Automotive
Diagnostic
Command Set
Toolkit

1 2023-05-16

2

Automotive Diagnostic Command Set Toolkit

Contents
Automotive Diagnostic Command Set ToolkitHelp...........cooiiiiii i, 4
INErOdUCHION. L oot e e e e 5
KWP2000 (Key Word Protocol2000). 6
Transport Protocol.t e 6
DIagnOStIC SEIVICES. . oo vttt e e 7
Diagnostic Service Format. i e 7
ConNNECt/DISCONNECE. . ottt e e e e et et e e e 8
GetSeed/UNIOCK. ..o e 8
Read/Write MemOrY. ..ottt e 8
MEaSUIEMENTS. . oottt e e 8
Diagnostic Trouble Codes. s 9
Input/Output Control. i 9
Remote ActivationofaRoutine. ... 9
External References.o e 9
UDS (Unified Diagnostic ServiCes). . ..uvuunt it eiiieens 9
DIagnOStIC SErVICES. . oottt e 10
Diagnostic Service Format. 11
External References. i 11
OBD (ONn-Board DiagnostiC). . . .vvvvi it e e 11
Installation and Configuration. ...t i 13
LabVIEW Real-Time (RT) Configuration.coiiiiiiiiiiiiiiiiiiineann 13
Application Development. e e 14
Choosing the Programming Language.ttt 14
LabV I E . o e e e e 14
LabWindows/CVL. . ..o e e e e e e 15
ViSUAL Gt B, et e e 15
Other Programming LangUages.o iieeeeeeeeeeennns 16
Application Development on CompactRIO or R Series Using an NI 985x or NI 986x C
Series ModULE. ... e 17
Using the Automotive DiagnosticCommand Set. ..., 20
Structure of the Automotive Diagnostic Command Set......................... 20
Automotive Diagnostic Command Set API Structure.coooiiiiia. ... 22
General ProgrammingModel. ... e 22
ni.com

Automotive Diagnostic Command Set Toolkit

Available DiagnostiC SEIVICES.t e 24
Tweaking the Transport Protocol. e 24
Usingan XNET IP Stack.o e 24

© National Instruments 3

Automotive Diagnostic Command Set Toolkit

October 2020, 372140M-01

This help provides instructions for using the Automotive Diagnostic Command Set
Toolkit and contains information about installation, configuration, and
troubleshooting. It also includes the Automotive Diagnostic Command Set Toolkit
LabVIEW and C API reference.

4 ni.com

Automotive Diagnostic Command Set Toolkit

Introduction

Diagnostics involve remote execution of routines, or services, on ECUs. To execute a
routine, you send a byte string as a request to an ECU, and the ECU usually answers
with a response byte string. Several diagnostic protocols such as KWP2000 and UDS
standardize the format of the services to be executed, but those standards leave a
large amount of room for manufacturer-specific extensions. A newer trend is the
emission-related legislated OnBoard Diagnostics (OBD), which is manufacturer
independent and standardized in SAE J1979 and ISO 15031-5. This standard adds
another set of services that follow the same scheme.

Because diagnostics were traditionally executed on serial communication links, the
byte string length is not limited. For newer, CAN, LIN, or Ethernet-based diagnostics,
this involves using a transport protocol that segments the arbitrarily long byte
strings into pieces that can be transferred over the CAN or LIN bus, and reassembles
them on the receiver side. Several transport protocols accomplish this task. The
Automotive Diagnostic Command Set implements the ISO TP (standardized in ISO
15765-2) for CAN and LIN-based diagnostics, the manufacturer-specific VW TP 2.0 for
CAN-based diagnostics, and the Diagnostics on IP (DolP) transport protocol
(standardized as ISO 13400) for Ethernet-based diagnostics.

@ Note The Automotive Diagnostic Command Set

is designed for CAN, LIN, or Ethernet-based
diagnostics only. Diagnostics on serial lines (K-
line and L-line) or FlexRay are not in the scope of
the Automotive Diagnostic Command Set.

The following topics discuss the KWP2000 and UDS protocols:
KWP2000 (Key Word Protocol 2000)

Transport Protocol

Diagnostic Services

Diagnostic Service Format

Connect/Disconnect

GetSeed/Unlock

© National Instruments 5

6

Automotive Diagnostic Command Set Toolkit

Read/Write Memory

Measurements

Diagnostic Trouble Codes

Input/Output Control

Remote Activation of a Routine

External References

UDS (Unified Diagnostic Services)

Diagnostic Services

Diagnostic Service Format

External References

OBD (On-Board Diagnostic)

KWP2000 (Key Word Protocol 2000)

The KWP2000 protocol has become a de facto standard in automotive diagnostic
applications. Itis standardized as ISO 14230-3. KWP2000 describes the
implementation of various diagnostic services you can access through the protocol.
You can run KWP2000 on several transport layers such as K-line (serial) or CAN.

Transport Protocol

As KWP2000 uses messages of variable byte lengths, a transport protocol is
necessary on layers with only a well defined (short) message length, such as CAN.
The transport protocol splits a long KWP2000 message into pieces that can be
transferred over the network and reassembles those pieces to recover the original
message.

KWP2000 runs on CAN on various transport protocols such as ISO TP (ISO 15765-2),
TP 1.6, TP 2.0 (Volkswagen), SAE J1939-21, and Diagnostic Over IP (ISO 13400).

@{' Note For KWP2000, the Automotive Diagnostic

Command Set supports only the ISO TP
(standardized in ISO 15765-2), manufacturer-

ni.com

Automotive Diagnostic Command Set Toolkit

specific VW TP 2.0 transport protocols, and
Diagnostic Over IP (ISO 13400).

Diagnostic Services

The diagnostic services available in KWP2000 are grouped in functional units and
identified by a one-byte code (Serviceld). The standard does not define all codes; for
some codes, the standard refers to other SAE or ISO standards, and some are
reserved for manufacturer-specific extensions. The Automotive Diagnostic
Command Set supports the following services:

Diagnostic Management
Data Transmission

Stored Data Transmission (Diagnostic Trouble Codes)

Input/Output Control

Remote Activation of Routine

@}i Note Upload/Download and Extended services

are not part of the Automotive Diagnostic
Command Set.

Diagnostic Service Format

Diagnostic services have a common message format. Each service defines a Request
Message, Positive Response Message, and Negative Response Message.

The Request Message has the Serviceld as first byte, plus additional service-defined
parameters. The Positive Response Message has an echo of the Serviceld with bit 6
set as first byte, plus the service-defined response parameters.

The Negative Response Message is usually a three-byte message: it has the Negative
Response Serviceld as first byte, an echo of the original Serviceld as second byte,
and a ResponseCode as third byte. The only exception to this format is the negative
response to an EscapeCode service; here, the third byte is an echo of the user-
defined service code, and the fourth byte is the ResponseCode. The KWP2000
standard partly defines the ResponseCodes, but there is room left for manufacturer-
specific extensions. For some of the ResponseCodes, KWP2000 defines an error
handling procedure. Because both positive and negative responses have an echo of

© National Instruments /

8

Automotive Diagnostic Command Set Toolkit

the requested service, you can always assign the responses to their corresponding
request.

Connect/Disconnect

KWP2000 expects a diagnostic session to be started with StartDiagnosticSession and
terminated with StopDiagnosticSession. However, StartDiagnosticSession has a
DiagnosticMode parameter that determines the diagnostic session type. Depending
on this type, the ECU may or may not support other diagnostic services, or operate
in a restricted mode where not all ECU functions are available. The DiagnosticMode
parameter values are manufacturer specific and not defined in the standard.

For a diagnostic session to remain active, it must execute the TesterPresent service
periodically if no other service is executed. If the TesterPresent service is missing for
a certain period of time, the diagnostic session is terminated, and the ECU returns to
normal operation mode.

GetSeed/Unlock

A GetSeed/Unlock mechanism may protect some diagnostic services. However, the
applicable services are left to the manufacturer and not defined by the standard.

You can execute the GetSeed/Unlock mechanism through the SecurityAccess
service. This defines several levels of security, but the manufacturer assigns these
levels to certain services.

Read/Write Memory

Use the Read/WriteMemoryByAddress services to upload/download data to certain
memory addresses on an ECU. The address is a three-byte quantity in KWP2000 and
a five-byte quantity (four-byte address and one-byte extension) in the calibration
protocols.

