number of 32-bit words Physical external address None

0xA INIT_EXT16 Number of 32-bit words Physical external address None

0xB MULTI_PROC for
ADSP-21368,
ADSP-2146x processors

Processor IDs (bits 0-7);
see Multi-Application
(Multi-DXE)
Management for details.

O�set to the next
processor ID in words (32
bits)

None

0x0 USR_MESG msg_word1 msg_word2 None

1 �e count is the actual number of words and does NOT included padded words added by the loader utility.

2 40-bit �oating point data and 48-bit ISA/VISA instructions words are treated identically.

�e ADSP-2126x/2136x/2137x/214xx processor uses eleven block tags, a lesser number of tags compared to
other SHARC predecessors.

ZERO_INIT Blocks
�ere is only one initialization tag per width because there is no need to draw distinction between pm and dm
sections during initialization. �e same tag is used for 16-bit (short word), 32-bit (normal word), and 64-bit
(long word) blocks that contain only zeros. �e 0x1 tag is used for ZERO_LDATA blocks of 16-bit, 32-bit, and 64-
bit words. �e 0x2 tag is used for ZERO_L48 blocks of 40-bit �oating point data and 48-bit ISA (VISA
instructions ADSP-214xx).

For clarity, the letter L has been added to the names of the internal block tags. L indicates that the associated
section header uses the logical word count and logical address. Previous SHARC boot kernels do not use logical

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

152 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

values. For example, the count for a 16-bit block may be the number of 32-bit words rather than the actual
number of 16-bit words.

Only four tags are required to handle an external memory, two for each packing mode (see Packing Options for
External Memory). �e external memory can be accessed only via the physical address of the memory. �is
means that each 32-bit word corresponds to either four (for 8-bit) or two (for 16-bit) external addresses. �e EXT
appended to the name of the block tag indicates that the address is a physical external address. For
ADSP-21367/21368/21369/2137x and ADSP-214xx processors, tag INIT_L32 also is used for all external 32-bit
blocks.

INIT_L48 Blocks

�e INIT_L48 block has one packing and one padding requirements. First, there must be an even number of 48-
bit words in the block. If there is an odd number of instructions, then the loader utility must append one
additional 48-bit NOP instruction that is all zeros. In all cases, the count placed into the header is the original
logical number of words. �at is, the count does not include the padded word. Once the number of words in the
block is even, the data in this block is packed according to the INIT_L48 Block Packing and Zero-Padding
(ASCII Format) table.

Table 55. INIT_L48 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit
Words

-hostwidth

32 16 8

111122223333 22223333 22223333 3333 33

444455556666 66661111 55551111 2222 33

AAAABBBBCCCC 44445555 44445555 1111 22

BBBBCCCC BBBBCCCC 6666 22

0000AAAA 0000AAAA 5555 11

00000000 00000000 4444 11

CCCC 66

BBBB 66

AAAA 55

0000 55

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

153

Original Data Packed into an Even
Number of 32-bit
Words

-hostwidth

32 16 8

0000 44

0000 44

CC

CC

BB

INIT_L16 Blocks

For 16-bit initialization blocks, the number of 16-bit words in the block must be even. If an odd number of 16-
bit words is in the block, then the loader utility adds one additional word (all zeros) to the end of the block, as
shown in the INIT_L16 Block Packing and Zero-Padding (ASCII Format) table. �e count stored in the header
is the actual number of 16-bit words. �e count does not include the padded word.

Table 56. INIT_L16 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even
Number of 32-bit
Words

-hostwidth

32 16 8

1122 33441122 33441122 1122 22

3344 00005566 00005566 3344 11

5566 5566 44

0000 33

66

55

00

00

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

154 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

INIT_L64 Blocks

For 64-bit initialization blocks, the data is packed as shown in the INIT_L64 Block Packing (ASCII Format)
table.

Table 57. INIT_L64 Block Packing (ASCII Format)

Original Data Packed into an Even
Number of 32-bit
Words

-hostwidth

32 16 8

1111222233334444 33334444 33334444 4444 44

11112222 11112222 3333 44

2222 33

1111 33

22

22

11

11

MULT_PROC Blocks

�e 0xB tag is for multiprocessor systems, exclusively supported on ADSP-21368 and ADSP-2146x processors.
�e tag indicates that the header is a processor ID header with the ID values and o�set values stored in the
header. A block can have multiple IDs in its block header, which makes it possible to boot the block into multiple
processors.

Two data tags, USER_MESG and FINAL_INIT, di�er from the standard format for other SHARC data tags. �e
USER_MESG header is described in Boot Kernel Modi�cation and Loader Issues, and the FINAL_INIT header in
FINAL_INIT Blocks.

FINAL_INIT Blocks

�e �nal 256-instructions of the .ldr �le contain the instructions for the IVT. �e instructions are initialized by
a special self-modifying subroutine in the boot kernel (see Listing 7-2). To support the self-modifying code, the
loader utility modi�es the FINAL_INIT block as follows:

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

155

1. Places a multi-function instruction at the ��h instruction of the block: �e loader utility places the
instruction R0=R0-R0, DM(I4,M5)=R9, PM(I12,M13)=R11; at RESET vector location. �e instruction
overwrites whatever instruction is at that address. �e opcode for this instruction is 0x39732D802000.

2. Places an RTI instruction in the IVT: �e loader utility inserts an RTI instruction (opcode 0x0B3E00000000)
at the �rst address in the IVT entry associated with the boot-source. Unlike the multifunction instruction
placed at RESET vector location which overwrites the data, the loader utility preserves the user-speci�ed
instruction which the RTI replaces. �is instruction is stored in the header for FINAL_INIT as shown in
Listing 7-2.

• For parallel boot mode, the RTI is placed at address 0x80050 for ADSP-2126x processors, at 0x90050 for
ADSP-2136x/2137x processors, and at 0x8C050 for ADSP-214xx processors.

• For all SPI boot modes, the RTI is placed at address 0x80030 for ADSP-2126x processors, at 0x90030 for
ADSP-2136x/2137x processors, and at 0x8C030 for ADSP-214xx processors (high priority SPI interrupt).

3. Saves an IVT instruction in the FINAL_INIT block header. �e count and address of a FINAL_INIT block are
constant; to avoid any redundancy, the count and address are not placed into the block header. Instead, the
32-bit count and address words are used to hold the instruction that overwrites the RTI inserted into the IVT.
Listing 7-2 illustrates the block header for FINAL_INIT if, for example, the opcode 0xAABBCCDDEEFF is
assumed to be the user-intended instruction for the IVT.

FINAL_INIT Block Header Format

0x00000000 /* FINAL_INIT tag = 0x0 */

0xEEFF0000 /* LSBs of instructions */

0xAABBCCDD /* 4 MSBs of instructions */

FINAL_INIT Section (ADSP-2126x)

/* ====================== FINAL_INIT ======================== */

/* The FINAL_INIT subroutine in the boot kernel program sets up

a DMA to overwrite itself. The code is the very last piece that

runs in the kernel; it is self-modifying code, It uses a DMA

to overwrite itself, initializing the 256 instructions that

reside in the Interrupt Vector Table. */

/* -- */

final_init:

 /* ----------- Setup for IVT instruction patch ------------- */

 I8=0x80030; /* Point to SPI vector to patch from PX */

 R9=0xb16b0000; /* Load opcode for "PM(0,I8)=PX" into R9 */

 PX=pm(0x80002); /* User instruction destined for 0x80030

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

156 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

 is passed in the section-header for

 FINAL_INIT. That instr. is initialized

 upon completion of this DMA (see comments

 below) using the PX register. */

 R11=BSET R11 BY 9; /* Set IMDW to 1 for inst. write */

 DM(SYSCTL)=R11; /* Set IMDW to 1 for inst. write */

 /* ------ Setup loop for self-modifying instruction ------- */

 I4=0x80004; /* Point to 0x080004 for self-modifying

 code inserted by the loader at 0x80004

 in bootstream */

 R9=pass R9, R11=R12; /* Clear AZ, copy power-on value

 of SYSCTL to R11 */

 DO 0x80004 UNTIL EQ; /* Set bottom-of-loop address (loopstack)

 to 0x80004 and top-of-loop (PC Stack)

 to the address of the next

 instruction. */

 PCSTK=0x80004; /* Change top-of-loop value from the

 address of this instruction to

 0x80004. */

 /* ------------- Setup final DMA parameters --------------- */

 R1=0x80000;DM(IISX)=R1; /* Setup DMA to load over ldr */

 R2=0x180; DM(CSX)=R2; /* Load internal count */

 DM(IMSX)=M6; /* Set to increment internal ptr */

 /*----------------- Enable SPI interrupt --------------------*/

 bit clr IRPTL SPIHI; /* Clear any pending SPI interr. latch */

 bit set IMASK SPIHI; /* Enable SPI receive interrupt */

 bit set MODE1 IRPTEN; /* Enable global interrupts */

 FLUSH CACHE; /* Remove any kernel instr's from cache */

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

157

 /*---------- Begin final DMA to overwrite this code -------- */

 ustat1=dm(SPIDMAC);

 bit set ustat1 SPIDEN;

 dm(SPIDMAC)=ustat1; /* Begin final DMA transfer */

 /*------------ Initiate self-modifying sequence ----------- */

 JUMP 0x80004 (DB); /* Causes 0x80004 to be the return

 address when this DMA completes and

 the RTI at 0x80030 is executed. */

 IDLE; /* After IDLE, patch then start */

 IMASK=0; /* Clear IMASK on way to 0x80004 */

/* == */

/* When this final DMA completes, the high-priority SPI interrupt

is latched, which triggers the following chain of events:

1) The IDLE in the delayed branch to completes

2) IMASK is cleared

3) The PC (now 0x80004 due to the "JUMP RESET (db)") is pushed

 on the PC stack and the processor vectors to 0x80030 to

 service the interrupt.

 Meanwhile, the loader (anticipating this sequence) has automatically

 inserted an "RTI" instruction at 0x80030. The user

 instruction intended for that address is instead placed

 in the FINAL_INIT section-header and has loaded into PX before

 the DMA was initiated.)

4) The processor executes the RTI at 0x80030 and vectors to the

 address stored on the PC stack (0x80004).

 Again, the loader has inserted an instruction into the boot

 stream and has placed it at 0x80005 (opcode x39732D802000):

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

158 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

 R0=R0-R0,DM(I4,M5)=R9,PM(I12,M13)=R11;

 This instruction does the following.

 A) Restores the power-up value of SYSCTL (held in R11).

 B) Overwrites itself with the instruction "PM(0,I8)=PX;"

 The first instruction of FINAL_INIT places the opcode for

 this new instruction, 0xB16B00000000, into R9.

 C) R0=R0-R0 causes the AZ flag to be set.

 This satisfies the termination-condition of the loop set up

 in FINAL_INIT ("DO RESET UNTIL EQ;"). When a loop condition

 is achieved within the last three instructions of a loop,

 the processor branches to the top-of-loop address (PCSTK)

 one final time.

5) We manually changed this top-of-loop address 0x80004, and so to conclude the
kernel, the processor executes the instruction

 at 0x80004 *again*.

6) There's a new instruction at 0x80004: "PM(0,I8)=PX;". This

 initializes the user-intended instruction at 0x80030 (the vector

 for the High-Priority-SPI interrupt).

At this point, the kernel is finished, and execution continues

at 0x80005, with the only trace as if nothing happened! */

/* == */

Multi-Application (Multi-DXE) Management
Up to four ADSP-21367/21368/21369/21371/21375, and two ADSP-214xx processors can be clustered together
and supported by the CrossCore Embedded Studio loader utility. In PROM boot mode, all of the processors can
boot from the same PROM. �e loader utility assigns an input executable (.dxe) �le to a processor ID or to a
number of processor IDs, provided a corresponding loader option is selected on the properties page or on the
command line.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

159

�e loader utility inserts the ID into the output boot stream using the multiprocessor tag MULTI_PROC (see the
ADSP-2126x/2136x/2137x/214xx Processor Block Tags table in Boot Stream Block Tags). �e loader utility also
inserts the o�set (the 32-bit word count of the boot stream built from the input executable (.dxe) �le) into the
boot stream. �e MULTI_PROC tag enables the boot kernel to identify each section of the boot stream with the
executable (.dxe) �le from which that section was built. �e Multiprocessor Boot Stream �gure shows the
multiprocessor boot stream structure.

BOOT KERNEL

......

1st .dxe BLOCK HEADER

1st .dxe DATA BLOCKS

2nd .dxe BLOCK HEADER

2nd .dxe DATA BLOCKS

......

Figure 14. Multiprocessor Boot Stream

�e processor ID of the corresponding processor is indicated in a 32-bit word, which has the Nth bit set for
the .dxe �le corresponding to ID=N. �e Multiprocessor ID Fields table shows possible ID �elds.

Table 58. Multiprocessor ID Fields

Processor ID Number Loader ID Field

0 0x00000001

1 0x00000002

2 0x00000004

3 0x00000008

4 0x00000010

5 0x00000020

6 0x00000040

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

160 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Processor ID Number Loader ID Field

7 0x00000080

1 && 4 0x00000012

6 && 7 0x000000C0

�e multiprocessor tag, processor ID, and the o�set are encapsulated in a multiprocessor header. �e
multiprocessor header includes three 32-bit words: the multiprocessor tag; the ID (0-7) of the associated
processor .dxe �le in the lowest byte of a word; and the o�set to the next multiprocessor tag. �e loader -
id#exe=filename switch is used to assign a processor ID number to an executable �le. �e loader -id#ref=N
switch is used to share the same executable �le by setting multiple bits in the ID �eld. �e Multiprocessor
Header �gure shows the multiprocessor header structure.

0xB

PROCESSOR ID

OFFSET TO THE NEXT MULTIPROCESSOR HEADER

Figure 15. Multiprocessor Header

ADSP-2126x/2136x/2137x Processor Compression Support

i
Note:

Compression is not supported on the ADSP-214xx processors.

�e loader utility for the ADSP-2126x/2136x/2137x processors o�ers a loader �le (boot stream) compression
mechanism known as zLib. �e zLib compression is supported by a third party dynamic link library, zLib1.dll.
Additional information about the library can be obtained from the http://www.zlib.net Web site.

�e zLib1 dynamic link library is included with CrossCore Embedded Studio. �e library functions perform the
boot stream compression and decompression procedures when the appropriate options are selected for the
loader utility.

�e boot kernel with built-in decompression mechanism must perform the decompression on the compressed
boot stream in a booting process. �e default boot kernel with decompression functions are included with
CrossCore Embedded Studio.

