

Features

- 0603 0.88mm SMD LED
- Close responsively to the human eye spectrum ·
- Light to Current, analog output ·
- Good output linearity across wide illumination
 range ·
- Low sensitivity variation across various light sources ·

Applications

- Detection of ambient light to control display backlighting
- Mobile devices
- Computing device
- Consumer device
- Automatic residential and commercial management
- Automatic contrast enhancement for electronic signboard
- Ambient light monitoring device for daylight
 and artificial light

Description

The IN-S63CTLS is a popular 0603 package with versatile design capabilities. It is a PCB type molding style LED which can be used in various applications.

Recommended Solder Pattern

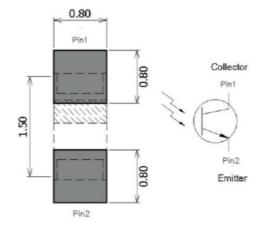
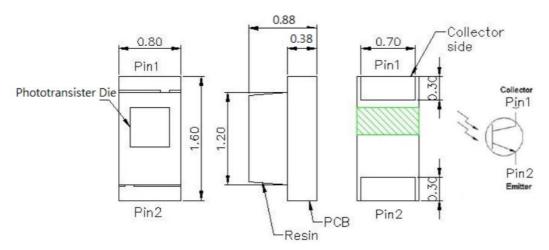
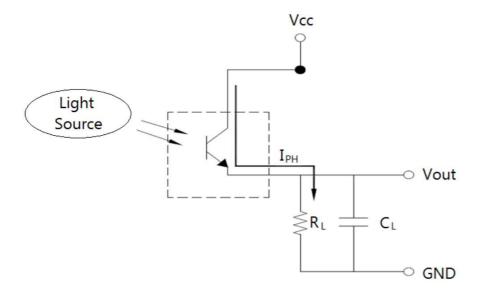



Figure 1. IN-S63CTLS Solder Pattern



Package Dimensions in mm

Figure 2. IN-S63CTLS Package Dimensions

Converting Photocurrent to Voltage

Notes:

- 1. The output voltage (Vout) is the product of photocurrent (IPH) and loading resistor (RL)
- 2. A right loading resistor shall be chosen to meet the requirement of maximum ambient light,

and output saturation voltage:

Vout(max.) = IPH(max.) × RL \leq Vout(saturation) = Vcc - 0.4V

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
BVCEO	Collector-Emitter Breakdown Voltage	60	V	1
BVECO	Emitter-Collector Breakdown Voltage	4	V	2
Topr	Operating Temperature	-40~+85	°C	
Tstg	Storage Temperature	-40~+100	°C	
Tsol	Soldering Temperature	260	°C	3

Notes

1. Test conditions: IC=100µA, Ev=0 Lx.

- 2. Test conditions: IE=100µA, Ev=0 Lx.
- 3. Soldering time≦5 seconds.

ESD Precaution

ATTENTION: Electrostatic Discharge (ESD) protection

The symbol above denotes that ESD precaution is needed. ESD protection for GaP and AlGaAs based chips is necessary even though they are relatively safe in the presence of low static-electric discharge. Parts built with AlInGaP, GaN, or/and InGaN based chips are STATIC SENSITIVE devices. ESD precaution must be taken during design and assembly.

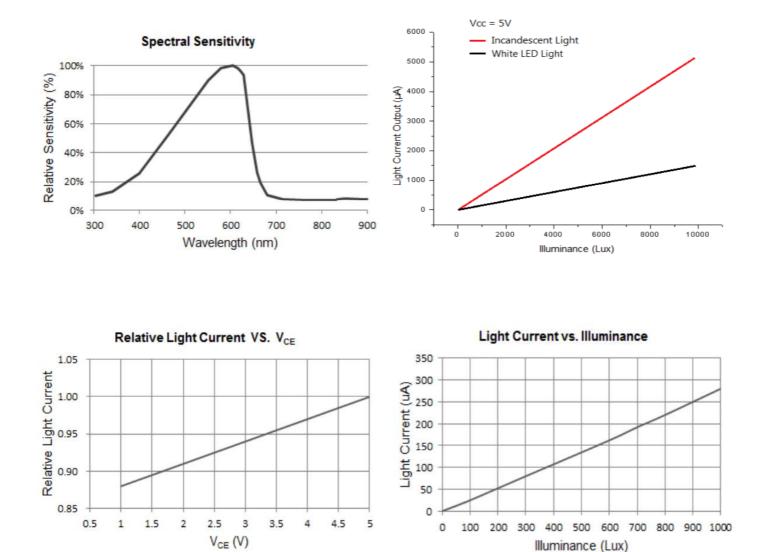
If manual work or processing is needed, please ensure the device is adequately protected from ESD during the process.

Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

Electro-Optical Characteristics

Symbol	Parameters	Test conditions	Min	Тур	Мах	Units	Notes
λd	Rang Of Spectral Bandwidth		390	-	700	nm	
λP	Wavelength Of Peak Sensitivity		-	630		nm	
BVCEO	Collector-Emitter Breakdown Voltage	Ic=100μA Ev=0 Lx	60	-	-	V	
BVECO	Emitter-Collector Breakdown Voltage	IE=100Ma Ev=0 Lx	4	-	-	V	
VCE(sat)	Collector-Emitter Saturation Voltage	IC=2mA Ev=1000 Lx	-	-	0.4	V	
ICEO	Collector Dark Current	Vce=10V Ev=0 Lx	-	-	100	nA	
Ірн1	Light Current (1)	Vce=5V, Ev=100 Lx	5	25	50	μA	1
Ірн2	Light Current (2)	Vce=5V , Ev=1000 Lx	50	280	500	μA	1
Ірнз	Light Current (3)	Vce=5V , Ev=1000 Lx	150	620	980	μA	2
Vo	Saturation Output Voltage	Vcc=5V, Ev= 1000 Lx , RL=75K	4.5	4.6		V	

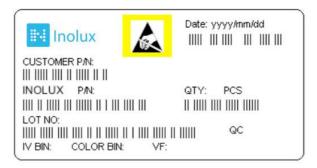
Notes


1. White LED light (Color Temperature = 6500K) is used as light source.

2. Illuminance by CIE standard illuminant-A / 2856K, incandescent lamp.

IN-S63DTLS Ambient Light Sensor Top View SMD LED 0603 PCB Type

Typical Characteristic Curves


IN-S63DTLS Ambient Light Sensor Top View SMD LED 0603 PCB Type

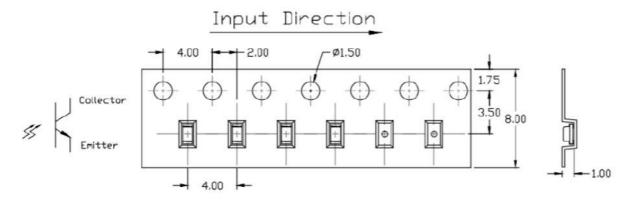
Ordering Information

Product	Symbol	Parameters	Test conditions	Min	Тур	Max	Units	Orderable Part Number
IN-S63DTLS	Ірн1	Light Current (1)	Vce=5V, Ev=100 Lx	5	25	50	μA	
	Ірн2	Light Current (2)	Vce=5V , Ev=1000 Lx	50	280	500	μA	IN-S63DTLS
	Ірнз	Light Current (3)	Vce=5V , Ev=1000 Lx	150	620	980	μA	

Label Specifications

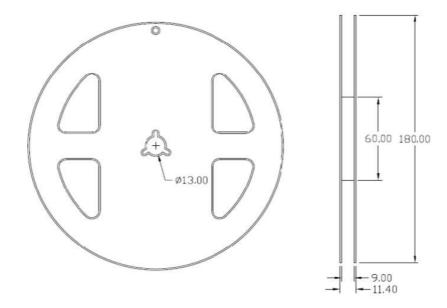
Inolux P/N:

I	Ν	-	S	6	3	D	Т		LS	-	-	- ·	
			Material	Pack	kage	Variation	Orientation	Lens	Color			istom tamp	
	blux MD		S = PCB Type	63D	= 0603	3 0.88mm	T = Top Mount	(Blank) = Clear U = Diffused	LS=Light sensor				

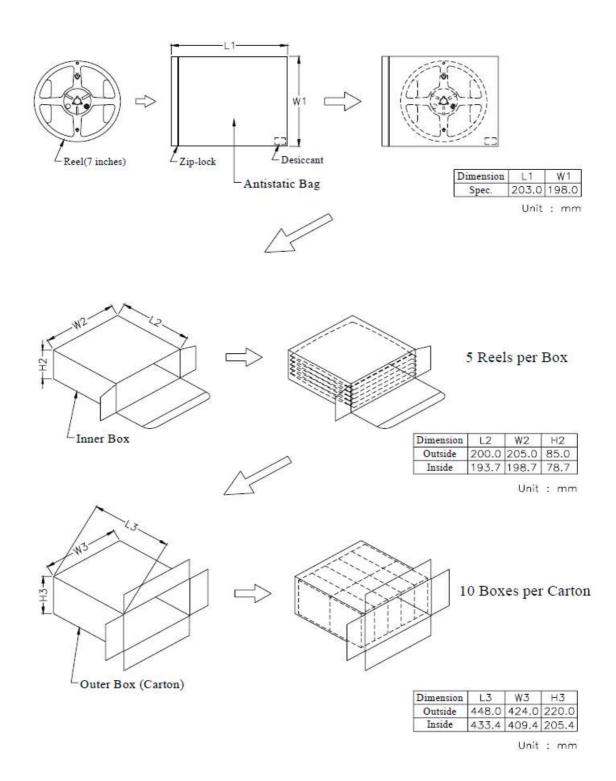

Lot No.:

Z	2	0	1	7	01	24	001
Internal Tracker		Year (2017	, 2018,)	Month	Date	Serial	

Packaging Information: 5000pcs Per Reel

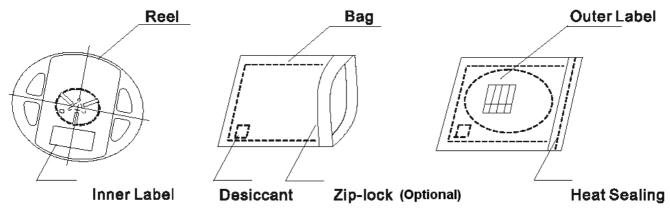

Tape Dimension

Dim. A	Dim. B	Dim. C	Q'ty/Reel
1.80±0.05	0.94±0.05	1.0±0.05	4K


Unit: mm

Reel Dimension

Packing Dimension



Dry Pack

All SMD optical devices are **MOISTURE SENSITIVE**. Avoid exposure to moisture at all times during transportation or storage. Every reel is packaged in a moisture protected anti-static bag. Each bag is properly sealed prior to shipment.

Upon request, a humidity indicator will be included in the moisture protected anti-static bag prior to shipment.

The packaging sequence is as follows:

Reflow Soldering

- Recommended tin glue specifications: melting temperature in the range of 178~192 °C
- The recommended reflow soldering profile is as follows (temperatures indicated are as measured on the surface of the LED resin):

Lead-free Solder Profile

Precautions

- Avoid exposure to moisture at all times during transportation or storage.
- Anti-Static precaution must be taken when handling GaN, InGaN, and AlInGaP products.
- It is suggested to connect the unit with a current limiting resistor of the proper size. Avoid applying a reverse voltage.
- Avoid operation beyond the limits as specified by the absolute maximum ratings.
- Avoid direct contact with the surface through which the LED emits light.
- If possible, assemble the unit in a clean room or dust-free environment.

Reworking

- Rework should be completed within 5 seconds under 260 °C.
- The iron tip must not come in contact with the copper foil.
- Twin-head type is preferred.

Cleaning

Following are cleaning procedures after soldering:

- An alcohol-based solvent such as isopropyl alcohol (IPA) is recommended.
- Temperature x Time should be 50°C x 30sec. or <30°C x 3min
- Ultra sonic cleaning: < 15W/ bath; bath volume ≤ 1liter
- Curing: 100 °C max, <3min

Cautions of Pick and Place

- Avoid stress on the resin at elevated temperature.
- Avoid rubbing or scraping the resin by any object.
- Electro-static may cause damage to the component. Please ensure that the equipment is properly grounded. Use of an ionizer fan is recommended.

Reliability

Item	Frequency/ lots/ samples/ failures	Standards Reference	Conditions
Precondition	For all reliability monitoring tests according to JEDEC Level 2	J-STD-020	1.) Baking at 85°C for 24hrs 2.) Moisture storage at 85°C/ 60% R.H. for 168hrs
Solderability	1Q/ 1/ 22/ 0	JESD22-B102-B And CNS-5068	Accelerated aging 155°C/ 24hrs Tinning speed: 2.5+0.5cm/s Tinning: A: 215°C/ 3+1s or B: 260°C/ 10+1s
Resistance to soldering heat		CNS-5067	Dipping soldering terminal only Soldering bath temperature A: 260+/-5°C; 10+/-1s B: 350+/-10°C; 3+/-0.5s
Operating life test	1Q/ 1/ 40/ 0	CNS-11829	1.) Precondition: 85°C baking for 24hrs 85°C/ 60%R.H. for 168hrs 2.) Tamb25°C; IF=20mA; duration 1000hrs
High humidity, high temperature bias	1Q/ 1/ 45/ 0	JESD-A101-B	Tamb: 85°C Humidity: 85% R.H., IF=5mA Duration: 1000hrs
High temperature bias	1Q/ 1/ 20	IN specs.	Tamb: 55°C IF=20mA Duration: 1000hrs
Pulse life test	1Q/ 1/ 40/ 0		Tamb25°C, If=20mA,, Ip=100mA, Duty cycle=0.125 (tp=125 μ s,T=1sec) Duration 500hrs)
Temperature cycle	1Q/ 1/ 76/ 0	JESD-A104-A IEC 68-2-14, Nb	A cycle: -40 degree C 15min; +85 degree C 15min Thermal steady within 5 min 300 cycles 2 chamber/ Air-to-air type
High humidity storage test	1Q/ 1/ 40/ 0	CNS-6117	60+3°C 90+5/-10% R.H. for 500hrs
High temperature storage test	1Q/ 1/ 40/ 0	CNS-554	100+10°C for 500hrs
Low temperature storage test	1Q/ 1/ 40/ 0	CNS-6118	-40+5°C for 500hrs

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	11-09-2018

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.