The Upload/Download functional unit services are highly manufacturer specific and
not well defined in the standard, so they are not a good way to provide a general
upload/download mechanism.

ni.com

Automotive Diagnostic Command Set Toolkit

Measurements

Use the ReadDataByLocal/Commonlidentifier services to access ECU data in a way
similar to a DAQ list. A Local/Commonldentifier describes a list of ECU quantities
that are then transferred from the ECU to the tester. The transfer can be either single
value or periodic, with a slow, medium, or fast transfer rate. The transfer rates are
manufacturer specific; you can use the SetDataRates service to set them, but this
setting is manufacturer specific.

%‘}i Note The Automotive Diagnostic Command Set
supports single-point measurements.

Diagnostic Trouble Codes

A major diagnostic feature is the readout of Diagnostic Trouble Codes (DTCs).
KWP2000 defines several services that access DTCs based on their group or status.

Input/Output Control

KWP2000 defines services to modify internal or external ECU signals. One example is
redirecting ECU sensor inputs to stimulated signals. The control parameters of these
commands are manufacturer specific and not defined in the standard.

Remote Activation of a Routine

These services are similar to the ActionService and DiagService functions of CCP.
You can invoke an ECU internal routine identified by a Local/Commonldentifier or a
memory address. Contrary to the CCP case, execution of this routine can be
asynchronous; that is, there are separate Start, Stop, and RequestResult services.

The control parameters of these commands are manufacturer specific and not
defined in the standard.

External References

For more information about the KWP2000 Standard, refer to the ISO 14230-3
standard.

© National Instruments 9

10

Automotive Diagnostic Command Set Toolkit

UDS (Unified Diagnostic Services)

The UDS protocol has become a de facto standard in automotive diagnostic
applications. It is standardized as 1ISO 14229. UDS describes the implementation of
various diagnostic services you can access through the protocol.

As UDS uses messages of variable byte lengths, a transport protocol is necessary on
layers with only a well defined (short) message length, such as CAN or LIN. The
transport protocol splits a long UDS message into pieces that can be transferred
over the network and reassembles those pieces to recover the original message.

UDS runs on CAN, LIN, and Ethernet on various transport protocols.

%‘}i Note The Automotive Diagnostic Command Set

supports only the ISO TP (standardized in ISO
15765-2), manufacturer-specific VW TP 2.0
transport protocols, and Diagnostic Over IP (ISO
13400).

Diagnostic Services

The diagnostic services available in UDS are grouped in functional units and
identified by a one-byte code (Serviceld). Not all codes are defined in the standard;
for some codes, the standard refers to other standards, and some are reserved for
manufacturer-specific extensions. The Automotive Diagnostic Command Set
supports the following services:

= Diagnostic Management

Data Transmission

Stored Data Transmission (Diagnostic Trouble Codes)

Input/Output Control
Remote Activation of Routine

For UDS on LIN, a slave node must support a set of ISO 14229-1 diagnostic services
such as:

= Node identification (reading hardware and software version, hardware part
number, and diagnostic version)

ni.com

Automotive Diagnostic Command Set Toolkit

= Reading data parameters (reading ECU internal values such as oil
temperature and vehicle speed)

= Writing parameter values if applicable

%‘}i Note For more information about the LIN

Diagnostic service implementations, refer to the
LIN Specification Package, Revision 2.2, from
the LIN Consortium.

Diagnostic Service Format

Diagnostic services have a common message format. Each service defines a Request
Message, a Positive Response Message, and a Negative Response Message. The
general format of the diagnostic services complies with the KWP2000 definition;
most of the Service Ids also comply with KWP2000. The Request Message has the
Serviceld as first byte, plus additional service-defined parameters. The Positive
Response Message has an echo of the Serviceld with bit 6 set as first byte, plus the
service-defined response parameters.

%‘}i Note Some parameters to both the Request

and Positive Response Messages are optional.
Each service defines these parameters. Also, the
standard does not define all parameters.

The Negative Response Message is usually a three-byte message: it has the Negative
Response Serviceld (0x7F) as first byte, an echo of the original Serviceld as second
byte, and a ResponseCode as third byte. The UDS standard partly defines the
ResponseCodes, but there is room left for manufacturer-specific extensions. For
some of the ResponseCodes, UDS defines an error handling procedure.