�e loader -compression switch directs the loader utility to perform the boot stream compression from the
command line. �e IDE also o�ers a dedicated loader properties page (Compression) to manage the
compression from the graphical user interface.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

161

http://www.zlib.net

�e loader utility takes two steps to compress a boot stream. First, the utility generates the boot stream in the
conventional way (builds data blocks), then applies the compression to the boot stream. �e decompression
initialization is the reversed process: the loader utility decompresses the compressed stream �rst, then loads code
and data into memory segments in the conventional way.

�e loader utility compresses the boot stream on the .dxe-by-.dxe basis. For each input .dxe �le, the utility
compresses the code and data together, including all code and data from any associated shared memory (.sm)
�les. �e loader utility, however, does not compress automatically any data from any associated overlay �les. To
compress data and code from the overlay �le, call the utility with the -compressionOverlay switch, either from
the properties page or from the command line.

Compressed Streams
�e basic structure of a loader �le with compressed streams is shown in the Loader File With Compressed
Streams �gure.

KERNEL WITH DECOMPRESSION ENGINE

......

1st .dxe COMPRESSED STREAM

1st .dxe UNCOMPRESSED STREAM

2nd .dxe COMPRESSED STREAM

2nd .dxe UNCOMPRESSED STREAM

......

Figure 16. Loader File With Compressed Streams

�e kernel code with the decompression engine is on the top of the loader �le. �is section is loaded into the
processor �rst and is executed �rst when a boot process starts. Once the kernel code is executed, the rest of the
stream is brought into the processor. �e kernel code calls the decompression routine to perform the
decompression operation on the stream, and then loads the decompressed stream into the processor's memory
in the same manner a conventional kernel does when it encounters a compressed stream.

�e Compressed Block �gure shows the structure of a compressed boot stream.

COMPRESSED BLOCK HEADER

COMPRESSED STREAM

Figure 17. Compressed Block

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

162 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Compressed Block Headers
A compressed stream always has a header, followed by the payload compressed stream.

�e compressed block header is comprised of three 32-bit words. �e structure of a compressed block header is
shown in the Compressed Block Header �gure.

COMPRESSED BLOCK HEADER

COMPRESSED STREAM

Figure 18. Compressed Block Header

�e �rst 32-bit word of the compressed block header holds the compression �ag, 0x00002000, which indicates
that it is a compressed block header.

�e second 32-bit word of the compressed block header hold the size of the compression window (takes the
upper 16 bits) and padded word count (takes the lower 16 bits). For the ADSP-2126x/2136x/2137x processors,
the loader utility always rounds the byte count of the compressed stream to be a multiple of 4. �e loader utility
also pads 3 bytes to the compressed stream if the byte count of the compressed stream from the loader
compression engine is not a multiple of 4. An actual padded byte count is a value between 0x0000 and 0x0003.

�e compression window size is 8-15 bits, with the default value of 9 bits. �e compression window size speci�es
to the compression engine a number of bytes taken from the window during the compression. �e window size
is the 2's exponential value.

�e next 32 bits of the compressed block header holds the value of the compressed stream byte count, excluding
the byte padded.

A window size selection a�ects, more or less, the outcome of the data compression. Streams in decompression
windows of di�erent sizes are, in general, di�erent and most likely not compatible to each other. If you are
building a custom decompression kernel, ensure the same compression window size is used for both the loader
utility and the kernel. In general, a bigger compression window size leads to a smaller outcome stream. However,
the bene�t of a big window size is marginal in some cases. An outcome of the data compression depends on a
number of factors, and a compression window size selection is only one of them. �e other important factor is
the coding structure of an input stream. A compression window size selection can not cause a much smaller
outcome stream if the compression ability of the input stream is low.

Uncompressed Streams
Following the compressed streams, the loader utility �le includes the uncompressed streams. �e uncompressed
streams include application codes, con�icted with the code in the initialization blocks in the processor's memory
spaces, and a �nal block. �e uncompressed stream includes only a �nal block if there is no con�icted code. �e

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

163

�nal block can have a zero byte count. �e �nal block indicates the end of the application to the initialization
code.

Overlay Compression
�e loader utility compresses the code and data from the executable .dxe and shared memory .sm �les when the
-compression command-line switch is used alone, and leaves the code and data from the overlay (.ovl) �les
uncompressed. �e -compressionOverlay switch directs the loader utility to compress the code and data from
the .ovl �les, in addition to compressing the code and data from the .dxe and .sm �les.

�e -compressionOverlay switch must be used in conjunction with -compression.

Booting Compressed Streams
�e ADSP-2126x/2136x/2137x Compressed Loader Stream: Booting Sequence �gure shows the booting
sequence of a loader �le with compressed streams. �e loader �le is prestored in the �ash memory.

1. A a booting process is initialized by the processor.

2. �e processor brings the 256 words of the boot kernel from the �ash memory to the processor's memory for
execution.

3. �e decompression engine is brought in.

4. �e compressed stream is brought in, then decompressed and loaded into the memory.

5. �e uncompressed stream is brought and loaded into memory, possibly to overwrite the memory spaces
taken by the compressed code.

6. �e �nal block is brought and loaded into the memory to overwrite the memory spaces taken by the boot
kernel.

BOOT KERNEL

 DECOMPRESSION
ENGINE

COMPRESSED
STREAM

UNCOMPRESSED
STREAM

FINAL BLOCK

FLASH MEMORY

MEMORY

PROCESSOR
1
2

3

5

4

6

Figure 19. ADSP-2126x/2136x/2137x Compressed Loader Stream: Booting Sequence

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

164 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Decompression Kernel File
As stated before, a decompression kernel .dxe �le must be used when building a loader �le with compressed
streams. �e decompression kernel �le has a built-in decompression engine to decompress the compressed
streams from the loader �le.

A decompression kernel �le can be speci�ed from the loader properties page or from the command line via the -
l userkernel switch. CrossCore Embedded Studio includes the default decompression kernel �les, which the
loader utility uses if no other kernel �le is speci�ed. If building a custom decompression kernel, ensure that you
use the same decompression function, and use the same compression window size for both the kernel and the
loader utility.

�e default decompression kernel �les are stored in the <install_path>/SHARC/ldr/zlib directory of
CrossCore Embedded Studio. �e loader utility uses the window size of 9 bits to perform the compression
operation. �e compression window size can be changed through the loader properties page or the -
compressWS # command-line switch. �e valid range for the window size is from 8 to 15 bits.

ADSP-2126x/2136x/2137x/214xx Processor Loader Guide
Loader utility operations depend on the loader properties, which control how the utility processes executable
�les. You select features, such as boot modes, boot kernels, and output �le formats via the properties. �e
properties are speci�ed on the loader utility's command line or the Tool Settings dialog box in the IDE
(CrossCore Black�n Loader pages). �e default loader settings for a selected processor are preset in the IDE.

i
Note:

�e IDE’s Tool Settings correspond to switches displayed on the command line.

�ese sections describe how to produce a bootable loader �le (.ldr):

• Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors

• CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors

Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors
�e loader utility uses the following command-line syntax for the ADSP-2126x, ADSP-2136x, ADSP-2137x, and
ADSP-214xx SHARC processors.

 elfloader inputfile -proc processor -switch [switch]

where:

• inputfile - Name of the executable �le (.dxe) to be processed into a single boot-loadable �le. An input �le
name can include the drive and directory. Enclose long �le names within straight quotes, "long file name".

• -proc processor - Part number of the processor (for example, -proc ADSP-21262) for which the loadable
�le is built. �e -proc switch is mandatory.

• -switch - One or more optional switches to process. Switches select operations and boot modes for the loader
utility. A list of all switches and their descriptions appear in Loader Command-Line Switches ADSP- 2126x/
2136x/2137x/214xx Processors.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

165

i
Note:

Command-line switches are not case-sensitive and may be placed on the command line in any order.

�e following command line,

 elfloader Input.dxe -bSPIflash -proc ADSP-21262

runs the loader utility with:

• Input.dxe - Identi�es the executable �le to process into a boot-loadable �le. Note that the absence of the -o
switch causes the output �le name to default to Input.ldr.

• -bspiflash - Speci�es SPI �ash port booting as the boot type for the boot-loadable �le.

• -proc ADSP-21262 - Speci�es ADSP-21262 as the target processor.

Loader Command-Line Switches for ADSP-2126x/2136x/2137x/214xx Processors
�e ADSP-2126x/2136x/2137x/214xx Loader Switches table is a summary of the loader switches for the
ADSP-2126x, ADSP-2136x, ADSP-2137x, and ADSP-214xx processors.

Table 59. ADSP-2126x/2136x/2137x/214xx Loader Switches

Switch Description

-bprom

-bspislave|-bspi

-bspimaster

-bspiprom

-bspiflash

-blink

Speci�es the boot mode. �e -b switch directs the loader utility to
prepare a boot-loadable �le for the speci�ed boot mode. �e valid
modes (boot types) are PROM, SPI slave, SPI master, SPI PROM,
SPI �ash, and link port (ADSP-2146x processors).

If -b does not appear on the command line, the default is -bprom.
To use a custom boot kernel, the boot type selected with the -b
switch must correspond with the boot kernel selected with the -l
switch. Otherwise, the loader utility automatically selects a default
boot kernel based on the selected boot type (see ADSP-2126x/
2136x/2137x/214xx Processors Boot Kernels).

i
Note:

Do not use with the -nokernel switch.

-compression Directs the loader utility to compress the application data and
code, including all data and code from the application-associated
shared memory �les (see ADSP-2126x/2136x/2137x Processors
Compression Support). �e data and code from the overlay �les
are not compressed if this switch is used alone (see -
compressionOverlay).

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

166 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-compressionOverlay Directs the loader utility to compress the application data and
code from the associated overlay �les (see Overlay Compression).

i
Note:

�is switch must be used with -compression.

-compressWS # �e -compressWS # switch speci�es a compression window size
in bytes. �e number is a 2's exponential value to be used by the
compression engine. �e valid values are [8-15], with the default
of 9.

-fhex

-fASCII

-fbinary

-fbyte

-finclude

-fs1

-fs2

-fs3

Speci�es the format of a boot-loadable �le (Intel hex-32, ASCII,
binary, byte, include). If the -f switch does not appear on the
command line, the default boot �le format is Intel hex-32 for
PROM and SPI PROM, ASCII for SPI slave, SPI �ash, and SPI
master.

Available formats depend on the boot type selection (-b switch):

• For PROM and SPI PROM boot types, select a hex, ASCII, s1,
s2, s3, or include format.

• For other SPI boot types, select an ASCII or binary format.

• �e byte format is used with -splitter only. �e byte format is
not available for bootable loader �les.

-h

or

-help

Invokes the command-line help, outputs a list of command-line
switches to standard output, and exits. By default, the -h switch
alone provides help for the loader driver. To obtain a help screen
for the target processor, add the -proc switch to the command
line.

For example: type elfloader -proc ADSP-21262 -h to obtain
help for the ADSP-21262 processor.

-hostwidth [8|16|32] Sets up the word width for the .ldr �le. By default, the word
width for PROM and SPI PROM boot modes is 8; for SPI slave,
SPI �ash, and SPI master boot modes is 32. �e valid word widths
are:

• 8 for Intel hex 32 and Motorola S-records formats.

• 8, 16, or 32 for ASCII, binary, and include formats.

• 8, 16, or 32 for byte format when building with -splitter
section_name.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

167

Switch Description

-id# exe=filename Speci�es the processor ID. Directs the loader utility to use the
processor ID (#) for a corresponding executable �le (the
filename parameter) when producing a boot-loadable �le. �is
switch is used to produce a boot-loadable �le to boot multiple
processors. Valid values for # are 0, 1, 2, 3, 4, 5, 6, 7.

Do not use this switch for single-processor systems. For single-
processor systems, use filename as a parameter without a switch.

i
Note:

�is switch is applicable to the
ADSP-21367/21368/21369/21371/21375 and ADSP-214xx
processors only.

-id#ref=N Directs the loader utility to share the boot stream for processor N
with processor #. If the executable �le of the # processor is
identical to the executable of the N processor, the switch can be
used to set the start address of the processor with ID of # to be the
same as that of the processor with ID of N. �is e�ectively reduces
the size of the loader �le by providing a single copy of the �le to
two or more processors in a multiprocessor system.

�e ADSP-21367/21378/21369/21371/213755] and ADSP-214xx
processors support 8 processors, and the valid processor ids are 0,
1, 2, 3, 4, 5, 6, 7.

i
Note:

�is switch is applicable to the
ADSP-21367/21368/21369/21371/21375 and ADSP-214xx
processors only.

-l userkernel Directs the loader utility to use the speci�ed userkernel and to
ignore the default boot kernel for the boot-loading routine in the
output boot-loadable �le.

i
Note:

�e boot kernel �le selected with this switch must
correspond to the boot type selected with the -b switch).

If the -l switch does not appear on the command line, the loader
utility searches for a default boot kernel �le in the installation
directory, (see ADSP-2126x/2136x/2137x/214xx Processors Boot

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

168 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

Kernels). For kernels with the decompression engine, see
Decompression Kernel File.

i
Note:

�e loader utility does not search for any kernel �le if -
nokernel is selected.

-nokernel [message1, message2] Supports internal boot mode. �e -nokernel switch directs the
loader utility:

• Not to include the boot kernel code into the loader (.ldr) �le.

• Not to perform any special handling for the 256 instructions
located in the IVT.

• To put two 32-bit hex messages in the �nal block header
(optional).

• Not to include the initial word in the loader �le.

For more information, see Boot Kernel Modi�cation and Loader
Issues.

-o filename Directs the loader utility to use the speci�ed filename as the
name for the loader's output �le. If the -o filename is absent, the
default name is the root name of the input �le with an .ldr
extension.

-noZeroBlock �e -noZeroBlock switch directs the loader utility not to build
zero blocks.

-p address Speci�es the PROM o�set start address. �is PROM address
corresponds to 0x80000 (ADSP-2126x processors) or to external
bank MS1 for ADSP-2136x/2137x/214xx processors. �e -p switch
starts the boot-loadable �le at the speci�ed o�set address in the
EPROM.

If the p switch does not appear on the command line, the loader
utility starts the EPROM �le at o�set address 0x0.

