KEIL

Tools by ARM

Getting Started

Creating Applications with pVision®4

- -

)

File Edit \View Project Flash Debug Per

ipherals Tools SVCS Window Help

L et i I /..]
& EO Bed e NeEERERID-A 2 (050 8 -3
i1 N %) [Drmass it} -
WorkSpace -~ Bl AL SR | SYRIC. GO ReEE A A Min Time: Max Time: Range: Grid Zoom
L = 0x08000700 480C LDR =0, lpe, #4E @ BOx08000734 L L R S T AT
Dx02000702 8805 LDRE £, [£0, $0x00] 0146806ms. | 2070134s | 2000000s 0.100000 s El Out
= 13 Simulator a5 AD_scaled = AD value / 52: . :
- &5 Startup Code oxoe000T04 2033 Movs =0, $0%34
[sTMIZF10%.8 Dx0S000TOE FBESTTES SDIV £7,£5,20
e ; 100: if (AD_scaled != AD scaled ex) {
ol Pt Options ox0e00070R 4257 cue 7,16
] STM3ZF10%0OF 0x0800070C BOOS BEQ Ox08000TLR
=14 Retarget AD_scaled ex = AD scaled:
- [%] Retarget.c X0800070E 463E £8,z7
L o i6rary log h P¥Y(D 1 LN scatledis
- [LCD_abit.c —
e SKEIL
=1 &5 Indiakzation | RM
& [£] STM32_Init.c Tools byA
< &3 Source v nitial displ & adc_Ink (void)
il uVision®4 ol
Documentation % SysTick_Handier {void)
[5] Abstract.txt Integrated Development Environment = [Gpo.c
=53 Gpio % main (void)
= I3 Simulator % S2Pressed (void)
= &3 Startup Code - 2005 Kad Softwars, 2005 - 2000 ARM Lrd Al rights reserved & S3Pressed (void)
[#) STM32F10%.5 ctected by US and international ws. rgraph accor + [LCD_dbitc
o2y Tt =-[5] Retarget.c
 [#] STM32_Initc — % _sys_exit (int return_coc
= Source ge AD J % _ttywrch (int ch)
4 [A Gpo.c - if (Clockls) { o ferror (FILE®)
¢ | = 107 ; 3 @ fgetc (FILE* f)
o = o= L} . " omm & fruste fink ch ENER A
Eleroject BREgﬂtElii[1] | .ﬂ P |
Command v calsed voax memoyr vax
¥ ~ || stack Frames | ValugjAddress || Address [Bx0000000 E Al
! = % main{) .
@i <invisible > 0x10000000: MCBSTMIZ .
LCD D layi {
a_-.aic:Tg:” ! @ AD_value <invisible > ox‘g:cggi:
Analog (2.000000) entered. @ AD_scaled. | (eDDDO0O36 ::x;as:fésse.
LA “ADC Comvestedialus ¥/ @ AD scaled | <imisible> et
£ | & |ox10000088
5 | 0%100000CC
ASSIGH BreakDisable BreakEnable Sreaxxill | |Eicall Stack {Emsls |Elwan:h 1 g:i:-ﬂﬁoas! v

Simulation 11: 207013396 sec

For 8-bit, 16-bit, and 32-bit Microcontrollers

www.keil.com

SKEIL

Tools by ARM

Getting Started

Creating Applications with uVision®4

- pVizien

File Edit Miew Project Flash Debug Peppherals Took SVCS Window Help
e AL Fe) .0 ; /e N
8% ELO RIS CREIREC LR e

m - w3
= pace &EEE“‘ ue S Min Time; Max Time: Rangs Gng Zoom;
Binky oy T 0746806 ms | 20701345 | 2000000 | 0100000s | [io | [Qul
23 SmusEtor ML scaled = AD velue / 52f - - — -
=453 Startup Code 2082 MovE =0, #0%34
[# sTM32F1O0N.S . XTera, o0 _
= 3 Flash Options = .,E;.:;::mq_qm ¢
[sTM32F10%0F OXOECOOTIR
AD_scaled_ex = AD _scaled:
2638 MOV 6,27
1o 0 1 an seaiedi:
” '_ | |!.
KEIL ., K
DZI Tools by ARM - ey
% adc_Inkt {void)
& main (void)

] . . ®
l-IVI5|on 4 % SysTck_Handler (void)
Integrated Develop Envi = [3 Gpioc

& main (void)

% S2Pressed (void)

[= 7§ Startup Code | ! wght & 1997 - 2005 Ked Software. 2005 - 2009 ARM Led AN rights reserved.

& S3Pressed (void)
[® sTM3ZF10%.5 | 3 This product is protected by US and international biws. + (o] LCD_4bk.c
i= & Initiaksatian = [Retarget.c
[£] STM32_Inkt.c — & _sys_exit (it retum_coc
= Source #® _tywrch (int ch)
i i b if (Clockls) | & ferror (FILE* f}
3 3 Clockls = 0; % fgetc (FILE=) =
i Projact I—Eﬁsgmsr', ______ < T " *

cammand RCES

-

t #| || Stack Framas [Valuejaddress | Address [(10000000

! = % mamni)
13 L <invisible = Oxl0000000: HCBSTMIZ T3

% AD_value < invisible = Gxl0o0o0z2:

& QG0004
Anaicg (3.000000) entered. = @ AD_scaled . (000G0036 §:}U:EGJE:
LA "ADC_Comvertedvalue e @ AD_scaled <invisible = Moo
£ L 0x100000KR
5 0x100000CC

O [O - Ox10000DEE
ASSIGN BreakDissble Sreakfnable Break®ill | |giCall Stack mnncaI»IE\v'ﬂh."-‘ J:Eskmﬂ.@|5| ox10000110: b
Simidation t1: 207013396 sec S NUM 5

For 8-bit, 16-bit, and 32-bit Microcontrollers

Preface

Information in this document is subject to change without notice and does not
represent acommitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It isagainst the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanica, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’ s persona use,
without written permission.

Copyright © 1997-2009 Keil, Tools by ARM, and ARM Ltd.
All rights reserved.

Keil Software and Design®, the Keil Software Logo, pVision®, RealView®,
C51™, C166™, MDK™, RL-ARM ™, ULINK®, Device Database®, and
ARTX™ are trademarks or registered trademarks of Keil, Tools by ARM, and
ARM Ltd.

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC® is aregistered trademark of International Business Machines Corporation.

NOTE

This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the ARM7, ARM9, Cortex-Mx, C166, XE166,
XC2000, or 8051 microcontroller.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started: Creating Applications with pVision

Preface

This manual is an introduction to the Keil devel opment tools designed for
Cortex-Mx, ARM7, ARM9, C166, XE166, X C2000, and 8051 microcontrollers.
It introduces the pVision Integrated Devel opment Environment, Simulator, and
Debugger and presents a step-by-step guided tour of the numerous features and
capabilities the Keil embedded devel opment tools offer.

Who should Read this Book

This book is useful for students, beginners, advanced and experienced devel opers
alike.

Developers are considered experienced or advanced if they have used pVision
extensively in the past and knowledge exists of how the pVision IDE works and
interacts with the debugger, simulator, and target hardware. Preferably, these
devel opers aready have a deep understanding of microcontrollers. We
encourage this group of engineersto get familiar with the enhancements
introduced and to explore the latest featuresin pVision.

Developers are considered students or beginnersif they have no working
experience with pVision. We encourage this group of developersto start by
reading the chapters related to the pVision IDE and to work through the
examples to get familiar with the interface and configuration options described.
They should make use of the ample possibilities the simulator offers. Later on,
they should continue with the chapters describing the RTOS and microcontroller
architectures.

However, it is assumed that you have a basic knowledge of how to use
microcontrollers and that you are familiar with afew instructions or with the
instruction set of your preferred microcontroller.

The chapters of thisbook can be studied individually, since they do not strictly
depend on each other.

Preface

Chapter Overview

“Chapter 1. Introduction”, provides an overview of product installation and
licensing and shows how to get support for the Keil devel opment tools.

“Chapter 2. Microcontroller Architectures’, discusses various microcontroller
architectures supported by the Keil development tools and assists you in
choosing the microcontroller best suited for your application.

“Chapter 3. Development Tools’, discusses the major features of the pVision
IDE and Debugger, Assembler, Compiler, Linker, and other development tools.

“Chapter 4. RTX RTOSKerne”, discusses the benefits of using a Rea-Time
Operating System (RTOS) and introduces the features available in Keil RTX
Kerndls.

“Chapter 5. Using uVision”, describes specific features of the pVision user
interface and how to interact with them.

“Chapter 6. Creating Embedded Programs’, describes how to create projects,
edit source files, compile, fix syntax errors, and generate executable code.

“Chapter 7. Debugging”, describes how to use the pVision Simulator and Target
Debugger to test and validate your embedded programs.