Because both positive and negative responses have an echo of the requested
service, you always can assign the responses to their corresponding request.

External References
For more information about the UDS Standard, refer to the ISO 15765-3 standard.

© National Instruments 11

12

Automotive Diagnostic Command Set Toolkit

OBD (On-Board Diagnostic)

On-Board Diagnostic (OBD) systems are present in most cars and light trucks on the
road today. On-Board Diagnostics refer to the vehicle's self-diagnostic and reporting
capability, which the vehicle owner or a repair technician can use to query status
information for various vehicle subsystems.

The amount of diagnostic information available via OBD has increased since the
introduction of on-board vehicle computers in the early 1980s. Modern OBD
implementations use a CAN communication port to provide real-time data and a
standardized series of diagnostic trouble codes (DTCs), which identify and remedy
malfunctions within the vehicle. In the 1970s and early 1980s, manufacturers began
using electronic means to control engine functions and diagnose engine problems.
This was primarily to meet EPA emission standards. Through the years, on-board
diagnostic systems have become more sophisticated. OBD-II, a standard introduced
in the mid 1990s, provides almost complete engine control and also monitors parts
of the chassis, body, and accessory devices, as well as the car's diagnostic control
network. The newest standard was introduced in 2012 as WWH-OBD.

The On-Board Diagnostic (OBD) standard defines a minimum set of diagnostic
information for passenger cars and light and medium-duty trucks, which must be
exchanged with any off-board test equipment.

ni.com

Automotive Diagnostic Command Set Toolkit

Installation and Configuration

The following topics discuss the installation and configuration of the ECU M&C
Toolkit for Microsoft Windows.

= License Manager
= LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) Configuration

LabVIEW Real-Time (RT) combines easy-to-use LabVIEW programming with the
power of real-time systems. When you use an NI PXI controller as a LabVIEW RT
system, you can install a PXI CAN card and use the NI-CAN APIs to develop real-time
applications. As with any NI software library for LabVIEW RT, you must install the
Automotive Diagnostic Command Set software to the LabVIEW RT target using the
Remote Systems branch in MAX. For more information, refer to the LabVIEW RT

documentation.

After you install the PXI CAN cards and download the Automotive Diagnostic
Command Set software to the LabVIEW RT system, you must verify the installation.

© National Instruments 13

14

Automotive Diagnostic Command Set Toolkit

Application Development

The following topics explain how to develop an application using the Automotive
Diagnostic Command Set API.

Choosing the Programming Language
LabVIEW

LabWindows™/CVI™

Visual C++ 6

Other Programming Languages

Application Development on CompactRIO or R Series Using an NI 985x or N1 986x C
Series Module

Choosing the Programming Language

The programming language you use for application development determines how
to access the Automotive Diagnostic Command Set APIs.

LabVIEW
LabWindows/CVI
Visual C++ 6

Other Programming Languages

LabVIEW

Automotive Diagnostic Command Set functions and controls are in the LabVIEW
palettes. In LabVIEW, the Automotive Diagnostic Command Set palette is in the
Addons palette.

The Automotive Diagnostic Command Set API for LabVIEW section of this help
describes each LabVIEW VI for the Automotive Diagnostic Command Set API.

To access the VI reference from within LabVIEW, press <Ctrl-H> to open the Help
window, click the appropriate Automotive Diagnostic Command Set VI, and follow

ni.com

Automotive Diagnostic Command Set Toolkit

the link. The Automotive Diagnostic Command Set software includes a full set of
LabVIEW examples. These examples teach programming basics as well as advanced
topics. The example help describes each example and includes a link you can use to
open the VI.

LabWindows/CVI

Within LabWindows/CVI, the Automotive Diagnostic Command Set function panel is
in Libraries»Automotive Diagnostic Command Set. As with other
LabWindows/CVI function panels, the Automotive Diagnostic Command Set
function panel provides help for each function and the ability to generate code. The
Automotive Diagnostic Command Set API for C section of this help describes each
Automotive Diagnostic Command Set API function. You can access the reference for
each function directly from within the function panel. The Automotive Diagnostic
Command Set APl header fileisnidiagcs. h. The Automotive Diagnostic
Command Set API library isnidiagcs. 1ib. The toolkit software includes a full set
of LabWindows/CVI examples. The examples are in the LabWindows/CVI \ samples
\Automotive Diagnostic Command Set directory. Each exampleincludes
a complete LabWindows/CVI project (. prj file). The example description is in
comments at the top of the . cfile.