-proc processor Speci�es the processor. �is is a mandatory switch. �e
processor argument is one of the following:

ADSP-21261 ADSP-21262 ADSP-21266

ADSP-21362 ADSP-21363 ADSP-21364

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

169

Switch Description

ADSP-21365 ADSP-21366 ADSP-21367

ADSP-21368 ADSP-21369 ADSP-21371

ADSP-21375 ADSP-21467 ADSP-21469

ADSP-21477 ADSP-21478 ADSP-21479

ADSP-21483 ADSP-21486 ADSP-21487

ADSP-21488 ADSP-21489

-retainSecondStageKernel Directs the loader utility to retain the decompression code in the
memory at runtime.

i
Note:

�e -retainSecondStageKernel switch must be used
with -compression.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for
the processor hardware. If -si-revision is not used, the target is
a default revision from the supported revisions.

-splitter section_name

�e -splitter section_name switch provides for selectively
extracting a section (section_name) from the DXE and writing it
to a non-bootable .ldr �le. �e section name is a required
argument for -splitter. It speci�es what section the loader is to
extract content from. All other sections are ignored.

i
Note:

�is switch is provided for the ADSP-214xx processors
only. �e -splitter section_name provides support for
SW (VISA) sections or NW (normal-word).

-v

Outputs verbose loader messages and status information as the
loader utility processes �les.

-version Directs the loader utility to show its version information. Type
elfloader -version to display the version of the loader drive.

Add the -proc switch, for example, elfloader -proc
ADSP-21262 -version to display version information of both
loader drive and SHARC loader.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

170 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Switch Description

-u value Specify a value for the content of the user �ag �eld in a BYTE
format header. �e value range is 0x0-0xFF. If no -u switch is
speci�ed, the user �ag �eld is zero.

i
Note:

Use with non-bootable �les built with the -fbyte and -
splitter section_name switches only.

CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors
Once a project is created in the CrossCore Embedded Studio IDE, you can change the project's output (artifact)
type.

�e IDE invokes the elfloader.exe utility to build the output loader �le. To modify the default loader
properties, use the project's Tool Settings dialog box. �e controls on the pages correspond to the loader
command-line switches and parameters (see Loader Command-Line Switches ADSP- 2126x/2136x/2137x/214xx
Processors). �e loader utility for the ADSP-214xx SHARC processors also acts as a ROM splitter when evoked
with the corresponding switches.

�e loader pages (also called loader properties pages) show the default loader settings for the project's target
processor. Refer to the CCES online help for information about the loader interface.

�e CCES splitter interface for the ADSP-2126x/2136x/2137x processors is documented in the Splitter for
SHARC Processors chapter.

Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

171

10
Splitter for SHARC Processors

�is chapter explains how the splitter utility (elfspl21k.exe) is used to convert executable (.dxe) �les into
non-bootable �les for the ADSP-21xxx SHARC processors. Non-bootable PROM image �les execute from
external memory of a processor. For SHARC processors, the utility creates a 64-/48-/40-/32-bit image �le or an
image �le to match a physical memory size.

x
Attention:

Users who are migrating from VisualDSP++

VisualDSP++ legacy splitter projects cannot be imported into the CrossCore Embedded Studio IDE.
�ere is no SHARC splitter build artifact in the IDE. If attempting to import a VisualDSP++ legacy splitter
project, a status of "Not Converted" appears along with the following error messages:

�e legacy SHARC splitter elfspl21k.exe is available with CrossCore Embedded Studio for command-
line usage.

Splitter functionality for SHARC processors, beginning with the ADSP-214xx family, is available through
the SHARC loader instead of the legacy splitter utility.

For SHARC processors, the splitter utility also properly packs the external memory data or code to match the
speci�ed external memory widths if the logical width of the data or code is di�erent from that of the physical
memory.

In most instances, developers working with SHARC processors use the loader utility instead of the splitter. One
of the exceptions is a SHARC system that can execute instructions from external memory. Refer to the
Introduction chapter for the splitter utility overview; the introductory material applies to both processor
families.

Splitter Command Line
Use the following syntax for the SHARC splitter command line.

 elfspl21k [-switch] -pm &|-dm &|-64 &| -proc part_number inputfile

Splitter for SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

173

or

 elfspl21k [-switch] -s section_name inputfile

where:

• inputfile - Speci�es the name of the executable �le (.dxe) to be processed into a non-bootable �le for a
single-processor system. �e name of the inputfile �le must appear at the end of the command. �e name
can include the drive, directory, �le name, and �le extension. Enclose long �le names within straight quotes;
for example, "long file name".

• -switch - One or more optional switches to process. Switches select operations for the splitter utility. Switches
may be used in any order. A list of the splitter switches and their descriptions can be found in Splitter
Command-Line Switches.

• -pm &| -dm &| -64 - For SHARC processors, the &| symbol between the switches indicates AND/OR. �e
splitter command line must include one or more of -pm, -dm, or -64 (or the -s switch). �e -64 switch
corresponds to DATA64 memory space.

• -s section_name - �e -s switch can be used without the -pm, -dm, or -64 switch. �e splitter command line
must include one or more of the -pm, -dm, and, -64 switches or the -s switch.

i
Note:

Most items in the splitter command line are not case sensitive; for example, -pm and -PM are
interchangeable. However, the names of memory sections must be identical, including case, to the names
used in the executable.

Each of the following command lines,

elfspl21k -pm -o pm_stuff my_proj.dxe -proc ADSP-21161

elfspl21k -dm -o dm_stuff my_proj.dxe -proc ADSP-21161

elfspl21k -64 -o 64_stuff my_proj.dxe -proc ADSP-21161

elfspl21k -s seg-code -o seg-code my_proj.dxe

runs the splitter utility for the ADSP-21161 processor. �e �rst command produces a PROM �le for program
memory. �e second command produces a PROM �le for data memory. �e third command produces a PROM
�le for DATA64 memory. �e fourth command produces a PROM �le for section seg-code.

�e switches on these command lines are as follows.

-pm

-dm

-64

Selects program memory (-pm), data memory (-dm), or DATA64 memory (-64) as
sources in the executable for extraction and placement into the image.

Because these are the only switches used to identify the memory source, the
speci�ed sources are PM, DM, or DATA64 memory sections. Because no other content
switches appear on these command lines, the output �le format defaults to a
Motorola 32-bit format, and the PROM word width of the output defaults to 8 bits
for all PROMs.

Splitter for SHARC Processors

174 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

-o pm_stuff

-o dm_stuff

-o seg-code

Specify names for the output �les. Use di�erent names so the output of a run does
not overwrite the output of a previous run. �e output names are pm_stuff.s_#
and dm_stuff.s_#. �e splitter utility adds the .s_# �le extension to the output
�les; # is a number that di�erentiates one output �le from another.

my_proj.dxe Speci�es the name of the input (.dxe) �le to be processed into non-bootable
PROM image �les.

Splitter File Searches
File searches are important in the splitter process. �e splitter utility supports relative and absolute directory
names, default directories, and user-selected directories for �le search paths. File searches occur as described in
Loader File Searches in the Introduction chapter.

Splitter Output File Extensions
�e splitter utility follows the conventions shown in the Splitter Output File Extensions table for output �le
extensions.

Table 60. Splitter Output File Extensions

Extension File Description

.s_# Motorola S-record format �le. �e # indicates the position (0 = least signi�cant, 1
= next-to-least signi�cant, and so on). For info about Motorola S-record �le
format, refer to Loader Output Files in Motorola S-Record Format in the File
Formats appendix.

.h_# Intel hex-32 format �le. �e # indicates the position (0 = least signi�cant, 1 = next-
to-least signi�cant, and so on). For information about Intel hex-32 �le for mat,
refer to Splitter Output Files in Intel Hex-32 Format in the File Formats appendix.

.stk

Byte-stacked format �le. �ese �les are intended for host transfer of data, not for
PROMs. For more information about byte stacked �le format, format �les, refer to
Splitter Output Files in Byte-Stacked Format in the File Formats appendix.

Splitter Command-Line Switches
A list of the splitter switches appears in the Splitter Command-Line Switches table.

Splitter for SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

175

Table 61. Splitter Command-Line Switches

Item Description

-64 �e -64 (include DATA64 memory) switch directs the splitter
utility to extract all sections declared as 64-bit memory sections
from the input .dxe �le. �e switch in�uences the operation of
the -ram and -norom switches, adding 64-bit data memory as
their target.

-dm �e -dm (include data memory) switch directs the splitter utility
to extract memory sections declared as data memory ROM from
the input .dxe �le. �e -dm switch in�uences the operation of the
-ram and -norom switches, adding data memory as their target.

-f h

-f s1

-f s2

-f s3

-f b

�e -f (PROM �le format) switch directs the splitter utility to
generate a non-bootable PROM image �le in the speci�ed format.
Available selection include:

• h-Intel hex-32 format

• s1-Motorola EXORciser format

• s2-Motorola EXORMAX format

• s3-Motorola 32-bit format

• b-byte stacked format

If the -f switch does not appear on the command line, the default
format for the PROM �le is Motorola 32-bit (s3). For information
on �le formats, see Build Files in the File Formats appendix.

-norom �e -norom (no ROM in PROM) switch directs the splitter utility
to ignore ROM memory sections in the inputfile when
extracting information for the output image. �e -dm and -pm
switches select data memory or program memory. �e operation
of the -s switch is not in�uenced by the -norom switch.

-o imagefile �e -o (output �le) switch directs the splitter utility to use
imagefile as the name of the splitter output �le(s). If not
speci�ed, the default name for the splitter output �le is
inputfile.ext, where ext depends on the output format.

-pm �e -pm (include program memory) switch directs the splitter
utility to extract memory sections declared program memory
ROM from the input.dxe �le. �e -pm switch in�uences the

Splitter for SHARC Processors

176 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Item Description

operation of the -ram and -norom switches, adding program
memory as the target.

-proc part_number

Speci�es the processor type to the splitter utility. Valid processors
are:

• ADSP-21160, ADSP-21161

• ADSP-21261, ADSP-21262, ADSP-21266

• ADSP-21363, ADSP-21364, ADSP-21365, ADSP-21366,
ADSP-21367, ADSP-21368, ADSP-21369,

• ADSP-21371, ADSP-21375

-r#[#]

�e -r (PROM widths) switch speci�es the number of PROM
�les and their width in bits. �e splitter utility can create PROM
�les for 8-, 16-, and 32-bit wide PROMs. �e default width is 8
bits. Each # parameter speci�es the width of one PROM �le. Place
parameters in order from most signi�cant to least signi�cant.
�e sum of the # parameters must equal the bit width of the
destination memory (40 bits for DM, 48 bits for PM, or 64 bits for
64-bit memory).

Example:

elfspl21k -dm -r 16 16 8 myfile.dxe

�is command extracts data memory ROM from myfile.dxe
and creates the following output PROM �les.

• myfile.s_0-8 bits wide, contains bits 7-0

• myfile.s_1-16 bits wide, contains bits 23-8

• myfile.s_2-16 bits wide, contains bits 39-24

�e width of the three output �les is 40 bits.

-ram �e -ram (include RAM in PROM) switch directs the splitter
utility to extract RAM sections from the inputfile. �e -dm, -
pm, and -64 switches select the memory. �e -s switch is not
in�uenced by the -ram switch.

-s section_name �e -s (include memory section) switch directs the splitter utility
to extract the content of one memory section (section_name)
from the executable. �e section_name argument is case
sensitive and must exactly match the name as it appears in the
LDF for the executable.

Splitter for SHARC Processors

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

177

Item Description

You must also specify the switch -dm or -pm or -64 for the
memory type. Rerun the splitter for any additional sections that
are required, changing the memory type switch and output �le as
needed for each invocation.

i
Note:

Short-word sections are not supported in the legacy
SHARC splitter. To split a SW section into a raw (non-
bootable) format, use the new -splitter section_name
switch in the SHARC ADSP-214xx loader.

-si-revision [none|any|x.x] Sets revision for the build, with x.x being the revision number for
the processor hardware. If -si-revision is not used, the target is
a default revision from the supported revisions.

-u # (Byte-stacked format �les only) �e -u (user �ags) switch, which
may be used only in combination with the -f b switch, directs
the splitter utility to use the number # in the user-�ags �eld of a
byte stacked format �le. If the -u switch is not used, the default
value for the number is 0. By default, # is decimal. If # is pre�xed
with 0x, the splitter utility interprets the number as hexadecimal.
For more information, see Splitter Output Files in Byte-Stacked
Format in the File Formats appendix.

-version Directs the splitter utility to show its version information.

Splitter for SHARC Processors

178 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

11
File Formats

CrossCore Embedded Studio supports many �le formats, in some cases several for each development tool. �is
appendix describes �le formats that are prepared as inputs and produced as outputs.

�e appendix describes three types of �les:

• Source Files

• Build Files

• Debugger Files

Most of the development tools use industry-standard �le formats. �ese formats are described in their respective
format speci�cations.

Source Files
�is section describes the following source (input) �le formats.

• C/C++ Source Files

• Assembly Source Files

• Assembly Initialization Data Files

• Header Files

• Linker Description Files

• Linker Command-Line Files

C/C++ Source Files
C/C++ source �les are text �les (.c, .cpp, .cxx, and so on) containing C/C++ code, compiler directives,
possibly a mixture of assembly code and directives, and, typically, preprocessor commands.

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

179

Several dialects of C code are supported: pure (portable) ANSI C, and at least two subtypes10 of ANSI C with
ADI extensions. �ese extensions include memory type designations for certain data objects, and segment
directives used by the linker to structure and place executable �les.

�e C/C++ compiler, run-time library, as well as a de�nition of ADI extensions to ANSI C, are detailed in the
C/C++ Compiler and Library Manual.

Assembly Source Files
Assembly source �les (.asm) are text �les containing assembly instructions, assembler directives, and
(optionally) preprocessor commands. For information on assembly instructions, see the Programming Reference
manual for your processor.

�e processor's instruction set is supplemented with assembly directives. Preprocessor commands control macro
processing and conditional assembly or compilation.

For information on the assembler and preprocessor, see the Assembler and Preprocessor Manual.

Assembly Initialization Data Files
Assembly initialization data �les (.dat) are text �les that contain �xed- or �oating-point data. �ese �les
provide initialization data for an assembler .VAR directive or serve in other tool operations.

When a .VAR directive uses a .dat �le for data initialization, the assembler reads the data �le and initializes the
bu�er in the output object �le (.doj). Data �les have one data value per line and may have any number of lines.

�e .dat extension is explanatory or mnemonic. A directive to #include <filename> can take any �le name
and extension as an argument.

Fixed-point values (integers) in data �les may be signed, and they may be decimal, hexadecimal, octal, or binary
based values. �e assembler uses the pre�x conventions listed in the Numeric Formats table to distinguish
between numeric formats.

Table 62. Numeric Formats

Convention Description

0xnumber

H#number

h#number

Hexadecimal number

number

D#number

Decimal number

10 With and without built-in function support; a minimal di�erentiator. �ere are others dialects.

File Formats

180 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Convention Description

d#number

B#number

b#number

Binary number

O#number

o#number

Octal number

For all numeric bases, the assembler uses words of di�erent sizes for data storage. �e word size varies by the
processor family.

Header Files
Header �les (.h) are ASCII text �les that contain macros or other preprocessor commands which the
preprocessor substitutes into source �les. For information on macros and other preprocessor commands, see the
Assembler and Preprocessor Manual.

Linker Description Files
Linker description �les (.ldf) are ASCII text �les that contain commands for the linker in the linker scripting
language. For information on the scripting language, see the Linker and Utilities Manual.

Linker Command-Line Files
Linker command-line �les (.txt) are ASCII text �les that contain command-line inputs for the linker. For more
information on the linker command line, see the Linker and Utilities Manual.

Build Files
Build �les are produced by CrossCore Embedded Studio while building a project. �is section describes the
following build �le formats.

• Assembler Object Files

• Library Files

• Linker Output Files

• Memory Map Files

• Bootable Loader Output Files

• Non-Bootable Loader Output Files in Byte Format

• Splitter Output Files

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

181

Assembler Object Files
Assembler output object �les (.doj) are binary object and linkable �les (ELF). Object �les contain relocatable
code and debugging information for a DSP program's memory segments. �e linker processes object �les into
an executable �le (.dxe). For information on the object �le's ELF format, see the TIS Committee speci�cation.

Library Files
Library �les (.dlb), the output of the archiver, are binary, object and linkable �les (ELF). Library �les (called
archive �les in previous so�ware releases) contain one or more object �les (archive elements).

�e linker searches through library �les for library members used by the code. For information on the ELF
format used for executable �les, refer to the ELF speci�cation.

i
Note:

�e archiver automatically converts legacy input objects from COFF to ELF format.

Linker Output Files
�e linker's output �les (.dxe, .sm, .ovl) are binary executable �les (ELF). �e executable �les contain program
code and debugging information. �e linker fully resolves addresses in executable �les. For information on the
ELF format used for executable �les, see the TIS Committee speci�cation.

�e loaders/splitter utilities are used to convert executable �les into boot-loadable or non-bootable �les.

Executable �les are converted into a boot-loadable �le (.ldr) for the ADI processors using a splitter utility. Once
an application program is fully debugged, it is ready to be converted into a boot-loadable �le. A boot-loadable
�le is transported into and run from a processor's internal memory. �is �le is then programmed (burned) into
an external memory device within your target system.

A splitter utility generates non-bootable, PROM-image �les by processing executable �les and producing an
output PROM �le. A non-bootable, PROM-image �le executes from processor external memory.

Memory Map Files
�e linker can output memory map �les (.xml), which are ASCII text �les that contain memory and symbol
information for the executable �les. �e .xml �le contains a summary of memory de�ned with the MEMORY{}
command in the .ldf �le, and provides a list of the absolute addresses of all symbols.

Bootable Loader Output Files
• Loader Output Files in Intel Hex-32 Format

• Loader Output Files in Include Format

• Loader Output Files in Binary Format

• Loader Output Files in Motorola S-Record Format

File Formats

182 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Loader Output Files in Intel Hex-32 Format
�e loader utility can output Intel hex-32 format �les (.ldr). �e �les support 8-bit-wide PROMs and are used
with an industry-standard PROM programmer to program memory devices. One �le contains data for the
whole series of memory chips to be programmed.

�e following example shows how Intel hex-32 format appears in the loader's output �le. Each line in the Intel
hex-32 �le contains an extended linear address record, a data record, or the end-of-�le record.

:020000040000FA Extended linear address record

:0402100000FE03F0F9 Data record

:00000001FF End-of-�le record

Extended linear address records are used because data records have a 4-character (16-bit) address �eld, but in
many cases, the required PROM size is greater than or equal to 0xFFFF bytes. Extended linear address records
specify bits 31-16 for the data records that follow.

�e Extended Linear Address Record Example table shows an extended linear address record.

Table 63. Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

: Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 O�set address

FA Checksum

�e Data Record Example table shows the organization of a data record.

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

183

Table 64. Data Record Example

Field Purpose

:0402100000FE03F0F9 Example record

: Start character

04 Byte count of this record

0210 Address

00 Record type

00 First data byte

F0 Last data byte

F9 Checksum

�e End-of-File Record Example table shows an end-of-�le record.

Table 65. End-of-File Record Example

Field Purpose

:00000001FF End-of-�le record

: Start character

00 Byte count (zero for this record)

0000 Address of �rst byte

01 Record type

FF Checksum

CrossCore Embedded Studio includes a utility program to convert an Intel hexadecimal �le to Motorola S-record
or data �le. Refer to hexutil - Hex-32 to S-Record File Converter in the Utilities appendix for details.

File Formats

184 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Loader Output Files in Include Format
�e loader utility can output include format �les (.ldr). �ese �les permit the inclusion of the loader �le in a C
program.

�e word width (8- or16-bit) of the loader �le depends on the speci�ed boot type. Similar to Intel hex-32 output,
the loader output in include format have some basic parts in the following order.

1. Initialization code (some Black�n processors)

2. Boot kernel (some Black�n and SHARC processors)

3. User application code

4. Saved user code in con�ict with the initialization code (some Black�n processors)

5. Saved user code in con�ict with the kernel code (some Black�n and SHARC processors)

�e initialization code is an optional �rst part for some Black�n processors, while the kernel code is the part for
some Black�n and SHARC processors. User application code is followed by the saved user code.

Files in include format are ASCII text �les that consist of 48-bit instructions, one per line (on SHARC
processors). Each instruction is presented as three 16-bit hexadecimal numbers. For each 48-bit instruction, the
data order is lower, middle, and then upper 16 bits. Example lines from an include format �le are:

 0x005c, 0x0620, 0x0620,

 0x0045, 0x1103, 0x1103,

 0x00c2, 0x06be, 0x06be

�is example shows how to include this �le in a C program:

 const unsigned loader_file[] =

 {

 #include "foo.ldr"

 };

 const unsigned loader_file_count = sizeof loader_file

 / sizeof loader_file[0];

�e loader_file_count re�ects the actual number of elements in the array and cannot be used to process the
data.

Loader Output Files in Binary Format
�e loader utility can output binary format �les (.ldr) to support a variety of PROM and microcontroller
storage applications.

Binary format �les use less space than other loader �le formats. Binary �les have the same contents as the
corresponding ASCII �le, but in binary format.

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

185

Loader Output Files in Motorola S-Record Format
�e loader and splitter utilities can output Motorola S-record format �les (.s_#), which conform to the Intel
standard. �e three �le formats supported by the loader and PROM splitter utilities di�er only in the width of
the address �eld: S1 (16 bits), S2 (24 bits), or S3 (32 bits).

An S-record �le begins with a header record and ends with a termination record. Between these two records are
data records, one per line:

S00600004844521B Header record

S10D00043C4034343426142226084C Data record (S1)

S903000DEF Termination record (S1)

�e Header Record Example table shows the organization of a header record.

Table 66. Header Record Example

Field Purpose

S00600004844521B Example record

S0 Start character

06 Byte count of this record

0000 Address of �rst data byte

484452 Identi�es records that follow

1B Checksum

�e S1 Data Record Example table shows the organization of an S1 data record.

Table 67. S1 Data Record Example

Field Purpose

S10D00043C4034343426142226084C Example record

S1 Record type

File Formats

186 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Field Purpose

0D Byte count of this record

0004 Address of the �rst data byte

3C First data byte

08 Last data byte

4C Checksum

�e S2 data record has the same format, except that the start character is S2 and the address �eld is six
characters wide. �e S3 data record is the same as the S1 data record except that the start character is S3 and the
address �eld is eight characters wide.

Termination records have an address �eld that is 16-, 24-, or 32 bits wide, whichever matches the format of the
preceding records. �e S1 Termination Record Example table shows the organization of an S1 termination
record.

Table 68. S1 Termination Record Example

Field Purpose

S903000DEF Example record

S9 Start character

03 Byte count of this record

000D Address

EF Checksum

�e S2 termination record has the same format, except that the start character is S8 and the address �eld is six
characters wide.

�e S3 termination record is the same as the S1 format, except the start character is S7 and the address �eld is
eight characters wide.

For more information, see hexutil - Hex-32 to S-Record File Converter in the Utilities appendix.

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

187

Non-Bootable Loader Output Files in Byte Format
�e loader utility can output non-bootable loader �les (.ldr) in byte format. �is format is only available when
the -splitter section-name switch is used.

�e non-bootable �le in BYTE format has these characteristics:

• A one-line header

• A block of one or more lines of section data from the .dxe �le

• A zero header that signals the end of the �le

�e Byte Format File Example table shows a sample byte-format �le created by the loader utility.

Table 69. Byte Format File Example

Field Purpose

200688AB0012435D00000768 Example header record (the �rst line of �le)

20 Width of address and length �elds (in bits) Addresses are 32-bit
width.

06 Reserved �eld in use by ADI for versioning. �e loader is
currently setting this to Version 6.

i
Note:

�e elfspl21k utility is currently setting this to Version 5
for .stf �les).

88 Flags (88 = SW, 80 = PM, 00 = DM)�is shows a build with -
splitter section_name that is a SW section

AB User-de�ned �ags (loaded with -u value switch). �is build
shows the result of a build with -u 0xAB. If no -u switch is
present, the user-de�ned �ag �eld is 00.

0012435D Start address of the data block

00000768 Number of bytes of data that follow

0f14000b20010fb40000 Lines of section data. �e -hostwidth [8|16|32] switch
determines the number of bytes per line. �is example shows the
content from a SW section for a build using -hostwidth 16.

File Formats

188 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Field Purpose

000000000000000000000000 Example header record (signals the end of �le)

To produce a byte-formatted �le in the CCES IDE:

1. Open the Properties dialog box for the project.

2. Choose C/C++ Build > Settings. �e Tool Settings page appears.

3. Click Additional Options under CrossCore SHARC Loader. �e loader Additional Options properties page
appears.

4. Click Add (+). �e Enter Value dialog box appears.

5. In Additional Options, type in -splitter my_sw_section -fBYTE -u 0xAB.

6. Click OK to close the dialog box.

7. Click Apply.

For information about the byte-stacked format (.stf) �les produced by the legacy elfspl21k.exe utility, see
Splitter Output Files in Byte-Stacked Format.

Splitter Output Files
• Splitter Output Files in Intel Hex-32 Format

• Splitter Output Files in Byte-Stacked Format

• Splitter Output Files in ASCII Format

• Splitter Output Files in Motorola S-Record Format

Splitter Output Files in Intel Hex-32 Format
�e splitter utility can output Intel hex-32 format (.h_#) �les. �ese ASCII �les support a variety of PROM
devices. For an example of how the Intel hex-32 format appears for an 8-bit wide PROM, see Loader Output
Files in Intel Hex-32 Format.

�e splitter utility prepares a set of PROM �les. Each PROM holds a portion of each instruction or data. �is
con�guration di�ers from the loader output.

Splitter Output Files in Byte-Stacked Format
�e splitter utility can output �les in byte-stacked (.stk) format. �ese �les are not intended for PROMs, but are
ideal for microcontroller data transfers.

A �le in byte-stacked format comprises a series of one line headers, each followed by a block (one or more lines)
of data. �e last line in the �le is a header that signals the end of the �le. Lines consist of ASCII text that
represents hexadecimal digits. Two characters represent one byte. For example, F3 represents a byte whose
decimal value is 243.

�e Header Record in Byte-Stacked Format Example table shows a header record in byte-stacked format.

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

189

Table 70. Header Record in Byte-Stacked Format Example

Field Purpose

20008000000000080000001E Example record

20 Width of address and length �elds (in bits)

00 Reserved

80 PROM splitter �ags (80 = PM, 00 = DM)

00 User de�ned �ags (loaded with -u switch)

00000008 Start address of data block

0000001E Number of bytes that follow

In the above example, the start address and block length �elds are 32 (0x20) bits wide. �e �le contains program
memory data (the MSB is the only �ag currently used in the PROM splitter �ags �eld). No user �ags are set. �e
address of the �rst location in the block is 0x08. �e block contains 30 (1E) bytes (5 program memory code
words). �e number of bytes that follow (until next header record or termination record) must be non- zero.

A block of data records follows its header record, �ve bytes per line for data memory, and six byte per line for
program memory or in other physical memory width. For example:

Program Memory Section (Code or Data)

 3C4034343426

 142226083C15

Data Memory Section

 3C40343434

 2614222608

DATA64 Memory Section

 1122334455667788

 99AABBCCDDEEFF00

�e bytes are ordered le� to right, most signi�cant to least.

�e termination record has the same format as the header record, except for the rightmost �eld (number of
records), which is all zeros.

File Formats

190 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Splitter Output Files in ASCII Format
When the Black�n splitter utility is invoked as a splitter utility, its output can be an ASCII format �le with
the.ldr extension. ASCII format �les are text representations of ROM memory images that can be post-
processed by users.

Data Memory (DM) Example:

ext_data { TYPE(DM ROM) START(0x010000) END(0x010003) WIDTH(8) }

�e above DM section results in the following code.

00010000 /* 32-bit logical address field */

00000004 /* 32-bit logical length field */

00020201 /* 32-bit control word: 2x address multiply */

 /* 02 bytes logical width, 01 byte physical width */

00000000 /* reserved */

0x12 /* 1st data word, DM data is 8 bits */

0x56

0x9A

0xDE /* 4th (last) data word */

CRC16 /* optional, controlled by the -checksum switch */

Splitter Output Files in Motorola S-Record Format
�e splitter utility can output Motorola S-record format �les (.s_#). See Loader Output Files in Motorola S-
Record Format for more information.

Debugger Files
Debugger �les provide input to the debugger to de�ne support for simulation or emulation of your program. �e
debugger consumes all the executable �le types produced by the linker (.dxe, .sm, .ovl). To simulate IO, the
debugger also consumes the assembler data �le format (.dat) and the loadable �le formats (.ldr).

�e standard hexadecimal format for a SPORT data �le is one integer value per line. Hexadecimal numbers do
not require a 0x pre�x. A value can have any number of digits but is read into the SPORT register as follows.

• �e hexadecimal number is converted to binary.

• �e number of binary bits read in matches the word size set for the SPORT register and starts reading from the
LSB. �e SPORT register then zero-�lls bits shorter than the word size or conversely truncates bits beyond the
word size on the MSB end.