“Chapter 8. Using Target Hardwar€’, describes how to configure and use
third-party Flash programming utilities and target drivers.

“Chapter 9. Example Programs’, describes four example programs and shows
the relevant features of pVision by means of these examples.

Getting Started: Creating Applications with pVision

Document Conventions

README.TXT! Bold capital text is used to highlight the names of executable programs,
data files, source files, environment variables, and commands that you
can enter at the command prompt. This text usually represents
commands that you must type in literally. For example:

ARMCC.EXE DIR LX51.EXE

Couri er Text in this typeface is used to represent information that is displayed on
the screen or is printed out on the printer

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents required information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name

Occasionally, italics are also used to emphasize words in the text.
Elements that repeat... Ellipses (...) are used to indicate an item that may be repeated

Omitted code Vertical ellipses are used in source code listings to indicate that a
fragment of the program has been omitted. For example:
void main (void) {

while (1);

«Optional Items>» Double brackets indicate optional items in command lines and input
fields. For example:

C51 TEST.C PRINT «filename»

{optl | opt2 } Text contained within braces, separated by a vertical bar represents a
selection of items. The braces enclose all of the choices and the vertical
bars separate the choices. Exactly one item in the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue

Y1t is not required to enter commands using all capital letters.

6 Contents

Contents
PIEFACE. ...t 3
DOoCUMENT CONVENTIONS......couiiiiiiieieieieriesie st 5
1000 01 1< o | £ TR RPRRPRT 6
Chapter 1. INtrodUCiON.........cccoiieeese e 9
Last-MinULE ChanQES.......c.cceiieiieceeie ettt st sre e 11
o= 011 o S SRR 11
LE g = = 1 o RS 11
ReqUESLING ASSISEANCEceveieieie ettt sr e sre e 13
Chapter 2. Microcontroller ArchiteCtures........coovvveveveeceve e 14
Selecting an AFChItECIUIE........cc.oiveeece e 15
Classic and Extended 8051 DEVICES.........cccurereerieererenesiesiesie e seens 17
Infineon C166, XEL166, XC2000ccccereruereeeeenenesiesseseeseeseeseeessessessessenes 20
ARM7 and ARM9 based MicroControllers.........cocevevereeneneecene e 21
Cortex-Mx based MiCroCONrOlErS..........coiiiirienieiniresese e 23
(0T LT @] .10 1= o o RS 26
Generating OptimUM COUE............eeieiieeeeeeee e 28
Chapter 3. Development TOOIS........ccooieerieeereee e 33
Software DevelOpmENt CYCle ..o 33
HVISION IDEottt st st sresre e 34
HViSiOoN DeViCe Databhasecccceeveeiieieese ettt 35
[SAVATS o] gl B I= o 8o (o = RSP 35
ASSEMDIEN .. e e 37
(70 o111 o 1] = SR 38
ODJECt-HEX CONVEIENveieeeciecteeie sttt st st 38
11N] 0o | o] RSP 39
Library ManaQErccvvuieeeeeiie ettt ste ettt s a et e snesre e 39
Chapter 4. RTX RTOSKEMNE ..o 40
SOfIWEAIE CONCEPLS ...ttt nreas 40
RTX INErOTUCTION......c.viiiieieieeeeeee e e 43
Chapter 5. USING UVISION ...oouviiiiiiicie ettt ee st 55
IVTEINUS ..ttt bttt st b e s bt b e sa et neesre et 59
Toolbars and TOOIDAr ICONS.........ccuiiiririrerie s 63

ProjeCt WINAOWS......c.ooieieeeeese e 69

Getting Started: Creating Applications with pVision

EdItOr WINAOWS........ceiiiiiiiriesee et 71
OUEPUL WINCOWS. ..o see e eneeseesreenee e 73
Other Windows and DialOgs.........coeeeerrreeiene e 74
L@ g [T o 1= 1 TSRS 74
Chapter 6. Creating Embedded Programs..........ccccoeeeeerrreeneneeeeeneseenee e 75
Creating aProjeCt File ..o 75
Using the ProjeCct WINAOWS.........ccvvieeeereseee e 77
Creating SOUICE FIlES. ... 78
Adding Source Filesto the Projectcoovvereicreicieceeree e 79
Using Targets, Groups, and FIlES...........coovvieieiiceere e 79
Setting Target OPLiONS.......ccoiiieie et aenre s 81
Setting Group and File OptioNS..........cccoeirenirereseee e 82
Configuring the Startup COode.........voveieieeece e 83
BUIldiNg the PrOJECE ..o 84
Creating AHEX FIl@ ... 85
Working with Multiple Projectsccooviieeeieeeee e 86
(O gF=To | (= gl AR D= o 18 o o [o o TP 89
SIMUIBLION. ...t seesee e e e seeseeenee e 91
Starting aDeEDUQ SESSIONccueeieiieiese e 91
= o 0 [0 1Y o (S 93
Using the Command WiNQOW............cccerireeneneeeene e 94
Using the Disassembly WINCQOWc.cooveeeiinieee e 94
EXECULING COUE.......ceeeieiticeeie ettt ee e 95
Examining and Modifying MemOrYccceoeiiriineniere e 96
Breakpoints and BooKmMarks.............coocoiiiieiiniiee e 98
Watchpoints and Watch Windowcccccevieiieieiisesc e 100
Serial /O aN0 UARTS ...ttt s 102
EXECULION Profil@reeeeeee e 103
(000 [T @001V = o L= SO 104
Performance ANAIYZEY ..o e 105
[0 To [0l N 7= Y7 R 106
SYSIEM VIBWET ...ttt e ae e eesneenee e e 107
SYMBOIS WINGOW......cviiiieeeciecese et 108
BrowSse WINOOWcoiiiieiiieeie e 109
TOOIIOX....cce e et ne s 110
INSErUCtion TraCe WINGOWcoevveieieerineriesiesie e 111

Defining Debug RESEOrE VIBWS.......c.eccveiiiceesie ettt 111

Contents

Chapter 8. Using Target Har dWare.........c.coocceevveeeene e 112
Configuring the DEDUGOEScovveeeeieeeere et 113
Programming Flash DeVICES........cccocieveiiieece e 114
Configuring EXternal TOOIS.........cceviiiieece et 115
USING ULINK AGGDEENS......eiieeeeeeie e 116
USING 8N TNIT R s 121

Chapter 9. EXample Programs.........coceoereeeenrneeese e 122
“Hello” EXample Programcooeieeoeneneese e 123
“Measure” EXample Programccoceeeeie et 127
“Traffic” EXample Program..........covieeeeie et 138
“Blinky” EXample Program.........cccoo oot 142

L] 1015572 T RSP 146

Getting Started: Creating Applications with pVision

Chapter 1. Introduction

Thank you for allowing Keil to provide you with software development tools for
your embedded microcontroller applications.

This book, Getting Started, describes the uVision IDE, uVision Debugger and
Analysis Tools, the simulation, and debugging and tracing capabilities. In
addition to describing the basic behavior and basic screens of pVision, this book
provides a comprehensive overview of the supported microcontroller architecture
types, their advantages and highlights, and supports you in selecting the
appropriate target device. This book incorporates hints to help you to write better
code. Aswith any Getting Started book, it does not cover every aspect and the
many available configuration optionsin detail. We encourage you to work
through the examples to get familiar with pVision and the components delivered.

The Keil Development Tools are designed for the professional software
developer, however programmers of all levels can use them to get the most out of
the embedded microcontroller architectures that are supported.

Tools developed by Keil endorse the most popular microcontrollers and are
distributed in several packages and configurations, dependent on the architecture.

= MDK-ARM: Microcontroller Development Kit, for several ARM7, ARM9,
and Cortex-Mx based devices

= PK166: Keil Professional Developer’s Kit, for C166, XE166, and X C2000
devices

= DK251: Keil 251 Development Tools, for 251 devices
= PK51: Keil 8051 Development Tools, for Classic & Extended 8051 devices

In addition to the software packages, Keil offers a variety of evaluation boards,
USB-JTAG adapters, emulators, and third-party tools, which completes the range
of products.

The following illustrations show the generic component blocks of pVisionin
conjunction with tools provided by Keil, or tools from other vendors, and the
way the components rel ate.

10

Chapter 1. Introduction

Software Development Tools

Like all software based on Keil’s uVision IDE,
the tool sets provide a powerful, easy to use and
easy to learn environment for developing
embedded applications.

They include the components you need to create,
debug, and assemble your C/C++ source files,
and incorporate simulation for microcontrollers
and related peripherals.

The RTX RTOS Kernel helps you to implement
complex and time-critical software.

RTOS and Middleware Components

These components are designed to solve
communication and real-time challenges of
embedded systems. Whileit is possible to
implement embedded applications without using
areal-time kernel, a proven kernel savestime and
shortens the devel opment cycle.

This component a so includes the source code
filesfor the operating system.

Hardware Debug Adapters

The pVision Debugger fully supports several
emulators provided by Keil, and other vendors.
The Keil ULINK USB-JTAG family of adapters
con nect the USB port of a PC to the target
hardware. They enable you to download, test,
and debug your embedded application on rea
hardware.

Software Development Tools
C/C++ Compiler
(7]
L
RTX RTOS Kernel Library g
5
uVision o
IDE & Device Database &
3
uVision °
Debugger & Analysis Tools g
i
Complete Device Simulation
RTOS and Middleware
Components

RTX RTOS Source Code
(7]
L
TCPnet Networking Suite %_
5
Flash File System g
(2]
o
USB Device Interface %
b

CAN Interface

HIKEIL ULINK 7o

Getting Started: Creating Applications with pVision 11

Last-Minute Changes

Aswith any high-tech product, last minute changes might not be included into
the printed manuals. These |last-minute changes and enhancements to the
software and manuals are listed in the Rel ease Notes shipped with the product.

Licensing

Each Kell product requires activation through alicense code. Thiscodeis
obtained viae-mail during the registration process. There are two types of
product licenses:

= Single-User Licenseisavailablefor all Keil products. A Single-User
License grants the right to use a product on a maximum of two computersto
one user. Eachinstallation requires alicense code that is personalized for the
computer on which the product isinstalled. A Single-User license may be
uninstalled and moved to another computer.

= Floating-User Licenseisavailable for many Keil products. The Floating-
User license grants the right to use that product on several computers by
several different developers at the sametime. Eachinstallation of the
product requires an individua license code for each computer on which the
product isinstalled.

Installation

Please check the minimum hardware and software requirements that must be
satisfied to ensure that your Keil development tools are installed and will
function properly. Before attempting installation, verify that you have:

= A standard PC running Microsoft Windows XP, or Windows Vista

= 1GB RAM and 500 MB of available hard-disk space is recommended

= 1024x768 or higher screen resolution; a mouse or other pointing device
= A CD-ROM drive

Keil products are available on CD-ROM and via download from www.keil.com.
Updates to the related products are regularly available at www.keil.com/update.

12

Chapter 1. Introduction

Installation using the web download

1. Download the product from www.keil.com/demo
2. Run the downloaded executable
3. Follow theinstructions displayed by the seTup program

Installation from CD-ROM

1. Insert the CD-ROM into your CD-ROM drive. The CD-ROM browser
should start automatically. If it does not, you can run seTup.exe from the
CD-ROM.

2. Select Install Products & Updates from the CD Browser menu
3. Follow the instructions displayed by the seTup program

Product Folder Structure

The SETUP program copies the devel opment tools into subfolders. The base
folder defaultsto c:\KEIL\. The following table lists the default folders for each
microcontroller architecture installation. Adjust the examples used in this
manual to your preferred instalation directory accordingly.

Microcontroller Architecture Folder
MDK-ARM Toolset C:\KEIL\ARM\
C166/XE166/XC2000 Toolset C:\KEIL\C166\
8051 Toolset C:\KEIL\C51\
C251 Toolset C:\KEIL\C251\
uVision Common Files C:\KEIL\UV4\

Each toolset contains severa subfolders:

Contents Subfolder
Executable Program Files \BIN\

C Include/Header Files \INC\

On-line Help Files and Release Notes \HLP\
Common/Generic Example Programs \EXAMPLES\

Example Programs for Evaluation Boards \BOARDS\

Getting Started: Creating Applications with pVision

13

Requesting Assistance

At Keil, we are committed to providing you with the best embedded development
tools, documentation, and support. If you have suggestions and comments
regarding any of our products, or you have discovered a problem with the
software, please report them to us, and where applicable make sure to:

1. Read the section in this manual that pertains to the task you are attempting

3.

Check the update section of the Keil web site to make sure you have the latest
software and utility version

Isolate software problems by reducing your code to as few lines as possible

If you are till having difficulties, please report them to our technical support
group. Make sure to include your license code and product version number. See
the Help — About Menu. In addition, we offer the following support and
information channels, all accessible at www.keil.com/support®.

1

The Support Knowledgebase is updated daily and includes the |atest
questions and answers from the support department

The Application Notes can help you in mastering complex issues, like
interrupts and memory utilization

3. Check the on-line Discussion Forum
4. Reguest assistance through Contact Technical Support (web-based E-Mail)
5. Findly, you can reach the support department directly via

support.intl@keil.com or support.us@keil.com

! You can always get technical support, product updates, application notes, and sample programs
at www.keil.com/support.

14 Chapter 2. Microcontroller Architectures

Chapter 2. Microcontroller Architectures

The Kell uVision Integrated Development Environment (uVision IDE) supports
three major microcontroller architectures and sustains the devel opment of awide
range of applications.

= 8-bit (classic and extended 8051) devicesinclude an efficient interrupt
system designed for real-time performance and are found in more than 65%
of al 8-bit applications. Over 1000 variants are available, with peripherals
that include analog 1/0, timer/counters, PWM, serid interfaceslike UART,
I2C, LIN, SPI, USB, CAN, and on-chip RF transmitter supporting |ow-power
wireless applications. Some architecture extensions provide up to 16MB
memory with an enriched 16/32-bit instruction set.

The pVision IDE supports the latest trends, like custom chip designs based
on IP cores, which integrate application-specific peripherals on asingle chip.

= 16-bit (Infineon C166, XE166, X C2000) devices are tuned for optimum
real-time and interrupt performance and provide arich set of on-chip
peripherals closely coupled with the microcontroller core. They include a
Peripheral Event Controller (similar to memory-to-memory DMA) for high-
speed data collection with little or no microcontroller overhead.

These devices are the best choice for applications requiring extremely fast
responses to external events.

= 32-bit (ARM7 and ARM 9 based) devices support complex applications,
which require greater processing power. These cores provide high-speed 32-
bit arithmetic within a 4GB address space. The RISC instruction set has
been extended with a Thumb mode for high code density.

ARM7 and ARM9 devices provide separate stack spaces for high-speed
context switching enabling efficient multi-tasking operating systems. Bit-
addressing and dedicated peripheral address spaces are not supported. Only
two interrupt priority levels, - Interrupt Request (IRQ) and Fast Interrupt
Request (FIQ), are available.

Getting Started: Creating Applications with pVision

15

= 32-bit (Cortex-Mx based) devices combine the cost benefits of 8-bit and
16-bit devices with the flexibility and performance of 32-bit devices at
extremely low power consumption. The architecture delivers state of the art
implementations for FPGAs and SoCs. With the improved Thumb2
instruction set, Cortex-Mx* based microcontrollers support a 4GB address
space, provide bit-addressing (bit-banding), and several interrupts with at
least 8 interrupt priority levels.

Selecting an Architecture

Choosing the optimal device for an embedded application is a complex task. The
Keil Device Database (www.keil.com/dd) supports you in selecting the
appropriate architecture and provides three different methods for searching. You
can find your device by architecture, by specifying certain characteristics of the
microcontroller, or by vendor.

The following sections explain the advantages of the different architectures and
provide guidelines for finding the microcontroller that best fits your embedded
application.

8051 Architecture Advantages

= Fast I/O operations and fast access to on-chip RAM in data space

= Efficient and flexible interrupt system

= L ow-power operation

8051-based devices are typically used in small and medium sized applications

that require high 1/O throughput. Many devices with flexible peripherals are
available, even in the smallest chip packages.

! Cortex-MO devices implement the Thumb instruction set.

16

Chapter 2. Microcontroller Architectures

C166, XE166 and XC2000 Architecture Advantages

= Extremely fast 1/0 operations via the Peripheral Event Controller

= High-speed interrupt system with very well-tuned peripheras

= Efficient arithmetic and fast memory access

These devices are used in medium to large sized applications that require high

1/0 throughput. This architectureiswell suited to the needs of embedded
systems that involve a mixture of traditional controller code and DSP algorithms.

ARM7 and ARM9 Architecture Advantages

= Huge linear address space
= The 16-bit Thumb instruction set provides high code density
= Efficient support for all C integer datatypesincluding pointer addressing

ARM?7 and ARM 9-based microcontrollers are used for applications with large
memory demands and for applications that use PC-based algorithms.

Cortex-Mx Architecture Advantages

= Oneinstruction set, Thumb2, reduces the complexity of the program code
and eliminates the overhead needed for switching between ARM and Thumb
instruction mode

= The Nested Vector Interrupt Controller (NVIC) removes interrupt prolog and
epilog code, and provides several, configurable priority levels

= Extremely low power consumption with avariety of sleep modes

The Cortex-Mx microcontroller architecture is designed for hard real-time
systems, but can be used for complex System-on-Chip applications as well.