Visual C++6

The Automotive Diagnostic Command Set software supports Microsoft Visual C/C++
6.

The header file for Visual C/C++ 6 isinthe Program Files\National Instru
ments\Shared\ExternalCompilerSupport\C\include folder. To use the
Automotive Diagnostic Command Set API, include the nidiagcs.h headerfilein
the code, then link with the nidiagcs. 1ib libraryfile. The library file is in the Pr
ogram Files\National Instruments\Shared\ExternalCompilerSu
pport\C\1lib32\msvc folder.

For C applications (files with a . c extension), include the header file by adding a # 1
nclude to the beginning of the code, as follows:

#include "nidiagcs.h"

© National Instruments 15

16

Automotive Diagnostic Command Set Toolkit

For C++ applications (files with a . cpp extension), define cplusplus before
including the header, as follows:

#define cplusplus
#include "nidiagcs.h"

The cplusplus define enables the transition from C++ to the C language
functions.

The Automotive Diagnostic Command Set API for C section of this help describes
each function.

On Windows Vista (with Standard User Account), the typical path to the C examples
folderis \Users\Public\Documents\National Instruments\Automot
ive Diagnostic Command Set\Examples\MS Visual C.

On Windows XP/2000, the typical path to the C examples folder is \Documents an
d Settings\All Users\Documents\National Instruments\Automo
tive Diagnostic Command Set\Examples\MS Visual C.

Each example is in a separate folder. The example description is in comments at the
top of the . c file. At the command prompt, after setting MSVC environment
variables (such as with MS vcvars32.bat), you can build each example using a
command such as:

cl /I<HDir> GetDTCs.c <LibDir>\nidiagcs.lib
<HDir> is the folder where nidiagcs.h can be found.

<LibDir>is the folder where nidiagcs.1lib can be found.

Other Programming Languages

The Automotive Diagnostic Command Set software does not provide formal support
for programming languages other than those described in the preceding sections. If
the programming language includes a mechanism to call a Dynamic Link Library
(DLL), you can create code to call Automotive Diagnostic Command Set functions.
All functions for the Automotive Diagnostic Command Set APl areinnidiagcs.dl
1. If the programming language supports the Microsoft Win32 APIs, you can load
pointers to Automotive Diagnostic Command Set functions in the application. The
following section describes how to use the Win32 functions for C/C++ environments

ni.com

Automotive Diagnostic Command Set Toolkit

other than Visual C/C++ 6. For more detailed information, refer to Microsoft
documentation.

The following C language code fragment shows how to call Win32 LoadLibrary to
load the Automotive Diagnostic Command Set API DLL:

#include <windows.h>

#include "nidiagcs.h"

HINSTANCE NiDiagCSLib = NULL;

NiMcLib = LoadLibrary("nidiagcs.dll");

Next, the application must call the Win32 Get ProcAddress function to obtain a
pointer to each Automotive Diagnostic Command Set function the application uses.
For each function, you must declare a pointer variable using the prototype of the
function. For the Automotive Diagnostic Command Set function prototypes, refer to
the Automotive Diagnostic Command Set API for C section of this help. Before
exiting the application, you must unload the Automotive Diagnostic Command Set
DLL as follows:

FreeLibrary (NiDiagCSLib) ;

Application Development on CompactRIO or R Series Using
an NI1985x or NI 986x C Series Module

To run a project on an FPGA target with an NI 985x C Series module, you need an
FPGA bitfile (. 1vbitx). The FPGA bitfile is downloaded to the FPGA target on the
execution host. A bitfile is a compiled version of an FPGA VI. FPGA Vls, and thus
bitfiles, define the CAN, analog, digital, and pulse width modulation (PWM) inputs
and outputs of an FPGA target. The Automotive Diagnostic Command Set does not
include FPGA bitfiles for any FPGA target. Refer to the LabVIEW FPGA Module
documentation for more information about creating FPGA Vs and bitfiles for an
FPGA target.