In the following example (the SPORT Data File Example table), a SPORT register is set for 20-bit words, and the
data �le contains hexadecimal numbers. �e simulator converts the hex numbers to binary and then �lls/
truncates to match the SPORT word size. �e A5A5 is �lled and 123456 is truncated.

File Formats

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

191

Table 71. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

File Formats

192 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

12
Utilities

CrossCore Embedded Studio includes several utility programs, some of which run from a command line only.

�is appendix describes the following utilities.

• hexutil – Hex-32 to S-Record File Converter

• elf2dyn – ELF to Dynamically-Loadable Module Converter

• elf2elf – ELF to ELF File Converter

• dyndump – Display the Contents of Dynamically-Loadable Modules

• dynreloc – Relocate Dynamically-Loadable Modules

• signtool – Sign and Encrypt boot streams for secure booting

Other CrossCore Embedded Studio utilities, for example, the ELF �le dumper, are described in the Linker and
Utilities Manual (search the online help).

x
Attention:

VisualDSP++ executables are not upwardly compatible with CrossCore Embedded Studio executables.
�e ELF format has changed.

hexutil - Hex-32 to S-Record File Converter
�e hex-to-S �le converter (hexutil.exe) transforms a loader (.ldr) �le in Intel hexadecimal 32-bit format to
Motorola S-record format or produces an unformatted data �le.

Syntax

hexutil.exe is a command-line utility. It has the following syntax:

 hexutil input_file [-s1|s2|s3|StripHex] [-o file_name]

where:

input_file is the name of the .ldr �le generated by the CrossCore Embedded Studio splitter utility.

�e hexutil Command-Line Switches table lists the optional switches used with the hexutil command.

Utilities

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

193

Table 72. hexutil Command-Line Switches

Switch Description

-s1 Speci�es Motorola output format S1.

-s2 Speci�es Motorola output format S2.

-s3 Speci�es the default output format - Motorola S3. �at is, when no switch appears
on the command lines, the output �le format defaults to S3.

-StripHex Generates an unformatted data �le.

-o Names the output �le; in the absence of the -o switch, causes the output �le name
to default to input_file.s.

�e Intel hex-32 and Motorola S-record �le formats are described in the File Formats chapter.

elf2dyn - ELF to Dynamically-Loadable Module Converter
�e ELF to dynamically-loadable module converter (elf2dyn.exe) accepts an executable (.dxe) �le produced
by the CrossCore Embedded Studio linker and converts the �le from ELF (Executable and Linkable Format) to a
"lighter-weight" format suitable for loading into an existing application at runtime. In short, elf2dyn produces
Dynamically-Loadable Modules (DLMs).

By default, a .dxe �le converted to DLM format cannot be used immediately. Some extra steps must be taken,
which typically involves producing a specialized .ldf �le. For details, refer to the System Runtime
Documentation section of the help system.

Dynamically-Loadable Modules
A dynamically-loadable module - a DLM - is intended to be loaded by another, `main' application at runtime.
�e DLM can contain executable code, data, or both.

DLM �les have the following characteristics:

• DLMs are not standalone applications. A DLM does not set up the stack, con�gure the processor, etc. All such
initialization are done by the main application prior to loading the DLM.

• DLMs are self-contained. Although a DLM can consist of multiple elements of code and/or data, which can
reference each other, the DLM cannot make symbolic references to code elements outside of the DLM.

• DLMs are not yet relocated. �is means that when the linker produced the .dxe, from which the DLM has
been derived, the linker was instructed not to resolve cross-references within the DLM to �nal, absolute
addresses. Instead, all internal references still are expressed in relative terms. A�er loading the DLM, a process
known as relocation must be carried out before the DLM's contents can be used.

Utilities

194 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

• DLMs export one or more symbols, which can be used by the main application to reference the contents of the
DLM.

i
Note:

Because of the noted di�erences, most .dxe �les are not suitable for conversion to DLMs.

For information on how to construct .dxe �les that can be converted to DLMs, load DLMs, and access DLM
contents, refer to the System Runtime Documentation section in help.

Syntax
�e elf2dyn.exe utility is invoked from the command-line or CCES IDE, as a post-build step speci�ed in your
project's Settings > Build Steps dialog box.

�e command-line syntax for the utility is:

elf2dyn [-h|l|r|v] [-a name=num] [-e sym] [-S|R|W|E errnum] [-o outfile] elfinfile

where:

elfinfile is the name of the .dxe �le in ELF format to convert into a DLM �le for Black�n or SHARC
processors. �e �le name must appear at the end of the command line. In order to be useful as a DLM, it must
contain relocations, as described in the System Runtime Documentation help section.

�e elf2dyn Command-Line Switches table lists the optional switches used with the elf2dyn command.
Switches must appear before elfinfile on the command line.

Table 73. elf2dyn Command-Line Switches

Switch Description

-h Displays a list of accepted switches.

-l Creates a `lite' format output �le; see File Formats and the-l Switch.

-r Emits remarks (if any apply).

-v Emits version information.

-a name=num Forces section name to have alignment num; see Section Alignment.

-e symbol Exports symbol so that it can be referenced by the main application; see Exported
Symbols.

-o outfile Use outfile as the name of the DLM to create. �e switch speci�es where
elf2dyn creates the DLM �le. If -o is omitted, elf2flt creates elfinfile.dyn,

Utilities

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

195

Switch Description

which means that the output �le has the same name as the input �le with the .dyn
su�x appended.

-S errnum Suppresses diagnostic errnum.

-R errnum Makes diagnostic errnum a remark.

-W errnum Makes diagnostic errnum a warning.

-E errnum Makes diagnostic errnum an error.

File Formats and -l Switch
elf2dyn supports two formats, a full format and a lite format. By default, DLMs are created using the full
format, the lite format can be enabled by specifying the -l switch.

Both ELF �les and DLM �les are divided into sections, some of which specify content which makes up the code
and/or data of the application, and some of which specify metadata about the code and/or data of the
application. For example, the debug information of an application is used by a debugger, which controls the
processor, but not downloaded to the processor by the debugger. For the purposes of this discussion, the
following sections use the terms application section and metadata section to make this distinction.

�e lite format is closely modeled on the bFLT �le format, which in turn is in�uenced by the UNIX a.out �le
format. It imposes the following constraints on the .dxe input �le:

1. �e ELF �le must contain exactly three application sections with the following names and uses:

i
Note:

�e lite format is supported for Black�n processors only because of the mentioned constraints.

• .text, which contains only executable code

• .data, which contains only initialized data (initialized to any value)

• .bss, which contains only zero-initialized data

2. All sections must contain 8-bit byte-addressed values.

3. Exported symbols are impossible, so the code entry point must be the �rst instruction at the start of
the .text section, and any data entry point must be the �rst location at the start of the .data section.

In contrast, the full DLM format supports the following:

• �e ELF �le can have any number of application sections, from 1 to 255.

• Application sections can have any valid section name.11

11 If exported symbols are being used, two names are reserved: .expsym and .expstr.

Utilities

196 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

• Application sections can use any word size that is valid for the target processor. Note that not all sections need
be the same word size.

• Symbols may be exported, so that entry points need not be at the start of a particular section.

i
Note:

�e full DLM format is proprietary to Analog Devices, Inc. Although more complex than the bFLT-
inspired lite format, it is still lighter than the full ELF standard.

Exported Symbols
�e -e switch speci�es particular symbols for exporting. �e symbol table of the ELF �le is a metadata section,
so it is not available to the application when the application runs. When a symbol is exported by elf2dyn, the
symbol is placed into an exported symbol table, which is in an application rather than a metadata section. �is
means that the table is available to the running application, and the application can locate DLM contents by
searching for the symbol in the table.

�e exported symbol table is two new application sections that are added to the DLM by elf2dyn when the -e
switch is being used:

• .expstr is the exported string table; it contains NULL-terminated strings which are the exported symbol
names. �ese strings are in the native target processor data format.

• .expsym is the exported symbol table; it contains one or more records, where each record consists of two
pointers - to the symbol's name in the exported string table, and to the symbol's location in memory,
respectively. Because the record contains pointers, the exported symbol table is only accessible once the DLM
has been relocated.

�e -e switch accepts names exactly as they appear in the symbol table of the ELF input �le elfinfile. No
name-demangling or parsing is done by elf2dyn. �is means that, for example, to export your main() function
in your DLM, -e _main is used. If you are unsure how to specify a symbol's name for exporting, use the
following command:

 elfdump -n .symtab elfinfile

�e elfdump utility displays the contents of the ELF �le's symbol table; elfdump shows both mangled and
demangled names. For more information, see dyndump – Display the Contents of Dynamically-Loadable
Modules.

A�er a DLM is loaded and resolved, you can map an exported symbol's name into its address using
dyn_LookupByName(). Refer to the System Runtime Documentation help section for details.

Section Alignment
By default, the elf2elf utility creates a DLM in which each section has the same alignment constraints as the
original sections in the input ELF �le. You can specify a stronger alignment for a section by using the -a switch.
�e-a switch requires a parameter of the form name=number, where:

• name is the name of the section in the input ELF �le

• number is a positive power-of-two decimal integer.

Utilities

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

197

Multiple instances of the -a switch are permitted on the same command-line to specify stronger alignment for
more than one section.

It is not an error if the input ELF �le does not contain a section called name. If the input �le does not have a
section with a matching name, the switch is ignored.

elf2elf - ELF to ELF File Converter
�e ELF to ELF �le converter (elf2elf.exe) is a command-line utility for upgrading executables built using
VisualDSP++ 5.0 to the new CrossCore Embedded Studio ELF format.

x
Attention:

VisualDSP++ executables are not upwardly compatible to CrossCore Embedded Studio executables. �e
ELF format has changed.

�e loaders and splitters take executable �les in ELF format as input. �ese are �les with the su�xes dxe, ovl, or
sm. �e CrossCore Embedded Studio loaders and splitters expect input in the CrossCore Embedded Studio ELF
format, which has signi�cant di�erences from the VisualDSP++ ELF format.

You do not need to use elf2elf when:

• Creating new projects in the CrossCore Embedded Studio IDE

• Importing VisualDSP++ legacy projects into the CrossCore Embedded Studio IDE and rebuilding all code
from source

In both cases, CrossCore Embedded Studio creates the executables in the expected ELF format.

�e following unrecoverable error is reported by the CrossCore Embedded Studio loaders and splitters if any
dxe/ovl/sm in the build is one built with VisualDSP++:

[Error ld0002]

 File in legacy ELF format created with VisualDSP++ 5.0 or earlier.

 Rebuild from source or upgrade using the elf2elf utility: <filename>

If you do not have sources to rebuild your code, the elf2elf utility is available.

Syntax

elf2elf.exe has the following syntax:

 elf2elf [switches] [infile]

where:

infile is the name of the ELF input �le produced by CrossCore Embedded Studio.

�e elf2elf Command-Line Switches table shows the optional switches used with the elf2elf command.

Utilities

198 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Table 74. elf2elf Command-Line Switches

Switch Description

-o file Produces the output �le with a name given by file.

-keep Prevents any temporary �les that have been created by the ELF Conversion Tool
from being deleted.

-merge

Merge the contents of the .ovl and .sm �les speci�ed in the input .dxe into the
output .dxe.

-version Displays the version number of the ELF conversion utility.

Example: elf2elf.exe oldKernel.dxe -o newKernel.dxe

i
Note:

If you are building loader �les, do no use -merge; instead, do the following:

• Upgrade the .dxe �le without -merge

• Upgrade each .sm or .ovl �le with elf2elf

dyndump - Display the Contents of Dynamically-Loadable Modules
To display the contents of dynamically-loadable modules (DLMs) produced by elf2dyn.exe, use dyndump.exe.

Refer to elf2dyn – ELF to Dynamically-Loadable Module Converter for more information on elf2dyn.

Syntax

dyndump.exe is a command-line utility. It has the following syntax:

 dyndump [-f family] dlmname

where:

dlmname is the name of a �le generated by elf2dyn; see elf2dyn – ELF to Dynamically-Loadable Module
Converter.

�e dyndump Command-Line Switches table lists switches used with the dyndump command.

Table 75. dyndump Command-Line Switches

Switch Description

-f Family Select the target processor family; see -f family.

Utilities

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

199

Switch Description

dlmname �e �le to be displayed; see Output.

-f Family
�e dyndump utility can display �les for both Black�n and SHARC processors in full and lite DLM format. �e
lite format �les do not include any information indicating their target processor; without this information, the
dyndump utility cannot decode the target-speci�c relocations section. See File Formats and the-l Switch for more
information.

�e valid forms of the -f family switch are:

• -f blackfin

• -f sharc

i
Note:

Full-format DLM �les do specify their target processor, so the -f switch is not necessary for displaying
such �les.

Output
�e dyndump utility displays the header from the input �le, followed by the metadata sections and application
sections, in the order they appear in the �le. In general, dyndump displays information in several ways, providing:

• �e o�set within a section in the native addressing of that section

• �e byte o�set from the start of the �le

• A hexadecimal dump of the bytes in the order they appear within the �le. Each target address location in an
application is displayed on a separate line, so byte-addressed sections shows a single byte per line, while 64-bit
addressed sections shows eight bytes per line.

• An ASCII representation of the bytes in the order they appear within the �le.

File headers, section headers (where present) and relocations are displayed more explicitly.

dynreloc - Relocate Dynamically-Loadable Modules
To relocate DLMs produced by elf2dyn.exe, use dynreloc.exe.

Refer to elf2dyn – ELF to Dynamically-Loadable Module Converter for more information about elf2dyn.

�e dynreloc utility reads a DLM �le as input, performs relocations according to address mappings provided
through command-line switches, and writes out a new DLM �le. �e new DLM �le contains no relocations and
can be loaded only into the locations speci�ed to the dynreloc utility.

Syntax dynreloc.exe is a command-line utility. It has the following syntax:

 dynreloc [-h|v] [-a sec=addr] [-m a:n:w:m][-o outfile] infile

Utilities

200 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

where:

infile is the name of the DLM �le to relocate.

�e dynreloc Command-Line Switches table lists the optional switches used with the dynreloc command.
Switches must appear before infile on the command line.

Table 76. dynreloc Command-Line Switches

Switch Description

-h Displays a list of accepted switches.

-v Displays version information.

-a sec=addr Forces section sec to start at address addr; see Explicit Mapping.

-m a:n:w:m Speci�es a memory range that can be used for section mapping; see Region
Mappings.

-o outfile Use outfile as the name of the �le to write the relocated DLM.

Explicit Mappings
�e -a switch speci�es explicit section mappings to the dynreloc utility.

�e -a switch requires a parameter, of the form sec=addr. �e sec argument identi�es the section in the input
DLM, while addr gives the address to which the section is to be mapped in the output DLM. It is your
responsibility to ensure that:

• Starting address addr is appropriately aligned for section sec.

• Starting address addr is in an appropriate memory space for section sec.

• Starting address addr points to a free area of memory that has su�cient space for the contents of section sec.

�ere may be multiple instances of the -a switch to specify mappings for more than one section. A given section
may be named by only one -a switch.

Region Mappings
�e -m switch speci�es regions of memory which can be used for mapping sections that have not otherwise been
explicitly mapped through the -a switch.

�e -m switch requires a parameter of the form a:n:w:m. �e parameter's �elds have the following meanings:

Utilities

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

201

Field Description

a Starting address of the memory region.

n Number of addressable locations in the region.

w Width of each addressable location (in bits).

m Alignment; allocations from the region will be in multiples of this value.

When relocating a section sec of sz locations from the DLM, the dynreloc utility uses the following approach:

1. �e dynreloc utility looks for an explicit mapping for the section sec, as speci�ed by the -a switch. If such a
mapping is found, the mapping is used.

2. If no explicit mapping is found, the dynreloc utility searches for a memory region that has the same memory
width as section sec. If such a memory region is found, the dynreloc utility claims sz locations from the
region and maps sec to the �rst of those locations. �e remainder of the region is available for other sections.

3. If no region has been speci�ed with the same width as sec, or if the region has insu�cient unallocated
locations to accommodate the sz locations required by sec, the dynreloc utility reports an error.

i
Note:

Only one region may be speci�ed for each memory width.

Region mappings are a more convenient method of specifying mappings because the dynreloc utility ensures
that sections allocated from the same region do not overlap. �is is not the case with -a mappings, which are
used without any validation.

signtool - Sign and Encrypt Boot Streams for Secure Booting
�e signing utility (signtool.exe) supports secure booting by cryptographically signing boot stream �les. It
can also encrypt boot streams and provides public-key management support. �e input to signtool is the boot
stream �le to be protected, in binary form. �e output is the signed (and optionally encrypted) boot stream,
ready for secure booting.

Note that signtool treats its input as raw, binary data, and performs no interpretation of the content. Ensure
that the -f binary switch is speci�ed when invoking the elfloader utility; otherwise, the resulting secure-boot
image is not be usable.

�e signtool utility is provided by a third party; not all functionality is used by CrossCore Embedded Studio or
applicable to Analog Devices processors.

Syntax
Invoke the signtool utility from the command line or the CrossCore Embedded Studio IDE, as a post-build
step speci�ed in your project's Settings > Build Steps.

Utilities

202 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

�e command-line syntax for the signtool utility is:

 signtool cmd switches

cmd indicates the kind of operation to perform (the choices are described in the following sections). switches
are dependent on the choice of cmd.

Output Formats
When signing or encrypting a �le, signtool generates output in one of several forms, depending on whether
encryption is required, and delivers the encryption key to the processor for decryption. �e di�erent output
formats are known by the abbreviations BLp, BLx, BLw, and BLe.

• �e BLp format supports signing, not encryption. �e output �le includes a signature produced by a 224-bit
Elliptic Curve Digital Signature Algorithm (ECDSA) private key. �e corresponding public key must be
separately programmed into the processor's OTP to allow the target processor to authenticate the boot stream.

• �e BLx format supports signing and encryption. �e output �le is signed, as per the BLp format. It is also
encrypted using an AES-128 key. �e encryption key is not part of the output �le, so it must be programmed
into the processor's OTP to allow the target processor to decrypt the boot stream.

• �e BLw format supports signing and encryption. �e output �le is signed, as per the BLp format. It is also
encrypted using an AES-128 key as per the BLx format, but unlike BLx, the encryption key is also included in
the output �le, itself encrypted by a second AES-128 key (the "wrap" key). �e wrap key must be programmed
into the processor's OTP to allow the target processor to decrypt the encryption key, which then allows the
processor to decrypt the boot stream.

• �e BLe format is only intended for testing, and should not be used for production systems. It supports
authentication and encryption, but the encryption key is included in the output �le as-is, without any
protection.

Key Generation for Signing
Boot stream �les are signed using the private key from a 224-bit Elliptic Curve Digital Signature Algorithm
(ECDSA) keypair, stored in DER format. �e signtool utility's own genkeypair command can be used to
create such a keypair. �e following table describes the switches available for the genkeypair command.

�e following is an example command for creating a keypair:

 signtool genkeypair -algo ecdsa224 -outfile keychain.der

i
Note:

Ensure you keep your keypair safe, once you have created it, and keep it secret, as the private key therein
is essential for authenticity.

Switch Description

Utilities

CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

203

Key Generation for Encryption
Boot stream �les are encrypted using 128-bit keys, via the AES-128 algorithm. �is is a symmetric algorithm,
meaning that the same key is used for encryption and decryption. �e signtool utility does not provide built-in
support for generating AES-128 keys; you can create any 16-character �le and use that as your AES-128 key.
Ensure that you keep the key secret.

Signing and Encrypting Boot Streams
Boot streams are signed using the private key from a 224-bitElliptic Curve Digital Signature Algorithm (ECDSA)
keypair, by invoking the sign command of the signtool utility. �e following table lists the switches that are
relevant to the sign command.

Switch Description

�e following is an example of signing a boot stream �le:

 signtool sign -type BLp -prikey keychain.der -infile boot.bin -outfile secboot.bin

�e following is an example of signing and encrypting a boot stream �le, where a random encryption key is
generated by signtool:

 signtool sign -type BLw -prikey keychain.def -wrapkey aes.bin \\
-infile boot.bin -outfile secboot.bin

Extracting Public Keys
When a processor boots using secure boot, it must authenticate the boot stream before processing it. �e boot
stream will have been signed using the private key from a keypair; the authentication is done using the
corresponding public key from the same keypair. Use signtool's getkey command to extract the public key so
that you can store it in OTP on the processor, where it can be used during secure boot.

�e switches relevant to the getkey command are listed in the table below.

�e following is an example of extracting the public key in binary form:

 signtool getkey -type BLKey -key keychain.der -outfile pubkey.bin

�e following is an example of extracting the public key as a C header �le, suitable for inclusion into an
application:

 signtool getkey -type BLKeyC -key keychain.der -outfile pubkey.h

Utilities

204 CrossCore Embedded Studio 1.1.0 Loader and Utilities Manual

Revision 1.3, May 2014

Index

-64 splitter switch 176
-a name=num switch (elf2dyn utility) 195
-a sec=addr switch (dynreloc utility) 201
-b prom|�ash|spi|spislave|UART|TWI|FIFO, loader switch for ADSP-
BF53x processors 72
-b prom|�ash|spi|spislave|UART|TWI|FIFO|OTP|NAND, loader switch
for ADSP-BF51x/52x/54x processors 31, 33
-bprom|host|link|JTAG, loader switch for ADSP-21160 processors 113
-bprom|host|link|spi, loader switch for ADSP-21161 processors 133
-bprom|spislave|spi�ash|spimaster|spiprom, loader switch for
ADSP-2126x/36x/37x/46x processors 146, 166
-callback, loader switch for Black�n 34
-compression

loader switch for Black�n 67, 73
loader switch for SHARC 161, 164, 166

-compressionOverlay, loader switch for SHARC 162, 164, 167
-compressWS

loader switch for Black�n 71
loader switch for SHARC 165, 167

-compressWS # 73
-CRC32, loader switch for Black�n 34, 87, 94
-dm, splitter switch 176
-dmawidth #, loader switch for Black�n 34, 73
-e �lename, loader switch for ADSP-21160 processors 113
-e symbol switch (elf2dyn utility) 195, 197
-e�lename, loader switch for SHARC 133
-enc dll_�lename, loader switch for Black�n 73
-f {hex|ascii|binary|include} 74
-f family switch (elf2dlm utility) 199
-f h|s1|s2|s3|b, splitter switch 176
-f hex|ascii|binary|include, loader switch for Black�n 34
-�ex|ascii|binary|byte|include|s1|s2|s3, loader switch for SHARC 167
-�ex|ascii|binary|include|s1|s2|s3, loader switch for SHARC 114, 133
-FillBlock, loader switch for Black�n 31, 34, 189
-ghc #, loader switch for Black�n 74
-h switch

dynreloc utility 201
elf2dyn utility 195

-h|help
loader switch for Black�n 35, 74
loader switch for SHARC 114, 134, 167

-hostwidth #, loader switch for SHARC 134, 145, 146, 153, 154, 167
-id#exe=�lename

loader switch for SHARC 111, 114, 134, 168
-id#exe=N, loader switch for SHARC 134
-id#ref=N, loader switch for SHARC 114, 168
-init �lename, loader switch for Black�n 35, 39, 41, 49, 65, 74, 78
-initcall, ADSP-BF52x/54x Black�n loader switch 35, 41
-kb prom|�ash|spi|spislave|UART|TWI|FIFO, loader switch for Black�n
75
-kb prom|�ash|spi|spislave|uart|twi|�fo|otp|nand, loader switch for
Black�n 36
-keep switch (elf2elf utility) 199
-kenc dll_�lename, loader switch for Black�n 75
-kf #, loader switch for Black�n 37
-kf hex|ascii|binary|include, loader switch for Black�n 75
-kp #, loader switch for Black�n 37, 39, 76, 78
-kwidth #, loader switch for Black�n 37, 76
-l switch (elf2dyn utility) 195, 196
-l userkernel

loader switch for Black�n 37, 65
loader switch for SHARC 115, 134, 149, 165, 168

-m switch (dynreloc utility) 201
-M, loader switch for Black�n 38, 76, 77
-maskaddr #, loader switch for Black�n 38, 76
-MaxBlockSize #, loader switch for Black�n 38, 76, 88, 95
-MaxFillBlockSize #, loader switch for Black�n 38
-MaxZeroFillBlockSize #, loader switch for Black�n 77, 88, 95
-merge switch (elf2elf utility) 199
-MM, loader switch for Black�n 38, 77
-Mo �lename, loader switch for Black�n 38, 77
-Mt �lename, loader switch for Black�n 38, 77
-NoFillBlock, loader switch for Black�n 31, 38
-no�nalblock, loader switch for Black�n 77
-no�naltag, loader switch

ADSP-BF561 processors 77
ADSP-BF60x processors 86

-noinitcode, loader switch for Black�n 39, 77
-nokernel

loader switch for ADSP-2126x/36x/37x/46x processors 169
-norom, splitter switch 176
-nosecondstageloader, loader switch for Black�n 77
-nozeroblock, loader switch for SHARC 135, 169
-o �lename

dynreloc utility switch 201
elf2dyn utility switch 195
elf2elf utility switch 199
loader switch for Black�n 39, 77
loader switch for SHARC 115, 135, 169
splitter switch 176

-o2, loader switch for Black�n 36, 37, 39, 75, 78
-p #, loader switch for Black�n 39, 78
-paddress, loader switch for SHARC 115, 135, 169
-p�ag {#|PF#|PG#|PH#}, loader switch for Black�n 78
-p�ag #|PF|PG|PH #, loader switch for Black�n 79–81
-pm splitter switch 176
-proc part_number

Index

loader switch for Black�n 39, 78
loader switch for SHARC 115, 135, 169
splitter switch 177

-quickboot, loader switch for Black�n 39
-r #, splitter switch 177
-ram, splitter switch 176, 177
-readall, loader switch for Black�n 40
-retainSecondStageKernel, loader switch for SHARC 170
-romsplitter, loader switch for Black�n 38, 40, 76, 78
-s section_name, splitter switch 177
-save section, loader switch for Black�n 40
-ShowEncryptionMessage, loader switch for Black�n 79
-si-revision none|any|x.x

loader switch 178
loader switch for Black�n 41, 79
loader switch for SHARC 115, 135, 170

-t#, loader switch for SHARC 115, 135
-u

loader switch for SHARC 171
-u, splitter switch 178
-use32bitTagsforExternal Memory Blocks, loader switch for SHARC 115
-v (verbose)

loader switch for Black�n 41, 79
loader switch for SHARC 116, 135, 170

-v switch
dynreloc utility 201
elf2dyn utility 195

-version
elf2elf utility switch 199
loader switch for SHARC 116, 136, 170
splitter switch 178

-width #, loader switch for Black�n 41, 76, 79
-zeroPadForced #, loader switch for Black�n 79
.asm (assembly) source �les 19, 180
.bss �les (DLM format) 196
.dat (data) initialization �les 180
.data �les (DLM format) 196
.dlb (library) �les 182
.doj (object) �les 182
.dxe (executable) �les 23, 25, 182, 191
.h_# (Intel hex-32) �le format 175, 176, 183, 189
.knl (kernel code) �les 25
.ldr (loader output) �les

ASCII format 181, 191
binary format 185, 188
hex-32 format 183
include format �les 185
naming 39, 77
specifying host bus width 134, 167

.map (memory map) �les 182

.s_# (Motorola S-record) �les 175, 186, 191

.sm (shared memory) �les 25, 113, 133, 182, 191

.stk (byte-stacked) �les 175, 176, 178, 189

.text �les (DLM lite format) 196

.txt (ASCII text) �les 181

.VAR directive 180

16- to 48-bit word packing 105
4- to 48-bit word packing 106
48- to 8-bit word packing 104
8- to 48-bit word packing 104, 105, 120, 122

A

ACK pin 103, 104, 121
ADDR23-0 address lines 122
address records, linear format 183
ADSP-21160 processors

ADSP-21160 boot modes 99, 102
boot sequence 100

ADSP-21161 processors
boot modes 117, 119
boot sequence 118
multiprocessor support 130

ADSP-2126x/36x/37x/46x processors
boot modes 137, 142
boot sequence 138

ADSP-2136x/37x/4xx processors, multiprocessor support 159
ADSP-BF50x processors

boot modes 28
multi-dxe loader �les 41

ADSP-BF51x processors
boot modes 29
multi-dxe loader �les 41

ADSP-BF52x/54x processors
boot modes 29
multi-dxe loader �les 41

ADSP-BF531/2/3/4/6/7/8/9 processors
ADSP-BF534/6/7 (only) boot modes 45
boot modes 44
boot streams 47, 48
compression support 67
memory ranges 55
multi-dxe loader �les 64, 65
on-chip boot ROM 44, 46, 47, 55, 65

ADSP-BF561 processors
boot modes 57
boot streams 58–63
dual-core architecture 56
memory ranges 64
multi-dxe loader �les 64, 65
multiprocessor support 63
on-chip boot ROM 56, 57, 63–65

ADSP-BF60x processors
BCODE �eld 85
boot modes 84

ADSP-BF70x processors
BCODE �eld 92
boot modes 92

application loading (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 50, 66
ADSP-BF561 processors 57, 64, 66

application loading (SHARC processors)
ADSP-21161 processors 118, 120, 122
ADSP-2126x/36x/37x processors 156
ADSP-2126x/36x/37x/46x processors 138

Index

applications
code start address 39, 78, 100, 109, 120
development �ow 18
loading, introduction to 23
multiple-dxe �les 41

archive �les, See library �les (.dlb) 182
archiver 182
ASCII �le format 34, 74, 181, 191
assembling, introduction to 19
assembly

directives 180
initialization data �les (.dat)
180
object �les (.doj) 182
source text �les (.asm) 19, 180

asynchronous FIFO boot mode, ADSP-BF52x/54x processors 30

B

baud rate (Black�n processors) 59
BCODE pins, ADSP-BF60x processors 85
BCODE pins, ADSP-BF70x processors 92
BFLAG_CALLBACK block �ag 34
BFLAG_QUICKBOT block �ag 40
BFLAG_SAVE block �ag 40
binary format �les (.ldr) 34, 74, 185
bit-reverse option (SHARC processors) 145
block

byte counts (Black�n processors) 38, 76
of application code, introduction to 23
tags 108, 128, 149, 152

block headers (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 47, 48
ADSP-BF561 processors 59, 63
ADSP-BF60x processors 85
ADSP-BF70x processors 92

block headers (SHARC processors)
ADSP-21161 processors 127
ADSP-2126x/36x/37x processors 149, 151

blocks of application code (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 47
ADSP-BF561 processors 58
ADSP-BF60x processors 88
ADSP-BF70x processors 94

blocks of application code (SHARC processors)
ADSP-21161 processors 127
ADSP-2126x/36x/37x processors 151

BMODE1-0 pins, ADSP-BF531/2/3/8/9 processors 44, 53
BMODE2-0 pins

ADSP-BF51x processors 28, 29
ADSP-BF534/6/7 processors 45

BMODE3-0 pins, ADSP-BF52x/54x processors 29
BMS pins

ADSP-21160 processors 105, 106, 111
ADSP-21161 processors 118, 120, 122, 125, 126, 130

boot
sequences, introduction to 20

boot di�erences (Black�n processors) 44, 56, 58
boot di�erences (SHARC processors) 144, 147

boot �le formats
specifying for Black�n processors 34, 74
specifying for SHARC processors 114, 133, 167

boot mode select pins (Black�n processors)
ADSP-BF51x processors 28, 29
ADSP-BF52x/54x processors 29
ADSP-BF531/2/3/4/6/7/8/9 processors 44
ADSP-BF60x processors 85
ADSP-BF70x processors 92

boot mode select pins (SHARC processors)
ADSP-21161 processors 118
ADSP-2116x/160 processors 101
ADSP-2126x/36x/37x processors 140

boot modes (Black�n processors)
ADSP-BF50x processors 28
ADSP-BF51x processors 28, 29
ADSP-BF52x/54x processors 28, 29
ADSP-BF531/2/3/8/9 processors 32
ADSP-BF534/6/7 processors 44, 45
ADSP-BF561 processors 57
ADSP-BF60x processors 84
ADSP-BF70x processors 92
specifying 33, 72

boot modes (SHARC processors)
ADSP-21160 processors 99, 102
ADSP-21161 processors 117, 119
ADSP-2126x/36x/37x processors 140
specifying 113, 133, 140, 166

boot sequences (SHARC processors)
ADSP-21161 processors 118
ADSP-2116x/160 processors 100
ADSP-2126x/36x/37x/46x processors 138

boot streams (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 47, 65
ADSP-BF561 processors 58–63, 65

boot streams (SHARC processors)
ADSP-21160 processors 108
ADSP-21161 processors 127
ADSP-2126x/36x/37x processors 149, 151

boot streams, introduction to 22, 23
boot-loadable �les

introduction to 19, 20
versus non-bootable �le 23

boot-loading sequence 103
bootstraps 23
BSO bit 104
BUSLCK bit 106
bypass mode, See no-boot mode 44
BYTE format (non-bootable �les) 188
BYTE format �les (.ldr) 188
byte-stacked format �les (.stk) 175, 176, 178, 189

C

C and C++ source �les 19, 179
CEP0 register 121–124
CLB0 register 125
CLKPL bit 143
command line

Index

loader for SHARC processors 112, 132, 165
loader/splitter for Black�n processors 32, 72, 112, 132
splitter 173, 175

compilation, introduction to 19
compressed block headers

Black�n processors 50, 68
SHARC processors 163

compressed streams
Black�n processors 67, 70
SHARC processors 162, 164

compression support
ADSP-BF531/2/3/4/6/7/8/9 processors 67

compression window 69, 71, 163, 165
conversion utilities 193, 194, 199
count headers (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 65
ADSP-BF561 processors 59, 63, 65

CPEP0 register 121, 123
CPHASE bit 143
CPLB0 register 125
CRC32 protection, ADSP-BF60x processors 87
CRC32 protection, ADSP-BF70x processors 94
CS pin 105, 124, 142
CSRX register 126
Cx register 103, 104, 107

D

D39-32 bits 104
data

initialization �les (.dat) 180
memory (dm) sections 174, 176

data banks (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 55
ADSP-BF561 processors 64

data packing (SHARC processors)
ADSP-21160 processors 104–106
ADSP-21161 processors 120, 122
ADSP-2126x/36x/37x/46x processors 141, 153, 154

data streams
encrypting from application 73
encrypting from kernel 75

DATA23-16 pins 120
DATA39-32 pins 102
DATA63-32 pins 105
DATA64 memory sections 174, 176
DataFlash devices 44
debugger �le formats 19, 191
debugging targets 19
decompression

initialization �les 71
kernel �les 165

DEN register 121, 123
DLMs to ELF DLM converter 199
DMA (ADSP-21160 processors)

bu�ers 105
channel control registers 104–107
channel interrupts 106, 107
channel parameter registers 103–105, 107
controller 99, 103, 104
transfers 104–107, 109

DMA (ADSP-21161 processors)
bu�ers 131
channel control registers 120, 122, 123, 127
channel interrupts 122, 124
channel parameter registers 121–127
controller 120–122
transfers 118, 122, 126, 127, 130

DMA (ADSP-2126x/36x/37x/46x processors)
parameter registers 143
transfers 147

DMA (ADSP-2126x/36x/37x/46x processors): code example 156
DMA (ADSP-2126x/36x/37x/46x processors): parameter registers 156
DMAC0 channel (ADSP-21160 processors) 105
DMAC10 channels

ADSP-21160 processors 100, 103–105, 107
ADSP-21161 processors 120–122

DMAC6 channel (ADSP-21160 processors) 104, 105, 107
DMAC8 channels

ADSP-21160 processors 105, 106
ADSP-21161 processors 118, 124–126

DMISO bit 143
DTYPE register 105, 121, 124
dual-core applications

ADSP-BF561 processors 63
ADSP-BF60x processors 86

DWARF-2 debugging information 19
Dynamically Loadable Modules (DLMs) 194
dyndump utility 199
dynreloc utility 200

E

EBOOT pins
ADSP-21160 processors 101, 102, 105, 106
ADSP-21161 processors 118, 120, 122, 125, 126, 131

ECEP0 register 121–123
ECx register 103–105
EIEP0 register 121, 123
EIx register 103, 105
ELF to BFLT �le converter 198
elf to DLM converter 194
elf2dyn utility 194, 195
elf2�t utility 198
elfdump utility 197
el�oader, See loader
EMEP0 register 121, 123
EMx register 103
encrypted images, ADSP-BF70x processors 93
encryption functions 73, 75, 79
end-of-�le records 184
EP0I vector 106, 122, 124
EPB0 bu�er 105
EPROM boot mode (SHARC processors)

Index

ADSP-21160 processors 99, 101, 102, 111, 112
ADSP-21161 processors 117, 118, 120
multiprocessor systems 130

EPROM �ash memory devices 22
executable and linkable format (ELF)

executable �les (.dxe) 19, 20, 182
object �les (.doj) 182

exported symbols 197
external

memory boot 20
resistors 103
vector tables 111

external memory (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 44, 45, 65
ADSP-BF561 processors 63, 65
multiprocessor support 65

external memory (SHARC processors)
ADSP-21160 processors 102, 104, 106, 107, 109, 111, 115
ADSP-21161 processors 119, 127, 130, 135
ADSP-2126x/36x/37x processors) 153
ADSP-2126x/36x/37x/46x processors 141

external ports (SHARC processors)
ADSP-21160 processors 101, 102, 104–107, 109, 111
ADSP-21161 processors 118, 120–124, 131

F

�le formats
ASCII 34, 74, 191
binary 34, 74
byte-stacked (.stk) 175, 176, 178
debugger input �les 191
hexadecimal (Intel hex-32) 34, 74, 175, 176
include 34, 74
list of 24
s-record (Motorola) 175, 176

�le formatting
selecting for output 37, 75
specifying word width 79

�le search rules 24
�nal blocks

introduction to 23
SHARC processors 109, 149, 155

FLAG pins, ADSP-21160 processors 111
�ag words (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 49
ADSP-BF561 processors 59, 63

�ash memory
ADSP-BF51x processors 29
ADSP-BF52x/54x processors 29
devices 19

FLG0 signal 143
frequency 106, 125

G

global header structures, See block headers 58, 59, 74
GPEP0 register 121, 123
GPLB0 register 125
GPSRX register 126

H

HBG pin 105
HBR pin 124
header �les (.h) 58, 181
header records

byte-stacked format (.stk) 190
s-record format (.s_#) 186

hex-to-S converter 193
hexutil utility 193
hold time cycles 59
host boot mode (SHARC processors)

ADSP-21160 processors 99, 105, 111
ADSP-21161 processors 117, 122
ADSP-2126x/36x/37x/46x processors 147

host boot mode, introduction to 22, 23
host DMA boot mode, ADSP-BF52x/54x processors 30
HPM bit 105

I

IDLE instruction 101, 106, 109, 110, 123
ignore blocks (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 49
ADSP-BF561 processors 59

IIEP0 register 121, 123
IILB0 register 125
IISRX register 126
IIVT bit 111, 130
IIx register 103, 107
image �les, See PROM, non-bootable �les 173
IMASK register 106, 107
IMDW register 106, 156
IMEP0 register 121, 123
IMLB0 register 125
IMSRX register 126
IMx register 103
include �le format 185
INIT_L16 blocks 154
INIT_L48 blocks 153
INIT_L64 blocks 155
initial word option (SHARC processors) 145
initialization blocks (ADSP-2126x/36x/37x/46x processors) 151, 153–156
initialization blocks (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 49, 50, 66
ADSP-BF561 processors 63, 64, 66

initialization blocks (Black�n processors): code example 51, 66
input �le formats, See source �le formats 179
input �les

executable (.dxe) �les 25, 112, 132, 165
extracting memory sections from 176, 177

instruction SRAM (Black�n processors)

Index

ADSP-BF531/2/3/4/6/7/8/9 processors 55
ADSP-BF561 processors 63, 64

Intel hex-32 �le format 31, 34, 74, 183
internal memory, boot-loadable �le execution 20
interrupt vector location 122, 124
interrupt vector tables 111, 130, 149, 156
IOP registers 105
IRQ vector 103
IVG15 lowest priority interrupt 46, 50, 58

K

kernels (ADSP-21160 processors)
boot sequence 100, 107
default source �les 107, 110
loading to processor 104, 106
modifying 109
rebuilding 110
replacing with application code 109
specifying user kernel 115

kernels (ADSP-21161 processors)
boot sequence 118
default source �les 127, 129
modifying 128, 129
rebuilding 128, 129

kernels (ADSP-2126x/36x/37x/46x processors)
boot sequence 138, 147
compression/decompression 161, 162, 164, 165
default source �les 147
loading to processor 143, 144
modifying 148, 150
omitting in output 149
rebuilding 150

kernels (Black�n processors)
compression/decompression 67, 70
specifying boot mode 36, 75
specifying �le format 37, 75
specifying �le width 76
specifying hex address 37, 76
specifying user kernel 37

L

L1 memory (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 47, 50, 55
ADSP-BF561 processors 58, 64

L2 memory (Black�n processors)
ADSP-BF561 processors 64

last blocks (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 50, 51
ADSP-BF561 processors 59

LBOOT pins
ADSP-21161 processors 101, 102, 105, 118, 120, 122, 125, 126

LCOM register 107
LCTL register 107, 109, 125
least signi�cant bit �rst (LSB) format 144
library �les (.dlb) 182
link bu�ers 106, 107, 124, 125
link port boot mode

ADSP-2146x SHARC processors 166
link port boot mode (SHARC processors)

ADSP-21160 processors 99, 101
ADSP-21161 processors 117, 119, 124

linker
command-line �les (.txt) 181
memory map �les (.map) 182
output �les (.dxe, .sm, .ovl) 19, 182

linking, introduction to 19
loadable �les, See boot-loadable �les 19
loader

operations 20
output �le formats 21, 23, 183, 185, 186, 188

loader for ADSP-21160 processors 99
loader for ADSP-21161 processors 117
loader for ADSP-2126x/36x/37x/469 processors 137
loader for ADSP-BF51x/52x/54x Black�n (includes splitter) 27
loader for ADSP-BF53x/BF561 Black�n (includes splitter) 43
loader for ADSP-BF60x Black�n (includes splitter) 83
loader for ADSP-BF70x Black�n (includes splitter) 91
loader kernels, See boot kernels 23
loader switches, See switches by name 33, 72
loading, introduction to 19

M

make �les 38, 76, 77
masking EPROM address bits 38, 76
master (host) boot, introduction to 20
memory map �les (.map) 182
memory programming on ADSP-BF60x processors 87
memory ranges (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 55
ADSP-BF561 processors 64

microcontroller data transfers 189
MODE1 register 106
MODE2 register 106
most signi�cant bit �rst (MSB) format 144
Motorola S-record �le format 186
MS bit 143
MSBF bit 143
MSWF register 121, 124
multiprocessor booting, introduction to 20
multiprocessor systems (Black�n processors) 41, 65
multiprocessor systems (SHARC processors)

ADSP-21160 processors 112
ADSP-21161 processors 120, 130, 131

N

no-boot mode
introduction to 20, 22
selecting with -romsplitter switch 40, 78

no-boot mode (Black�n processors)
ADSP-BF50x processors 28
ADSP-BF51x processors 29
ADSP-BF52x/54x processors 29
ADSP-BF531/2/3/4/6/7/8/9 processors 44
ADSP-BF561 processors 58

Index

no-boot mode (SHARC processors)
ADSP-21160 processors 99, 107
ADSP-21161 processors 117, 119, 127

non-bootable �les
creating from command line 174
ignoring ROM sections 176
introduction to 20, 23
specifying format 176
specifying name 176
specifying word width 174, 177

non-bootable output �les 188
NOP instruction 101, 106, 109, 110, 123
numeric formats 180

O

object �les (.doj) 182
on-chip boot ROM

ADSP-BF531/2/3/4/6/7/8/9 processors 23, 44, 46, 47, 49, 55, 65
ADSP-BF561 processors 56, 57, 63–65
introduction to 23

OTP boot mode, ADSP-BF51x/52x/54x processors 29
output �les

generating kernel and application 39, 78
specifying format 21, 182
specifying name 39, 77
specifying with -o switch 194
specifying word width 79, 134

overlay compression 164
overlay memory �les (.ovl) 25, 182, 191

P

packing boot data 117
parallel/serial PROM devices 22
PFx signals 78
pin

ACK 105
PMODE register 104, 105, 121, 124
processor IDs

assigning to .dxe �le 114, 134, 168
pointing to jump table 114, 134

processor type bits (Black�n boot streams) 49
processor-loadable �les, introduction to 22
program counter settings (ADSP-21160 processors) 105
program development �ow 18
program memory sections (splitter) 174, 176
PROM

boot mode, introduction to 22
downloading boot-loadable �les 20
memory devices 147, 183

PROM (image) �les
creating from command line 174
ignoring ROM sections 176
specifying format 176
specifying name 176
specifying width 177

PROM boot mode, ADSP-2126x/36x/37x/46x processors 141, 150
PROM/�ash boot mode (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 44, 45, 66
ADSP-BF561 processors 63, 66

pull-up resistors 121
Px register 109, 156

R

RBAM bit 121
RBWS bit 121
RD pin 104, 122
reset

ADSP-21160 processors 100, 103–105, 107
ADSP-21161 processors 118, 120–123, 125, 126
ADSP-2126x/36x/37x/46x processors 138, 148
ADSP-BF561 processors 53, 56, 58
Black�n processors 28, 43, 44
dual-core Black�n processors 56
processor, introduction to 22, 23
vector addresses 100, 104, 106, 129
vector routine 122

RESET
interrupt service routine 46, 58, 124
pin 103, 121

RESET pin 124
reset: vector routine 55
ROM

memory images as ASCII text �les 191
memory sections 176

Rx registers 63, 66, 106

S

s1 (Motorola EXORciser) �le format 176, 186
s2 (Motorola EXORMAX) �le format 176, 186
s3 (Motorola 32-bit) �le format 176, 186
scratchpad memory (Black�n processors)

ADSP-BF561 processors 64
SDCTL register 129
SDRAM memory (ADSP-21160 processors) 107
SDRAM memory (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 49, 56
ADSP-BF561 processors 63, 64

SDRAM memory (Black�n processors): ADSP-BF531/2/3/4/6/7/8/9
processors 51
SDRAM/DDR boot mode, ADSP-BF52x/54x processors 30
SDRDIV register 129
second-stage loader

ADSP-BF561 processors 63
secure boot, ADSP-BF70x processors 93
SENDZ bit 143
sequential EPROM boot 131
shared memory

Index

Black�n processors 63, 64
�le format (.sm) 25, 63, 182, 191
in compressed .ldr �les 162, 164
omitting from loader �le 113, 133

shi� register, See RX registers 142
simulators, for boot simulation 20
single-processor systems 112, 131, 174
slave processors 20, 22, 143
so�ware reset 22, 47, 58
source �le formats

assembly text (.asm) 180
C/C++ text (.c, .cpp, .cxx) 179

SPI boot modes (SHARC processors)
ADSP-21161 processors 117, 119, 125
ADSP-2126x/36x/37x/46x processors 142, 145, 150

SPI EEPROM boot mode (Black�n processors)
ADSP-BF561 processors 63

SPI �ash boot mode (ADSP-2126x/2136x/2137x/21469 processors) 147
SPI host boot mode (ADSP-2126x/36x/37x/46x processors) 147
SPI master boot modes

ADSP-2126x/36x/37x processors 149
ADSP-2126x/36x/37x/46x processors 143, 145
ADSP-BF51x processors 29
ADSP-BF52x/54x processors 30
ADSP-BF531/2/3/8/9 processors 44
ADSP-BF534/6/7 processors 30, 45
ADSP-BF60x processors 85
ADSP-BF70x processors 92

SPI memory slave devices 144
SPI PROM boot mode (ADSP-2126x/36x/37x/46x processors) 145–147
SPI slave boot mode (ADSP-2126x/2136x/2137x/21469 processors) 143
SPI slave boot mode (ADSP-2126x/36x/37x/46x processors) 142, 145
SPI slave boot mode (Black�n processors)

ADSP-BF51x processors 29
ADSP-BF52x/54x processors 30
ADSP-BF531/2/3/8/9 processors 44
ADSP-BF534/6/7 processors 45

SPICLK register 143, 144, 147
SPICTL register 126
SPIDS signal 143
SPIEN bit 143
SPIRCV bit 143
SPIRx register 118, 125, 126
splitter

command-line syntax 173
�le extensions 175
introduction to 19–22
list of switches 175
output �le formats 189, 191

SPORT hex data �les 191
SRAM memory (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 55
ADSP-BF561 processors 57, 64

start addresses
ADSP-21160 application code 100
Black�n application code 39, 78

status information 41, 79
supervisor mode (Black�n processors)

ADSP-BF531/2/3/4/6/7/8/9 processors 46
ADSP-BF561 processors 58

synchronous boot operations 105
SYSCON register (SHARC processors)

ADSP-21160 processors 105, 109, 111
ADSP-21161 processors 129, 130

SYSCR register (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 47
ADSP-BF561 processors 58

SYSCTL register 156
SYSTAT register 111
system reset con�guration register, See SYSCR register 28, 43

T

termination records 187
text �les 191
Tool Settings dialog box 32, 71, 88, 95, 112, 131, 149, 165
two-wire interface (TWI) boot mode

ADSP-BF2x/54x processors 30
ADSP-BF534/6/7 processors 45

U

UART slave boot mode (Black�n processors) 29, 30, 45
UBWM register 104
uncompressed streams 70, 163
utility programs (list) 193

V

vector addresses 110, 130

W

WAIT register 104, 107, 109, 121, 129
wait states 104, 106, 121, 122
WL bit 143
word width, setting for loader output �le 134

Z

zero-�ll blocks (Black�n processors)
ADSP-BF531/2/3/4/6/7/8/9 processors 49, 77
ADSP-BF561 processors 59

zero-�ll blocks (SHARC processors)
ADSP-21160 processors 109
ADSP-2126x/36x/37x processors 152

zero-padding (ADSP-2126x/36x/37x/46x processors) 153, 154

Index

	CCES 1.1 Loader and Utilities Manual
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What's New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone
	Notation Conventions
	Introduction
	Definition of Terms

	Program Development Flow
	Compiling and Assembling
	Linking
	Loading, Splitting, or Both
	Non-Bootable Files Versus Boot-Loadable Files
	Loader Utility Operations
	Using CCES Loader Interface
	Splitter Utility Operations
	Using CCES Splitter Interface
	Boot Modes
	No-Boot Mode
	PROM Boot Mode
	Host Boot Mode
	Boot Kernels
	Boot Streams
	Loader File Searches
	Loader File Extensions
	Loader/Splitter for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Blackfin Processors
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Booting
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processor Loader Guide
	Loader Command Line for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors
	Loader Command-Line Switches for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x
	ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Multi-DXE Loader Files
	CCES Loader and Splitter Interface for ADSP-BF50x/BF51x/BF52x/BF54x/BF59x Processors
	Loader/Splitter for ADSP-BF53x/BF561 Blackfin Processors
	ADSP-BF53x/BF561 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Block Headers and Flags
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Initialization Blocks
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor No-Boot Mode
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges
	ADSP-BF561 Processor Booting
	ADSP-BF561 Processor On-Chip Boot ROM
	ADSP-BF561 Processor Boot Streams
	ADSP-BF561 Processor Initialization Blocks
	ADSP-BF561 Dual-Core Application Management
	ADSP-BF561 Processor Memory Ranges
	ADSP-BF53x and ADSP-BF561 Multi-Application (Multi-DXE) Management
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537 Processor Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Booting Compressed Streams
	Decompression Initialization Files
	ADSP-BF53x/BF561 Processor Loader Guide
	Loader Command Line for ADSP-BF53x/BF561 Processors
	Loader Command-Line Switches for ADSP-BF533/BF561 Processors
	CCES Loader and Splitter Interface for ADSP-BF53x/BF561 Processors
	Loader/Splitter for ADSP-BF60x Blackfin Processors
	ADSP-BF60x Processor Booting
	ADSP-BF60x Processor Boot Modes
	ADSP-BF60x BCODE Field for Memory, RSI, and SPI Master Boot
	Building a Dual-Core Application
	-NoFinalTag
	Programming Memory on a Target Board
	CRC32 Protection
	Block Sizes
	ADSP-BF60x Processor Loader Guide
	CCES Loader and Splitter Interface for ADSP-BF60x Processors
	ROM Splitter Capabilities for ADSP-BF60x Processors
	ADSP-BF60x Loader Collateral
	Loader/Splitter for ADSP-BF70x Blackfin Processors
	ADSP-BF70x Processor Booting
	ADSP-BF70x Processor Boot Modes
	ADSP-BF70x BCODE Field for SPI Boot
	Secure Boot and Encrypted Images
	CRC32 Protection
	Block Sizes
	ADSP-BF70x Processor Loader Guide
	CCES Loader and Splitter Interface for ADSP-BF70x Processors
	ROM Splitter Capabilities for ADSP-BF70x Processors
	ADSP-BF70x Loader Collateral
	Loader for ADSP-21160 SHARC Processors
	ADSP-21160 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21160 Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	No-Boot Mode
	ADSP-21160 Boot Kernels
	Processor Boot Steams
	Boot Kernel Modification and Loader Issues
	ADSP-21160 Interrupt Vector Table
	ADSP-21160 Multi-Application (Multi-DXE) Management
	ADSP-21160 Processor ID Numbers
	Processor Loader Guide
	Loader Command Line for Processors
	Loader Command-Line Switches for Processors
	CCES Loader Interface for Processors
	Loader for ADSP-21161 SHARC Processors
	ADSP-21161 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	ADSP-21161 Processor Boot Modes
	EPROM Boot Mode
	Host Boot Mode
	Link Port Boot Mode
	SPI Port Boot Mode
	No-Boot Mode
	ADSP-21161 Processor Boot Kernels
	Processor Boot Streams
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues
	ADSP-21161 Processor Interrupt Vector Table
	ADSP-21161 Multi-Application (Multi-DXE) Management
	Boot From a Single EPROM
	Sequential EPROM Boot
	Processor ID Numbers
	ADSP-21161 Processor Loader Guide
	Loader Command Line for Processors
	Loader Command-Line Switches for ADSP-21161 Processors
	CCES Loader Interface for Processors
	Loader for ADSP-2126x/2136x/2137x/214xx SHARC Processors
	ADSP-2126x/2136x/2137x/214xx Processor Booting
	Power-Up Booting Process
	ADSP-2126x/2136x/2137x/214xx Processor Interrupt Vector Table
	General Boot Definitions
	Boot Mode Selection
	Boot DMA Configuration Settings
	PROM Boot Mode
	Packing Options for External Memory
	Multiplexed Parallel Port
	AMI/SDRAM/DDR2
	Packing and Padding Details
	SPI Port Boot Modes
	SPI Slave Boot Mode
	SPI Master Boot Modes
	Bit-Reverse Option for SPI Master Boot Modes
	Initial Word Option for SPI Master Boot Modes
	Booting From an SPI Flash (24-Bit Address)
	Booting From an SPI PROM (16-Bit Address)
	Booting From an SPI Host Processor (No Address)
	Reserved (No Boot) Mode
	ADSP-2126x/2136x/2137x/214xx Processor Boot Kernels
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues
	ADSP-2126x/2136x/2137x/214xx Processor Boot Streams
	Boot Stream Block Tags
	ZERO_INIT Blocks
	INIT_L48 Blocks
	INIT_L16 Blocks
	INIT_L64 Blocks
	MULT_PROC Blocks
	FINAL_INIT Blocks
	Multi-Application (Multi-DXE) Management
	ADSP-2126x/2136x/2137x Processor Compression Support
	Compressed Streams
	Compressed Block Headers
	Uncompressed Streams
	Overlay Compression
	Booting Compressed Streams
	Decompression Kernel File
	ADSP-2126x/2136x/2137x/214xx Processor Loader Guide
	Loader Command Line for ADSP-2126x/2136x/2137x/214xx Processors
	Loader Command-Line Switches for ADSP-2126x/2136x/2137x/214xx Processors
	CCES Loader Interface for ADSP-2126x/2136x/2137x/214xx Processors
	Splitter for SHARC Processors
	Splitter Command Line
	Splitter File Searches
	Splitter Output File Extensions
	Splitter Command-Line Switches
	File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files
	Assembly Initialization Data Files
	Header Files
	Linker Description Files
	Linker Command-Line Files
	Build Files
	Assembler Object Files
	Library Files
	Linker Output Files
	Memory Map Files
	Bootable Loader Output Files
	Loader Output Files in Intel Hex-32 Format
	Loader Output Files in Include Format
	Loader Output Files in Binary Format
	Loader Output Files in Motorola S-Record Format
	Non-Bootable Loader Output Files in Byte Format
	Splitter Output Files
	Splitter Output Files in Intel Hex-32 Format
	Splitter Output Files in Byte-Stacked Format
	Splitter Output Files in ASCII Format
	Splitter Output Files in Motorola S-Record Format
	Debugger Files
	Utilities
	hexutil - Hex-32 to S-Record File Converter
	elf2dyn - ELF to Dynamically-Loadable Module Converter
	Dynamically-Loadable Modules
	Syntax
	File Formats and -l Switch
	Exported Symbols
	Section Alignment
	elf2elf - ELF to ELF File Converter
	dyndump - Display the Contents of Dynamically-Loadable Modules
	-f Family
	Output
	dynreloc - Relocate Dynamically-Loadable Modules
	Explicit Mappings
	Region Mappings
	signtool - Sign and Encrypt Boot Streams for Secure Booting
	Syntax
	Output Formats
	Key Generation for Signing
	Key Generation for Encryption
	Signing and Encrypting Boot Streams
	Extracting Public Keys
	Index