Getting Started: Creating Applications with pVision 17

Classic and Extended 8051 Devices

8051 devices combine cost-efficient hardware with asimple but efficient
programming model that uses various memory regions to maximize code
efficiency and speed-up memory access. The following figure shows the
memory layout of a classic 8051 device.

0x100

OXFFFF
F8

SFR
0x100 SPACE

98
— 8051 Bit

90 €—— addressable

88 0x0000

80

0x80

OXFFFF

0x80 T
2F
DATA 8051
128 Bytfs i

1F

4 Register

0x0 Banks 0

The 8051 architecture provides three different physical memory regions:

= DATA/IDATA memory includes a 256 Bytes on-chip RAM with register
banks and bit-addressable space that is used for fast variable accessing.
Some devices provide an extended data (EDATA) space with up to 64K B.

= CODE memory consists of 64KB ROM space used for program code and
constants. The Kell linker supports code banking that allows you to expand
the physical memory space. In extended variants, up to 16MB ROM spaceis
available.

= XDATA memory has a 64KB RAM space for off-chip peripheral and
memory addressing. Today, most devices provide some on-chip RAM that is
mapped into XDATA.

18

Chapter 2. Microcontroller Architectures

= SFRand IDATA memory are located in the same address space but are
accessed through different assembler instructions

= For extended devices, the memory layout provides a universal memory map
that includes all 8051-memory typesin asingle 16M Byte address region

8051 Highlights

= Fast interrupt service routines with two or four priority levels and up to 32-
vectored interrupts

= Four register banks for minimum interrupt prolog/epilog

= Bit-addressable space for efficient logical operations

= 128 Bytes of Specia Function Register (SFR) space for tight integration of
on-chip peripherals. Some devices extend the SFR space using paging.

= L ow-power, high-speed devices up to 100 MIPS are available

8051 Development Tool Support

The Keil C51 Compiler and the Keil Linker/Locator provide optimum 8051
architecture support with the following features and C language extensions.
= Interrupt functions with register bank support are written directly in C

= Bit and bit-addressable variables for optimal Boolean data type support

= Compile-time stack with data overlaying uses direct memory access and
gives high-speed code with little overhead compared to assembly
programming

= Reentrant functions for usage by multiple interrupt or task threats
= Generic and memory-specific pointers provide flexible memory access

= Linker Code Packing gives utmost code density by reusing identical program
sequences

= Code and Variable Banking expand the physical memory address space

= Absolute Variable Locating enables peripheral access and memory sharing

Getting Started: Creating Applications with pVision

19

8051 Memory Types

A memory type prefix is used to assign amemory type to an expression with a
constant. Thisis necessary, for example, when an expression is used as an
address for the output command. Normally, symbolic names have an assigned
memory type, so that the specification of the memory type can be omitted. The
following memory types are defined:

Prefix Memory Space

Code Memory (CODE)

Internal, direct-addressable RAM memory (DATA)
Internal, indirect-addressable RAM memory (IDATA)
External RAM memory (XDATA)

Bit-addressable RAM memory

Peripheral memory (VTREGD — 80x51 pins)

@ X T OO0

The prefix P: isaspecia case, since it aways must be followed by aname. The
namein turn is searched for in aspecial symbol table that contains the register’s
pin names.

Example:

C:0x100 Address 0x100 in CODE memory

ACC Address OXEO in DATA memory, D:

1:100 Address 0x64 in internal RAM

X:0FFFFH Address OXFFFF in external data memory
B:0Ox7F Bit address 127 or 2FH.7

C Address 0xD7 (PSW.7), memory type B:

20

Chapter 2. Microcontroller Architectures

Infineon C166, XE166, XC2000

The 16-hit architecture of these devicesis designed for high-speed real-time
applications. It provides up to 16MB memory space with fast memory areas
mapped into parts of the address space. High-performance applications benefit
from locating frequently used variables into the fast memory areas. The below
listed memory types address the following memory regions:

Memory Type Description

bdata Bit-addressable part of the idata memory.

huge Complete 16MB memory with fast 16-bit address calculation. Object size
limited to 64KB.

idata High speed RAM providing maximum access speed (part of sdata).

near Efficient variable and constant addressing (max. 64KB) with 16-bit pointer and
16-bit address calculation.

sdata System area includes Peripheral Registers and additional on-chip RAM
space.

xhuge Complete 16MB memory with full address calculation for unlimited object size.

C166, XE166, XC2000 Highlights

= Highest-speed interrupt handling with 16 priority levels and up to 128
vectored interrupts

= Unlimited register banks for minimum interrupt prolog/epilog
= Bitinstructions and bit-addressable space for efficient logical operations

= ATOMIC instruction sequences are protected from interrupts without
interrupt enabl e/disable sequences

= Peripheral Event Controller (PEC) for automatic memory transfers triggered
by peripheral interrupts. Requires no processor interaction and further
improves interrupt response time.

= Multiply-Accumulate Unit (MAC) provided for high-speed DSP agorithms

Getting Started: Creating Applications with pVision

21

C166, XE166, XC2000 Development Tool Support

The Keil C166 Compiler supportsal C166, XE166, XC2000 specific features
and provides additional extensions such as.

= Memory type support and flexible digital pattern processing for extremely
fast variable access

= Functioninlining eliminating call/return overhead

= Inline assembly for accessing al microcontroller and MAC instructions

ARM7 and ARM9 based Microcontrollers

The ARM7 and ARM9 based microcontrollers run on a load-store RISC
architecture with 32-bit registers and fixed op-code length. The architecture
provides alinear 4GB memory address space. In contrast to the previoudy
mentioned 8/16-bit devices, no specific memory types are provided, since

memory addressing is performed via 32-bit pointers in microcontroller registers.

Peripheral registers are mapped directly into the linear address space. The
Thumb instruction set improves code density by providing a compressed 16-bit
instruction subset.

The ARM7 and ARM9 cores are easy to use, cost-effective, and support modern
object-oriented programming techniques. They include a 2-level interrupt system

with anormal interrupt (IRQ) and afast interrupt (FIQ) vector. To minimize
interrupt overhead, typical ARM7/ARM9 microcontrollers provide a vectored

interrupt controller. The microcontroller operating modes, separate stack spaces,

and Software Interrupt (SVC) features produce efficient use of Real-Time
Operating Systems.

The ARM7 and ARM9 core provides thirteen general-purpose registers (RO—
R12), the stack pointer (SP) R13, the link register (LR) R14, which holds return

addresses on function calls, the program counter (PC) R15, and a program status

register (PSR). Shadow registers, available in various operating modes, are
similar to register banks and reduce interrupt latency.

Chapter 2. Microcontroller Architectures

R1
ARM7 and ARM9 Operation Modes
R2
R3 User Normal execution state
] FIQ Fast Interrupt mode
B IRQ Interrupt mode
R5 SVC Supervisor mode (software interrupt)
R6 UND Undefined instruction execution
ABT Memory access failure
R7
RS R8
R9 R9
R10 R10
R11 R11
R12 R12
R13 = SP R13 = SP R13 = SP R13 = SP R13=SP R13 = SP
R14 = LR R14 =LR R14 = LR R14 = LR R14=LR R14=LR
R15 = PC
‘ CPSR ‘ ’ SPSR ‘ ‘ SPSR ‘ ‘ SPSR ‘ ‘ SPSR ‘ ‘ SPSR
User FIQ IRQ SvC ABT UND

ARM7 and ARM9 Highlights

= Linear 4 GB memory space that includes peripherals and eliminates the
need for specific memory types

= | oad-storearchitecturewith efficient pointer addressing. Fast task
context switch times are achieved with multiple register |oad/store.

= Standard (IRQ) and Fast (FIQ) interrupt. Banked microcontroller
registers on FIQ reduce register save/restore overhead.

= Vectored Interrupt Controller (available in most microcontrollers)
optimizes multiple interrupt handling

= Processor modes with separate interrupt stacks for predictable stack
requirements

= Compact 16-bit Instruction Set (Thumb). Compared to ARM mode,
Thumb mode code is about 65% of the code size and 160% faster when
executing from a 16-bit memory system.

Getting Started: Creating Applications with pVision

23

ARM7 and ARM9 Development Tool Support
The ARM compilation tools support all ARM-specific features and provide:

= Function Inlining eiminates call/return overhead and optimizes parameter
passing

= Inline assembly supports special ARM/Thumb instructionsin C/C++
programs

= RAM functions enable high-speed interrupt code and In-System Flash
programming

= ARM/Thumb interworking provides outstanding code density and
microcontroller performance

= Task function and RTOS support are built into the C/C++ compiler

Cortex-Mx based Microcontrollers

Designed for the 32-bit microcontroller market, the Cortex-Mx microcontrollers
combine excellent performance at low gate count with features only previously
found in high-end processors.