The default FPGA VI is sufficient for a basic Automotive Diagnostic Command Set
application. However, in some situations you may need to modify the existing FPGA
code to create a custom bitfile. For example, to use additional I/O on the FPGA
target, you must add these I/O to the FPGA VI. You must install the LabVIEW FPGA
Module to create these files.

© National Instruments 17

Automotive Diagnostic Command Set Toolkit

Modify the FPGA VI according to the following guidelines:

= Do not modify, remove, or rename any block diagram controls and
indicators named __CANO Rx Data, __CANO Rx Ready, __CANO Tx Data Frame,
__CANO Tx Ready, __CANO Bit Timing, __CANO FPGA Is Running, __CANO Start,
__CANO FIFO Full, or __CANO FIFO Empty. If you intend to use multiple CAN
985x modules on your FPGA, you need to duplicate and rename all controls
and indicators accordingly.

= Do not modify the CAN read and write code except to filter CAN IDs on the
receiving side to minimize the amount of CAN data transfers to the host.

= As you create controls or indicators, ensure that each control name is
unique within the VI.

Refer to the LabVIEW FPGA Module documentation for more information about
creating FPGA Vis and bitfiles for an FPGA target.

When using ADCS on CompactRIO with an N1 985x C Series module, the interface
name is based on the bitfile you use and the interface name you set. For example, M
yInterface@MyBitfile.lvbitx,CAN@lvbitfile.lvbitx,or CANOGmy
bitfile.lvbitx.

The interface name you use must be part of all parameters in the FPGA code for the
CAN communication. Also, the ADCS needs the interface name for correct
functionality.

If you define the interface name to be CANO, you must name the parameters as
follows:

__CANO Rx Data

= __CANO Rx Ready

= __CANO Tx Data Frame

= __CANO Tx Ready

= __CANO Bit Timing

= __CANO FPGA Is Running
= __CANO Start

= __CANO FIFO Full

18 ni.com

Automotive Diagnostic Command Set Toolkit

= __CANO FIFO Ready

In addition, you need to set the name of the internally used FIFO to __CANO FIFO
(the FIFO is set to U32, 1029 elements, target scoped, and block memory).

After recompiling your FPGA VI, copy the bitfile to the root directory of your
CompactRIO controller and specify the bitfile in the interface name. Or copy the file
to any location on the CompactRIO controller and specify an absolute path or path
relative to the root for the bitfile.

If you are using an NI-XNET 986x C Series module on your CompactRIO target, you
need to start an FPGA VI on the target before accessing the port with ADCS. Refer to
the Getting Started with CompactRIO section in the NI-XNET Hardware and
Software Help for more information about compiling the FPGA VI. When the VI is
running, you can access the NI 986x module as you would program on a Windows or
PXI LabVIEW Real-Time target.

© National Instruments 19

Automotive Diagnostic Command Set Toolkit

Using the Automotive Diagnostic Command Set

The following topics explain how to use the Automotive Diagnostic Command Set:

Structure of the Automotive Diagnostic Command Set

Automotive Diagnostic Command Set API Structure

General Programming Model

Available Diagnostic Services

Tweaking the Transport Protocol

20 ni.com

Automotive Diagnostic Command Set Toolkit

Structure of the Automotive Diagnostic Command Set

Diagnostic Services Layer ‘
Auxiliary
KWP2000 UDS (DiagOnCAN) OBD{OnBoard Routines
Services Services Diag) Services
‘
Diagnostic Transport Layer
Auxiliary
Connection Service Routines
Management Execution
A
Transport Protocols
IS0 TP Diag Over IP
(IS0 157865-2) ViwIran (ISO 13400)
\
CAN Layer (CG++ DLL)
Base Driver
[NI-CAN | [Nl-mEr] ‘ NI-RIO | Ethernet ‘

The Automotive Diagnostic Command Set is structured into three layers of
functionality:

= The top layer implements three sets of diagnostic services for the diagnostic
protocols KWP2000, UDS (DiagOnCAN), and OBD (On-Board Diagnostics).

= The second layer implements general routines involving opening and
closing diagnostic communication connections, connecting and
disconnecting to/from an ECU, and executing a diagnostic service on byte
level. The latter routine is the one the top layer uses heavily.

© National Instruments 2 1

22

Automotive Diagnostic Command Set Toolkit

= The third layer implements the transport protocols needed for diagnostic
communication to an ECU. The second layer uses these routines to
communicate to an ECU.

All three top layers are fully implemented in LabVIEW.

The transport protocols then execute CAN/LIN Read/Write operations through a
specialized DLL for streamlining the CAN/LIN data flow, especially in higher busload
situations.

Automotive Diagnostic Command Set API Structure

The top two layer routines are available as API functions. Each diagnostic service for
KWP2000, UDS, and OBD is available as one routine. Also available on the top level
are auxiliary routines for converting scaled physical data values to and from their
binary representations used in the diagnostic services.

On the second layer are more general routines for opening and closing diagnostic
communication channels and executing a diagnostic service. Auxiliary routines
create the diagnostic identifiers from the logical ECU address.

ni.com

General Programming Model

’ Open Diagnostic I

VWTP? S

VWTP Cannect

Execute a '
Diagnostic Service

< VWTP

No

i

?“-x._ Yes

| Period ically Execute

VWTP ConnectionTest

e

No i by

< Done?
Y

P

TP? 75| VWTP Disconnect

No

l Close Diagnostic

Automotive Diagnostic Command Set Toolkit

First, you must open a diagnostic communication link. This involves initializing the
CAN/LIN port and defining communication parameters such as the baud rate. For
CAN-based diagnostics, the CAN identifiers on which the diagnostic communication
takes place must be defined also. No actual communication to the ECU takes place

at this stage.

For the VW TP 2.0, you then must establish a communication channel to the ECU
using the VWTP Connect routine. The communication channel properties are

negotiated between the host and ECU.

After these steps, the diagnostic communication is established, and you can execute
diagnostic services of your choice. Note that for the VW TP 2.0, you must execute the

© National Instruments 23

Automotive Diagnostic Command Set Toolkit

VWTP ConnectionTest routine periodically (once per second) to keep the
communication channel open.

When you finish your diagnostic services, you must close the diagnostic
communication link. This finally closes the CAN or LIN port. For the VW TP 2.0, you
should disconnect the communication channel established before closing.

Available Diagnostic Services

The standards on automotive diagnostic define many different services for many
purposes. Unfortunately, most services leave a large amount of room for
manufacturer-specific variants and extensions. NI has implemented the most used
variants while trying not to overload them with optional parameters.

However, all services are implemented in LabVIEW and open to the user. If you are
missing a service or variant of an existing service, you can easily add or modify it on
your own.

In the C API, you can also implement your own diagnostic services using the
ndDiagnosticService routine. However, the templates from the existing services are
not available.

Tweaking the Transport Protocol

A set of global constants controls transport protocol behavior. These constants
default to maximum performance. To check the properties of an implementation of
a transport protocol in an ECU, for example, you may want to change the constants
to nonstandard values using the Get/Set Property routines.

Using an XNET IP Stack

Each ADCS DolP session can use either the native operating system IP stack or an
XNET IP Stack, and parallel ADCS sessions can use any combination of IP stacks and
virtual interfaces.

By default, DolP sessions use the operating system IP stack. To use an XNET IP Stack,
set the XNET IP stack name parameter of Open Diagnostic On IP.vi (or the

24 ni.com

Automotive Diagnostic Command Set Toolkit

xnetStackName parameter of ndOpenDiagnosticOnIPStack) to a valid name of an
XNET IP Stack.

ADCS obtains a reference to the selected XNET IP Stack. After communication is
complete, the function Close Diagnostic.vi or ndCloseDiagnostic must be used to
free that reference in all cases.

An XNET IP Stack allows the configuration of an NI-XNET network interface
independent from other network interfaces in the system and provides advanced
features such as virtual interfaces and VLANs. The XNET IP Stack must be created
beforehand using the NI-XNET API. Refer to NI-XNET Hardware and Software Help
and NI-XNET examples for information about configuring, creating, and clearing an
XNET IP Stack.

© 2023 National Instruments Corporation. © National Instruments 25

