PNP Silicon General Purpose Amplifier Transistor

This PNP transistor is designed for general purpose amplifier applications. This device is housed in the SOT-723 package which is designed for low power surface mount applications, where board space is at a premium.

Features

- Reduces Board Space
- High h_{FE}, 210–460 (Typical)
- Low $V_{CE(sat)}$, < 0.5 V
- ESD Performance: Human Body Model; > 2000 V,

Machine Model; > 200 V

- Available in 4 mm, 8000 / Tape & Reel
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Devices

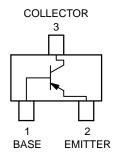
MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{(BR)CBO}	-60	Vdc
Collector–Emitter Voltage	V _{(BR)CEO}	-50	Vdc
Emitter-Base Voltage	$V_{(BR)EBO}$	-6.0	Vdc
Collector Current – Continuous	Ic	-100	mAdc

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Power Dissipation (Note 1)	P_{D}	265	mW
Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{stg}	-55 ~ + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


 Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

ON Semiconductor®

www.onsemi.com

PNP GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

MARKING DIAGRAM

SOT-723 CASE 631AA

F9 = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
2SA2029M3T5G	SOT-723 (Pb-Free)	8000 / Tape & Reel
NSV2SA2029M3T5G	SOT-723 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector–Base Breakdown Voltage (I _C = -50 μAdc, I _E = 0)	V _{(BR)CBO}	-60	-	-	Vdc
Collector–Emitter Breakdown Voltage (I _C = -1.0 mAdc, I _B = 0)	V _{(BR)CEO}	-50	-	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = -50 \mu Adc$, $I_E = 0$)	V _{(BR)EBO}	-6.0	-	-	Vdc
Collector–Base Cutoff Current (V _{CB} = -30 Vdc, I _E = 0)	Ісво	-	-	-0.5	nA
Emitter-Base Cutoff Current (V _{EB} = -7.0 Vdc, I _B = 0)	I _{EBO}	-	-	-0.1	μΑ
Collector–Emitter Saturation Voltage (Note 2) (I _C = -50 mAdc, I _B = -5.0 mAdc)	V _{CE(sat)}	-	-	-0.5	Vdc
DC Current Gain (Note 2) (V _{CE} = -6.0 Vdc, I _C = -1.0 mAdc)	h _{FE}	120	-	560	-
Transition Frequency (V _{CE} = -12 Vdc, I _C = -2.0 mAdc, f = 30 MHz)	f _T	_	140	-	MHz
Output Capacitance (V _{CB} = -12 Vdc, I _E = 0 Adc, f = 1.0 MHz)	C _{OB}	-	3.5	_	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

TYPICAL ELECTRICAL CHARACTERISTICS

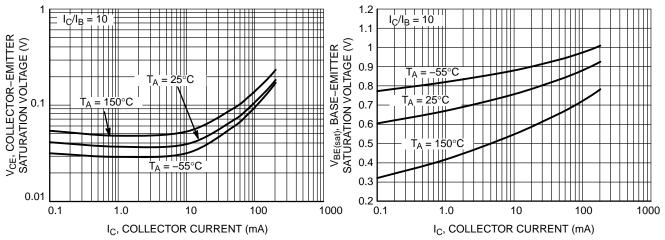


Figure 1. Collector–Emitter Saturation Voltage vs. Collector Current

Figure 2. Base–Emitter Saturation Voltage vs.
Collector Current

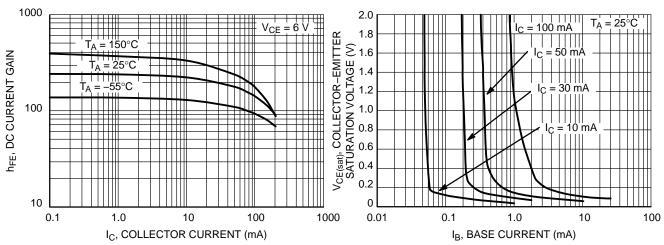


Figure 3. DC Current Gain vs. Collector Current

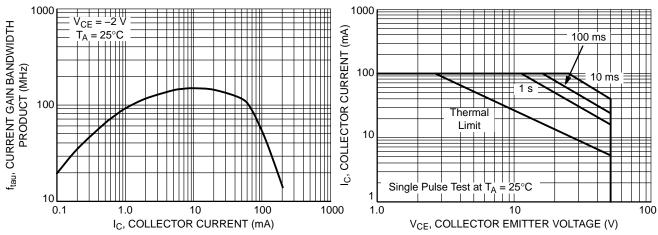
Figure 4. Saturation Region



Figure 5. Base–Emitter Turn–ON Voltage vs. Collector Current

Figure 6. Capacitance

TYPICAL ELECTRICAL CHARACTERISTICS



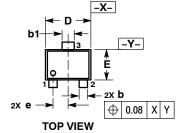
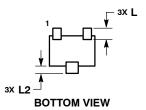

Figure 7. Current Gain Bandwidth Product vs. Collector Current

Figure 8. Safe Operating Area



SOT-723 CASE 631AA-01 ISSUE D

DATE 10 AUG 2009

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

NOTES:

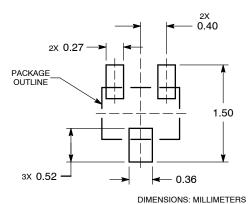
- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
- FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
E	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	


GENERIC MARKING DIAGRAM*

= Specific Device Code XX Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-723	•	PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales