TRIPLE AND QUAD CHANNEL VIDEO AMPLIFIER EVALUATION BOARD

Evaluation board description

The wide bandwidth of the ZXFV201/3 quad/triple channel video amplifiers necessitates some care in the layout of the printed circuit. For this reason Zetex has made available an Evaluation Board.

The evaluation board layout serves as a useful example for many applications, showing a practical implementation of the advice given below.

Figures 1, 2, 3 and 4 show the schematic and copper layout of a double-sided printed circuit board suitable for evaluation of the device in the laboratory.

BNC connector sockets allow connection to test instruments via 50Ω cables. The output circuit includes a resistor matching circuit to present a load of 150Ω to the amplifier (equivalent to a 75Ω back-terminated video line) and simultaneously provide a 50Ω output impedance.

The attenuation of this matching circuit is 15.45 dB. As the amplifier is configured for a voltage gain of 2, the overall gain is:

6 - 15.45 = -9.45dB

PCB design

A continuous ground plane is required under the device (except around its inverting input) to provide the shortest possible ground return paths for signals and power supply filtering.

A double-sided or multi-layer PCB construction is required, with plated-through via holes providing closely spaced low-inductance connections from some components to the continuous ground plane (some of these holes are not visible in the figures for the Evaluation Board - artworks and NC drill output can be provided if required).

Power supply filtering

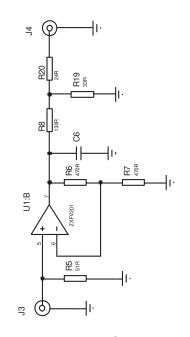
For the power supply filtering, low inductance surface mount capacitors are normally required. It has been found that very good RF decoupling is provided on each supply using a 1000pF NPO size 0805 or smaller ceramic surface mount capacitor, closest to the device pin, with an adjacent 0.1 μ F X7R capacitor. Other configurations are possible and it may be found that a single 0.01 μ F X7R capacitor on each supply gives good results. However this should be supported by larger decoupling capacitors elsewhere on the printed circuit board. Values of 1 to 10 μ F are recommended particularly where the voltage regulators are located more than a few inches from the device. These larger capacitors are recommended to be solid tantalum electrolytic or ceramic types.

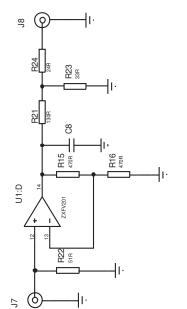
A parts list is provided below.

Evaluation board parts list

QTY	Cct Ref	Value	Description			
1		Printed circuit board ZDB189				
Resistors, surface mount						
3 ⁽¹⁾ /4	R1 ⁽²⁾ R5 R12 R22	51R	Resistor chip			
6(1)/8	R2 ⁽²⁾ R3 ⁽²⁾ R6 R7 R9 R10 R15 R16	470R	Resistor chip			
3 ⁽¹⁾ /4	R4 ⁽²⁾ R8 R11 R21	130R	Resistor chip			
3 ⁽¹⁾ /4	R13 R18 ⁽²⁾ R19 R23	33R	Resistor chip			
3 ⁽¹⁾ /4	R14 R17 ⁽²⁾ R20 R24	24R	Resistor chip			
Capaci	Capacitors, surface mount					
2	C1,C2	100nF	Capacitor ceramic chip X7R			
2	C3,C4	2.2µF	Capacitor ceramic chip X7R			
-	C5-C8		NOT FITTED			
Integra	ted circuits					
1	U1	ZXFV201 ⁽³⁾ /ZXFV203 ⁽¹⁾				
Miscell	aneous					
8	J1-J8	Socket BNC, PCB square flange				
1	J9	Terminal block, 3 way				

NOTES:


(1) Applies to ZXFV203EV only


(2) Not present on ZXFV203EV

(3) Applies to ZXFV201EV only

ZXFV203EV ZXFV201EV

۰I

R13 ^{33R}

C

R9 470R

ZXFV201

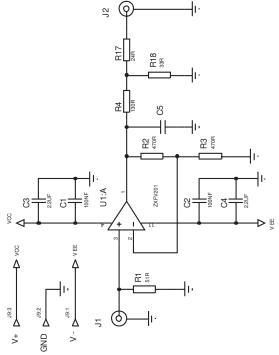
R12 51R

-lı

ł١٠ R10 .

-lı-

Q Jб


R14

U1:C

 \bigcirc

J5

24R

ZXFV203EV ZXFV201EV

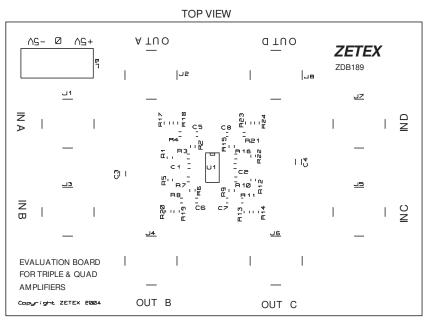


Figure 2 ZXFV201E/ZXFV203EV silkscreen

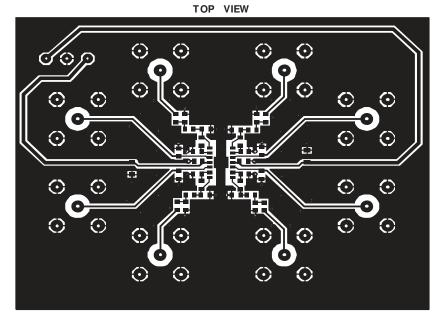
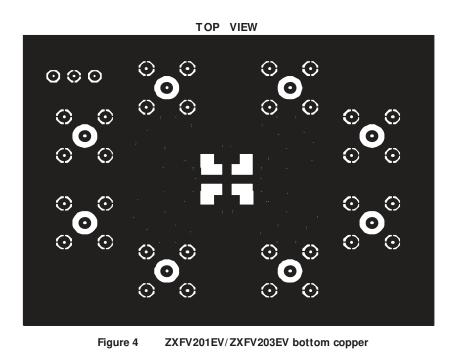



Figure 3 ZXFV201EV/ZXFV203EV top copper

ZXFV203EV ZXFV201EV

© Zetex plc 2004			
Europe	Americas	Asia Pacific	Corporate Headquaters
Zetev GmbH	Zotov Inc	Zetev (Asia) I to	

Europe	Americas	Asia Pacific	Corporate Headquaters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Fields New Road, Chadderton
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 8NP
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to ${\bm w} {\bm w} {\bm w} . {\bm z} {\bm e} {\bm t} {\bm e} {\bm x} . {\bm c} {\bm o} {\bm m}$