With 4GB of linear, unified memory space, the Cortex-Mx processors provide
bit-banding features and supports big and little endian configuration. Predefined
memory types are available, while some memory regions have additional
attributes. Code can be located in the SRAM, external RAM, but preferably in
the Code region. Peripheral registers are mapped into the memory space. Code
density isimproved by the Thumb or Thumb2 instruction set, depending on the
processor version.

General-purpose registers rank from RO to R12. R13 (SP) is banked, with only
one copy of the R13 (MSP, PSP) being visible at atime. Specia registers are
available, but are not used for normal data processing. Some of the 16-bit
Thumb instructions can access RO-R7 (low) registersonly. Thereisno FIQ;
however, nested interrupts and interrupt priority handling is implemented viathe
Nested Vector Interrupt Controller (NVIC), greatly reducing interrupt latency.

24

Chapter 2. Microcontroller Architectures

Cortex Core Register Set

N N
RO

R1

R2

R3

> Low Registers
R4

R5

R6 > General-Purpose Registers

R7

A

R8

R9

R10 High Registers

R11

R12

R13 = PSP R13 = MSP Process Stack Pointer (PSP), Main Stack Pointer (MSP): (banked)

R14 = LR Link Register

R15 = PC Program Counter

XPSR Program Status Register

PRIMASK

FAULTMASK Exception Mask Registers Special Registers

BASEPRI

CONTROL Control Registers

Cortex-Mx Highlights

Nested Vectored I nterrupt Controller optimizes multiple external
interrupts (up to 240 + 1 NMI, with at least eight priority levels)

RO-R3, R12, LR, PSR, and PC are pushed automatically to the stack at
interrupt entry and popped back at interrupt exit points

Only oneinstruction set (Thumb?2), assuring software upward
compatibility with the entire ARM roadmap

Several Extreme L ow-Power M odes with an attached Wake-Up Interrupt
Controller (WIC)

Getting Started: Creating Applications with pVision

25

Cortex-Mx Development Tool Support

In addition to the ARM specific characterigtics, the Kell MDK-ARM supports the
Cortex-Mx Micraocontroller Software Interface Standard (CMSIS) and provides
the following features:

Coreregistersand core peripherals are accessible through C/C++
functions

Device independent debug channel for RTOS kernels

Supportsobject oriented programming, reuse of code, and implements an
easy way of porting code to different devices

Extensive debug capabilities allowing direct access to memory without
stopping the processor

CM Sl Sissupported, making the software compatible across the Cortex-Mx
architectures

Architecture Comparison Conclusions

The various architectures have pros and cons and the optimal choice depends
highly on the application requirements. The following code comparison section
provides additional architectural information that can help you in selecting the
optimal microcontroller for your target embedded system.

26

Chapter 2. Microcontroller Architectures

Code Comparison

The following short but representative code examples show the impressive
individual strengths of the different microcontroller architectures.

I/O Port Access Comparison

Source Code

if (1OPIN==1) {
i++;

}

Description

Increment a value when an 1/O pin is set.

= 8051 devices provide bit-addressable /0O Ports and instructions to access
fixed memory locations directly

= (C166, XE166, XC2000 devices provide bit-addressable /O Ports and
instructions to access fixed memory locations directly

= ARM7 and ARM9 devices provide indirect memory access instructions
only. However, there are no bit operations.

= Cortex-Mx devices provide indirect memory access instructions only, but
allow atomic bit operations

sfr P0=0x80;
sbit PO_0=P0"0;

unsi gned char i;
void main (void) {

if (PO_0) {
; JNB P0_0, 700002

i++;
INC i

RET

}
6 Bytes

C166/XE166 and

XC2000 Code

sfr POL=0xFF0O;
shit PO_0=POL"0;

unsigned int i;
void main (void) {

if (PO_0) {
; JNB P0_0, ?7C0001

i++;
SUB i, ONES

RET

}
‘ 10 Bytes

ARM7 and ARM9
Thumb Code

#define | OP *(int*))

unsigned int i;

void main (void) {
if (10P & 1) {

; LDR RO, =0xE0028000
; LDR RO, [RO, #0x0]

; MOV R1, #0x1

; TST RO, R1

; BEQL_1

i++;

; LDRRO, =i ; i

; LDR R1, [RO, #0x0] ;i
; ADD R1, #0x1

; STR R1, [RO, #0x0] ; i
}

; BX LR
}

‘ 24 Bytes

Cortex-Mx
Thumb?2 Code

unsigned int i;

void main (void) {
if (GPIOA->0DR) {

; STR RO, [R1, #0xc]

; LDR RO, [R2, #0]

; CBZ RO, |LL1. 242|

i++;
; MOVS RO, #2

; STR RO, [RL, #0xc]
;| L1.242|

}

; BX LR
}

‘ 12 Bytes

Getting Started: Creating Applications with pVision

27

Pointer Access Comparison

Source Code Description

typedef struct { int x; int arr[10]; } sx; Return a value that is part of a struct and

iot G (o sekta S, fok) indirectly accessed via pointer.

return sp->arrf[i];

= 8051 devices provide byte arithmetic requiring several microcontroller
instructions for address calculation

= (C166, XE166, XC2000 devices provide efficient address arithmetic with
direct support of alarge 16 MByte address space

= ARM devices are extremely efficient with regard to pointer addressing and
always use the 32-bit addressing mode

= |nCortex-Mx devices, any register can be used as a pointer to data
structures and arrays

C166, XE166, ARM 7 and ARM9 Cortex-Mx

XC2000 Code Thumb Code Thumb?2 Code

MV DPL, R7 MV R4, RO LSL RO, Rl, #0x2 ADD RO, RO, R, LSL #2
MV DPH,R6 SHL R4, #01H ADD RO, R2, RO LDR RO, [RO, #4]
MV ARS ADD R4, R8 LDR RO, [RO, #0x4]
ADD A ACC EXTS R9, #01H

MV R7,A MV R4, [RA+#2]

MV ARM

RC A

MV R6 A

INC DPTR

INC DPTR

MV A DPL

AD AR?

MV DPL A

MV A DPH

ADDC A R6

MV DPH A

MVX A @PTR

MV R6 A

INC DPTR

MOVX A, @PTR

MV R7,A

25 Bytes 14 Bytes 6 Bytes 6-Bytes

Chapter 2. Microcontroller Architectures

Generating Optimum Code

The C/C++ compilers provided by Keil are leadersin code generation and
produce highly efficient code. However, code generation and trandation is
influenced by the way the application software is written. The following hints
will help you optimize your application performance.

Coding Hints for All Architectures

Hint Description

Keep interrupt functions short. Well-structured interrupt functions only perform data collection
and/or time-keeping. Data processing is done in the main
function or by RTOS task functions. This reduces overhead
involved with context save/restore of interrupt functions.

Check the requirement for Atomic code is required for accessing data while using multiple

atomic operations. RTOS threads or interrupt routines that access the memory
used by the main function. Carefully check the application to
determine if atomic operations are needed and verify the
generated code. The various architectures have different
pitfalls. For example, incrementing a variable on the 8051 and
C166/XE166/XC2000 device is a single, atomic instruction,
since it cannot be interrupted, whereas multiple instructions are
required for an increment on ARM devices. In contrast, the
8051 requires multiple instructions to access the memory of an
int variable.

Apply the volatile attribute on The volatile attribute prevents the C/C++ compiler from

variables that are modified by an optimizing variable access. By default, a C/C++ Compiler may

interrupt, hardware peripherals, assume that a variable value will remain unchanged between

or other RTOS tasks. several memory-read operations. This may yield incorrect
application behavior in real-time applications.

When possible, use automatic As part of the optimization process, the Keil C/C++ compiler

variables for loops and other attempts to maintain local variables (defined at function level) in

temporary calculations. CPU registers. Register access is the fastest type of memory
access and requires the least program code.

Getting Started: Creating Applications with pVision

29

Coding Hints for the 8051 Architecture

Hint Description

Use the smallest possible data The 8051 uses an 8-bit CPU with extensive bit support. Most

type for variables. Favor instructions operate on 8-bit values or bits. Consequently, small

unsigned char and bit. data types generate code that is more efficient.

Use unsigned data types The 8051 has no direct support for signed data types. Signed

whenever possible. operations require additional instructions whereas unsigned
data types are directly supported by the architecture.

Favor the SMALL memory Most applications may be written using the SMALL memory

model. model. You can locate large objects, as arrays or structures,

into xdata or pdata memory using explicit memory types. Note,
the Keil C51 run-time library uses generic pointers and can work
with any memory type.

When using other memory Variables in the data address space are directly accessed by an
models, apply the memory type 8-bit address that is encoded into the 8051 instruction set. This
data to frequently used memory type generates the most efficient code.

variables.

Learn how to use pdata memory The pdata memory provides efficient access to 256 bytes using
type on your device. MOVX @RI instructions with 8-bit addressing. However, pdata

behaves differently on the various 8051 devices, since it may
require setting up a paging register. The xdata memory type is
generic and accesses large memory spaces (up to 64KB).

Use memory-typed pointers By default, the Keil C51 Compiler uses generic pointers that

when possible. may access any memory type. Memory-typed pointers can
access only a fixed memory space, but generate faster and
smaller code.

Reduce the usage of Reentrant The 8051 lacks support for stack variables. Reentrant functions

Functions. are implemented by the Keil C51 Compiler using a compile-time
stack with data overlaying for maximum memory utilization.
Reentrant functions on the 8051 require simulation of the stack
architecture. Since reentrant code is rarely needed in
embedded applications, you should minimize the usage of the
reentrant attributes.

Use the LX51 Linker/Locater The extended LX51 Linker/Locator (available only in the PK51

and Linker Code Packing to Professional Developer’s Kit) analyzes and optimizes your

reduce program size. entire program. Code is reordered in memory to maximize 2-
byte AJMP and ACALL instructions (instead of 3-byte LJMP
and LCALL). Linker Code Packing (enabled in C51
OPTIMIZE level 8 and above) generates subroutines for
common code blocks.

30

Chapter 2. Microcontroller Architectures

Coding Hints for C166, XE166, XC2000 Architectures

Hint Description

When possible, use 16-bit data Parameter passing is performed in 16-bit CPU registers (many

types for automatic and 16-bit registers are available for automatic variables). More 16-

parameter variables. bit variables (signed/unsigned int/short) can be assigned to
CPU registers. This generates code that is more efficient.

Replace long with int data types Operations that use 16-bit types (like int and unsigned int) are

when possible. much more efficient than operations using long types.

Use the bit data type for boolean These CPUs have efficient bit instructions that are fully
variables. supported by the Keil C166 Compiler with the bit data type.
Use the SMALL or MEDIUM In these memory models, the default location of a variable is in
memory model when possible. near memory, accessible through16-bit direct addresses

encoded in the CPU instructions. You can locate large objects
(array or struct) into huge or xhuge using explicit memory
types.

When using other memory Variables in the near, idata, or sdata address space are
models, apply the near, idata, or accessed through a 16-bit address that is encoded directly into
sdata memory type to frequently a single C166/XE166/XC2000 instruction. These memory types

used variables. generate the most efficient code.

Use the memory model The memory models COMPACT and LARGE use the obsolete
HCOMPACT/HLARGE instead far memory type and have an object size limit of 16KB. The
of COMPACT/LARGE. memory models HCOMACT and HLARGE use the huge

memory type that feature a 64KB object size limit. Even cast
operations from near to huge pointers are more optimal.

Use near pointers when Check if a near pointer is sufficient for accessing the memory,

possible. since near pointers can access variables in the near, idata, or
sdata address space. Near pointers generate faster and
smaller code.

Getting Started: Creating Applications with pVision

31

Coding Hints for the ARM7 and ARM9 Architecture

Hint Description

When possible, use 32-bit
data types for automatic and
parameter variables.

Use the Thumb instruction
set.

Use __swi software interrupt
functions for atomic
sequences.

Enhance st r uct pointer
access by placing scalars at
the beginning and arrays as
subsequent struct
members.

Assign high speed interrupt
code to RAM.

Optimize for Size

MicroLIB

Optimize for Speed

Parameter passing is performed in 32-bit CPU registers. All ARM
instructions operate on 32-bit values. In Thumb mode, all stack
instructions operate only on 32-bit values. By using 32-bit data
types (signed/unsigned int/long), additional data type cast
operations are eliminated.

Thumb mode is about 65% of the code size and 160% faster than
ARM mode when executing from a 16-bit memory system. The
MDK-ARM Compiler automatically inserts required ARM / Thumb
interworking instructions.

Via the __swi function attribute, the MDK-ARM Compiler offers a
method to generate software interrupt functions directly, which
cannot be interrupted by IRQ (__swi functions can be interrupted
by FIQ interrupts). In contrast to other embedded architectures,
ARM prevents access to the interrupt disable bits | and F in User
mode.

Thumb and ARM instructions encode a limited displacement for
memory access. When a st r uct is accessed via a pointer, scalar
variables at the beginning of a st ruct can be accessed directly.
Arrays always require address calculation. Consequently, it is
more efficient to place scalar variables at the beginning of a
struct.

Code executed from Flash ROM typically requires wait states or
CPU stalls. Code execution from RAM does not. Consequently,
time critical functions (like high-speed interrupt code) can be
located in RAM directly using the Memory Assignment feature in
Options for File — Properties available via the Context Menu of
that file.

To optimize an application for minimal program size select under

Options for Target the following toolchain:

= Inthe dialog page Target enable Code Generation - Use
Cross-Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 2 (-O2)
and disable the options Optimize for Time, Split Load and
Store Multiple, and One ELF Section per Function

The compiler offers a MicroLIB to be used for further reducing the
code size of an application. MicroLIB is tailored for deeply
embedded systems, but is not fully ANSI compliant.

Do not use MicroLIB when execution speed is your primary goal.

To optimize an application for maximum execution speed, under

Options for Target select the following toolchain:

= Inthe dialog pageTarget enable Code Generation - Use
Cross-Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 3 (-O3),
enable Optimize for Time, and disable Split Load and Store
Multiple

Chapter 2. Microcontroller Architectures

Coding Hints for the Cortex-Mx Architecture

Hint Description

When possible, use 32-bit Parameter passing is performed in 32-bit CPU registers. All ARM

data types for automatic instructions operate on 32-bit values. In Thumb mode, all stack

and parameter variables. instructions operate only on 32-bit values. By using 32-bit data types
(signed/unsigned int/long), additional data type cast operations are
eliminated.

Optimize for Size To optimize an application for minimal program size select under

Options for Target the following toolchain:

= Inthe dialog page Target enable Code Generation - Use Cross-
Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 2 (-O2) and
disable the options Optimize for Time, Split Load and Store
Multiple, and One ELF Section per Function

MicroLIB The compiler offers a MicroLIB to be used for further reducing the
code size of an application. MicroLIB is tailored for deeply
embedded systems, but is not fully ANSI compliant.

Do not use MicroLIB when execution speed is your primary goal.

Optimize for Speed To optimize an application for maximum execution speed, under
Options for Target select the following toolchain:
= Inthe dialog pageTarget enable Code Generation - Use Cross-
Module Optimization

= Inthe dialog page C/C++ select Optimization: Level 3 (-O3),
enable Optimize for Time, and disable Split Load and Store
Multiple

Sleep mode features To optimize power consumption of an application you may use the
WFI instruction to send the processor into Sleep Mode until the next
interrupt is received. In C programs, use the intrinsic function __ wfi()
to insert this instruction into your code.

Enhance st r uct pointer Thumb2 instructions encode a limited displacement for memory
access, by placing scalars access. When a st ruct is accessed via a pointer, scalar variables
at the beginning and at the beginning of a st r uct can be directly accessed. Arrays
arrays as sub-sequent always require address calculations. Therefore, it is more efficient to
st ruct members. place scalar variables at the beginning of a st r uct .

Getting Started: Creating Applications with pVision

33

Chapter 3. Development Tools

The Keil development tools offer numerous features and advantages that help
you to devel op embedded applications quickly and successfully. They are easy
to use and are guaranteed to help you achieve your design goalsin atimely

manner.

Software Development Cycle

When using the Keil tools, the project development cycleis similar to any other

software devel opment project.

1. Create aproject, select the target device from
the Device Data base, and configure the tool
settings

2. Create your sourcefilesin C/C++ or
Assembly

3. Build your application with the Project
Manager

4. Debug and correct errorsin source files, verify
and optimize your application

5. Download your codeto Flash ROM or SRAM
and test the linked application

H¥isicn IDE
Integrated Development Environment

uWision Project Manager ‘
J

C/C++ Compiler | Macro Assembler |

o

C/C++ Libraries

—

‘ el

Linker / Locator ‘

\L

pVision Debugger

Device Simulation Target Hardware

Each component shown in the block diagram is described in the following

section.

34

Chapter 3. Development Tools

uVision IDE

ThepVision IDE is awindow-based software devel opment platform combining a
robust editor, Project Manager, and Make Utility tool. pVision supports al the
Keil toolsincluding C/C++ Compiler, Macro Assembler, Linker, Library
Manager, and Object-HEX Converter. pVision helps expedite the devel opment
process by providing:

= Device Database for selecting a device and configuring the devel opment
toolsfor that particular microcontroller
= Project Manager to create and maintain projects

= Make Utility for assembling, compiling, and linking your embedded
applications

= Full-featured source code editor

= Template Editor that isused to insert common text sequences or header
blocks

= Source Browser for rapidly exploring code objects, locating and analyzing
datain your application

= Function Browser for quickly navigating between functionsin your
program

= Function Outlining for controlling the visual scope within a sourcefile

= Built-in utilities, such as Find in Files and functions for commenting and
uncommenting source code

= pVision Simulator and Target Debugger are fully integrated

= Configuration Wizard providing graphica editing for microcontroller
startup code and configuration files

= |nterface to configure Software Version Control Systems and third-party
utilities

= Flash Programming Utilities, such asthe family of Keil ULINK USB-
JTAG Adapters

= Dialogsfor al development tool settings

= On-line Help and links to microcontroller data sheets and user guides

Getting Started: Creating Applications with pVision 35

uVision Device Database

The pVision Device Database offers a convenient way to select and configure
your device and project parameters. It includes preconfigured settings, so that
you can fully concentrate on your application requirements. In addition, you can
add your own devices, or change existing settings. Use the features of the Device
Database to:

= |nitialize the start up code and device settings

= | oad the configuration options for the assembler, compiler, and linker

= You can add and change microcontroller configuration settings

uVision Debugger

The pVision Debugger is completely integrated into the uVision IDE. It
provides the following features:

= Disassembly of the code on C/C++ source- or assembly-level with program
execution in various stepping modes and various view modes, like
assembler, text, or mixed mode

= Multiple breakpoint options including access and complex breakpoints
= Bookmarksto quickly find and define your critical spots

= Review and modify memory, variable, and register values

= List the program call treeincluding stack variables

= Review the status of on-chip microcontroller peripherals

= Debugging commands or C-like scripting functions

= Execution Profiling to record and display the time consumed, as well as the
cycles needed for each instruction

= Code Coverage statistics for safety-critical application testing

= Variousanalyzing toolsto view statistics, record values of variables and
peripheral 1/O signals, and to display them on atime axis

= Instruction Trace capabilities to view the history of executed instructions

= Define personalized screen and window layouts

36

Chapter 3. Development Tools

The pVision Debugger offers two operating modes—Simulator Mode and
Target Mode.

Simulator M ode configures the pVision Debugger as a software-only product
that accurately simulates target systems including instructions and most on-chip
peripherals. Inthismode, you can test your application code before any
hardwareis available. It gives you serious benefits for rapid devel opment of
reliable embedded software. The Simulator Mode offers:

Software testing on your desktop with no hardware environment

Early software debugging on afunctional basisimproves software reliability
Breakpoints that are impossible with hardware debuggers

Optimal input signals. Hardware debuggers add extra noise

Single-stepping through signal processing algorithmsis possible. External
signals are stopped when the microcontroller halts.

Detection of failure scenarios that would destroy real hardware peripherals

Target Mode' connects the uVision Debugger to real hardware. Several target
drivers are available that interface to a

ULINK JTAG/OCDS Adapter that connects to on-chip debugging systems

Monitor that may be integrated with user hardware or that is available on
many evaluation boards

Emulator that connects to the microcontroller pins of the target hardware

In-System Debugger that is part of the user application program and
provides basic test functions

UL INKPro Adapter a high-speed debug and trace unit connecting to
on-chip debugging systems via JTAG/SWD/SWV, and offering Cortex-M3
ETM Instruction Trace capabilities

! Some target drivers have hardware restrictions that limit or eliminate features of the pVision
Debugger while debugging the target hardware.

Getting Started: Creating Applications with pVision

37

Assembler

An assembler allows you to write programs using microcontroller instructions. It
is used where utmost speed, small code size, and exact hardware control is
essential. The Kell Assemblers translate symbolic assembler language
mnemonics into executable machine code while supporting source-level
symbolic debugging. In addition, they offer powerful capabilities like macro
processing.

The assembler translates assembly source files into re-locatable object modules
and can optionaly create listing files with symbol table and cross-reference
details. Complete line number, symbol, and type information is written to the
generated aobject files. Thisinformation enables the debugger to display the
program variables exactly. Line numbers are used for source-level debugging
with the pVision Debugger or other third-party debugging tools.

Keil assemblers support several different types of macro processors (depending
on architecture):

= The Standard Macro Processor isthe easier macro processor to use. It
allows you to define and use macros in your assembly programs using syntax
that is compatible with that used in many other assemblers.

= TheMacro Processing Language or MPL isastring replacement facility
that is compatible with the Intel ASM-51 macro processor. MPL has several
predefined macro processor functions that perform useful operationslike
string manipul ation and number processing.

Macros save devel opment and maintenance time, since commonly used
sequences need to be developed once only.

Another powerful feature of the assembler’ s macro processor is the conditional
assembly capability. Y ou can invoke conditional assembly through command

line directives or symbolsin your assembly program. Conditional assembly of
code sections can help achieve the most compact code possible. It also allows
you to generate different applications from a single assembly source file.

38

Chapter 3. Development Tools

C/C++ Compiler

The ARM C/C++ compiler is designed to generate fast and compact code for the
ARM7, ARM9 and Cortex-Mx processor architectures; while the Keil ANSI C
compilerstarget the 8051, C166, XE166, and X C2000 architectures. They can
generate object code that matches the efficiency and speed of assembly
programming. Using a high-level language like C/C++ offers many advantages
over assembly language programming:

= Knowledge of the processor instruction set is not required. Rudimentary
knowledge of the microcontroller architecture is desirable, but not necessary.

= Details, like register alocation, addressing of the various memory types, and
addressing data types, are managed by the compiler

= Programs receive aformal structure (imposed by the C/C++ programming
language) and can be split into distinct functions. This contributes to source
code reusability as well as a better application structure.

= Keywordsand operational functions that resemble the human thought
process may be used

= Software development time and debugging time are significantly reduced

= You can usethe standard routines from the run-time library such as
formatted output, numeric conversions, and floating-point arithmetic

= Through modular programming techniques, existing program components
can beintegrated easily into new programs

= The C/C++ language is portable (based on the ANS| standard), enjoys wide
and popular support, and is easily obtained for most systems. Existing
program code can be adapted quickly and as needed to other processors.

Object-HEX Converter

The abject-hex converter creates Intel HEX files from absolute object modules
that have been created by the linker. Intel HEX files are ASCII files containing a
hexadecimal representation of your application program. They are loaded easily
into a device program for writing to ROM, EPROM, FLASH, or other
programmable memory. Intel HEX files can be manipulated easily to include
checksum or CRC data.

Getting Started: Creating Applications with pVision 39

Linker/Locator

The linker/locator combines object modules into a single, executable program. It
resolves external and public references and assigns absol ute addresses to re-
locatable program segments. The linker includes the appropriate run-time library
modul es automatically and processes the object modules created by the Compiler
and Assembler. You can invoke the linker from the command line or from
within the puVision IDE. To accommodate most applications, the default linker
directives have been chosen carefully and need no additional options. However,
itis easy to specify additional custom settings for any application.

Library Manager

The library manager creates and maintains libraries of object modules (created by
the C/C++ Compiler and Assembler). Library files provide a convenient way to
combine and reference alarge number of modules that may be used by the linker.

Thelinker includes libraries to resolve external variables and functions used in
applications. Modules from libraries are extracted and added to programs only if
required. Modules, containing routines that are not invoked by your program
specifically, are not included in the final output. Object modules extracted by the
linker from alibrary are processed exactly like other object modul es.

There are a number of advantagesto using libraries: security, speed, and
minimized disk space are only afew. Libraries provide avehicle for distributing
large numbers of functions and routines without distributing the original source
code. For example, the ANSI C library is supplied as a set of library files.

You can build library files (instead of executable programs) using the pVision
Project Manager. To do so, check the Create Library check box in the
Optionsfor Target — Output diadog. Alternatively, you may invoke the
library manager from the Command Window.

40 Chapter 4. RTX RTOS Kernel

Chapter 4. RTX RTOS Kernel

This chapter discusses the benefits of using a Real-Time Operating System
(RTOS) and introduces the features available in Keil RTX Kernels. Note that the
Keil development tools are compatible with many third-party RTOS solutions.

Y ou are not bound to use Keil RTX; however, the RTX Kernels are well
integrated into the devel opment tools and are feature-rich, and well tailored
towards the requirements of deeply embedded systems.

Software Concepts

There are two basic design concepts for embedded applications:

= EndlessLoop Design: this design involves running the program as an
endlessloop. Program functions (tasks) are called from within the loop,
while interrupt service routines (ISRs) perform time-critical jobs including
some data processing.

= RTOSDesign: thisdesign involves running severa tasks with aReal-Time
Operating System (RTOS). The RTOS providesinter-task communication
and time management functions. A preemptive RTOS reduces the
complexity of interrupt functions, since time-critical data processingis
performed in high-priority tasks.

Endless Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typicaly triggered by
hardware interrupts, are executed in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-
critical, but which are executed in the background.

This software concept requires only one stack areaand is very well suited for
devices with limited memory. Architectures that provide several interrupt levels
allow complex low-level ISR functions. Time-critical jobs may execute in higher
interrupt levels.

Getting Started: Creating Applications with pVision 41

ISR

level 2

ISR

level 1

ISR
level 0 &

Main[| I .

» Time

8051, C166/XE166/XC2000, and ARM Cortex-Mx microcontrollers provide
several interrupt levels. Higher-level interrupts may halt lower-level interrupts,
or the main function.

It isimpossible to suspend the execution of an ISR except through higher priority
interrupts. Therefore, the timing of a system with many complex ISR levelsis
unpredictable, since high priority interrupts may take up most of the CPU time.

Another challenge is to determine the worst-case stack nesting. Applications
with complex ISR designs can have unnoticed stack resource issues, which may
cause sporadic execution faults. Note, that the ARM architecture provides an
extra stack for ISR that avoids stack memory surprises during the main loop
execution.

RTOS Design

The RTOS design, dueto its very nature, allows severa tasks to execute within
sequential time dlices. A preemptive RTOS provides task priority levels, in
which high priority tasksinterrupt the execution of low priority tasks. Most
RTOS systems offer inter-task communication and time delay functions
supporting the design of complex applications.

The ARM based architectures are designed for RTOS usage. An RTOS s amost
mandatory on ARM7, ARM9, and Cortex-Mx based systems that have several
interrupt sources. ARM devices provide a separate | SR stack, and hence, each
task needs no additional stack for ISR execution (as required on 8051 and
C166/X E166/X C2000 devices).

42

Chapter 4. RTX RTOS Kernel

ISR p
level 1 g

ISR

level O i
Tasks
Priority 2

Tasks

Priarity 1

i

Tasks [.

Priority O

» Time

A preemptive RTOS supports multiple task priorities. Tasks with the same
priority are executed in sequence; tasks with a higher priority suspend tasks with
alower priority. An ISR aways interrupts task execution and may exchange data
with other tasks.

The RTOS also solves many other challenges specific to embedded applications.
It hel ps you to maintain memory resources and data communication facilities,
and allows you to split acomplex application into simpler jobs.

Keil provides several different RTOS systems for the various microcontroller
architectures:

= RTX51Tiny and RTX166 Tiny (for 8051 and C166/X E166/XC2000) isa
non-preemptive RTOS and uses a specia stack swapping technique designed
for devices with limited RAM

= RTX (for ARM7/ARM9 and Cortex-Mx) and ART X166 (for
C166/X E166/XC2000) are preemptive RTOS kernels offering task priority
levels. These kernels support message passing with ISRs and implement
functions with thread-safe memory block allocation and deterministic
execution times. An ISR may collect data into message buffers and send
messages to a high priority task, which subsequently performs complex data
processing. The ISR remains short and simple.

Getting Started: Creating Applications with pVision

43

RTX Introduction

Many microcontroller applications require simultaneous execution of multiple
jobs or tasks. For such applications, an RTOS alows flexible scheduling of
system resources (CPU, memory, etc.) to several tasks.

With RTX, you write and compile programs using standard C. Only afew
deviations from standard C are required in order to specify thetask 1D and
priority. RTX-166 programs require the inclusion of the RTX166.H or
RTX166T.H header fileadso. RTX_CONFIG.Cisrequired on ARM devices.
By selecting the operating system through the dialog Optionsfor Target —
Target, the linker, L166, included in pVision, links the appropriate RTX-166
library file.

Single Task Program

A standard C program starts execution with the main function. In an embedded
application, the main function is usually coded as an endless |oop and can be
thought of asasingle task that is executed continuoudly. For example:

int counter;

main (void) {
counter = 0

while (1) { /] repeat forever
count er ++; /'l increnent counter

}
}

Round-Robin Task Switching

Round-Robin task switching allows a quasi-parallel, simultaneous execution of
several tasks. Eachtask is executed for a predefined period. A timeout suspends
the execution of atask and causes another task to be started. The following
example uses this round-robin task switching technique.

Program execution starts with job0, as an RTOS task function. The RTX
function os tsk create marks jobl asready for execution. Thetask functions
job0 and jobl are simple counting loops. After itstime slot has been consumed,
RTX suspends the execution of jobO and begins execution of jobl. Assoon as
itstime slot is consumed, the system continues with jobO.

Chapter 4. RTX RTOS Kernel

Simple RTX Program using Round-Robin Task Switching

int counterO
int counterl

__task! void job0 (void) {

os_tsk_create (jobl, 1); /] start job 1
while (1) { /1 endl ess | oop
count er 0++; /1 Increment counter O
}
}
__task void jobl (void) {
while (1) { /1 Endl ess | oop
count er 1++; /'l Increnent counter 1
}
}
main (void) { /1 the nmain function
os_sys_init (job0); /] starts only job O
}

The Wait Functions

The RTX kernels provide wait? functions that suspend the execution of the
current task function and wait for the specified event. During that time, a task
waits for an event, while the CPU can execute other task functions.

Wait for Time Delay

RTX uses a hardware timer of the microcontroller device to generate periodic
interrupts (timer ticks). The simplest event is atime delay through which the
currently executing task is interrupted for a specified number of timer ticks.

Thisfollowing program is similar to the previous example with the exception that
job0 issuspended with os dly wait after counterO has been incremented.

RTX waitsthree timer ticks until jobO isready for execution again. During this
time, jobl isexecuted. Thisfunction also calls os dly wait with 5tickstime
delay. Theresult: counterO isincremented every threeticksand counterl is
incremented every five timer ticks.

! For non-ARM devicesthe syntaxis: void jobO (void) _task {...}.
2Within RTX Tiny time delays are created with the function os_wait (K_TMO, ...).

Getting Started: Creating Applications with pVision

45

Program with Wait for Time Delay

int counterO;
int counterl;

__task void jobO (void) {

os_tsk_create (jobl, 1); /] start job 1
while (1) {
count er O++; /1 I ncrenment counter O
os_dly wait (3); /1 Wit 3 tiner ticks
}
}
__task void jobl (void) {
while (1) {
count er 1++; /1 Increment counter 1
os_dly wait (5); /1 Wit 5 tiner ticks
}
}

Wait for Event Flags

Event flags are used for task coordination, that is, atask waiting for another task
toraise an event flag. If an event flag was set previoudy, the task continuesits
execution.

Program with Wait for Event Flag
(jobl waitsfor jobO and counts overflow of i0)

long i0, save_iO, il1;
OS_TID idi; /] task ID for event transmits

__task void jobO (void) {

idl = os_tsk_create (jobl, 1); /] start job 1
while (1) {
i 0++;
if (i0 > 1000000) { /1 when i1 reaches 1000000
i0 = 0; Il clear il
os_evt_set (1, idl); /] set event '1' on jobl
}
}
}
__task void jobl (void) {
while (1) {
os_evt_wait_or (1, Oxffff); /'l wait for event '1'
save_i0 =i0; /Il save value of i0
i1; /! count events in il
}

}

46

Chapter 4. RTX RTOS Kernel

Preemptive Task Switching

Tasks with the same priority* (example above) need a round-robin timeout or an
explicit call toaRTX wait function to execute other tasks. Therefore, in the
example above, the value of save i0 isnot zero, as you might have expected. If
jobl hasahigher task priority than jobO, execution of jobl startsinstantly and
the value of save i0 will be zero. jobl preempts execution of jobO (thisisa
very fast task switch requiring afew ms only).

Start jobl with Higher Task Priority

__task void job0 (void) f{
idl = os_tsk_create (jobl, 2); /] start job 1 with priority 2

L RTX Tiny does not offer task priorities. Instead, RTX Tiny has one event flag per task, called
signal, and uses the function os_wait (K_SIG, ...) to wait for thissignal flag.

Getting Started: Creating Applications with pVision

a7

Mailbox Communication

A mailbox isa FIFO (first in —first out) buffer for transferring messages between
task functions. Mailbox functions accept pointer values, typically referencing
memory buffers. However, by using appropriate type casts, you may pass any
integer 32-bit datatype.

Program with Mailbox Communication®

os_nbx_decl are(v_mail, 20); /] mailbox with 20 entries

__task void jobO (void) {

int i, res;
os_nbx_init (v_mail, sizeof (v_mail)); /] create mail box first
os_tsk_create (jobl, 2); /] before waiting tasks
for (i =0; i <30;) { /'l send 30 nmil
res = os_nbx_send (v_mail, (void *) i, 1000);
if (res == 05 R OK) i++; /'l check that nmail send OK
os_tsk_delete_self (); /! when done del ete own task
}
__task void jobl (void) {
int v, res;
while (1) {
res = os_nmbx_wait (v_mail, (void **) &, OXFFFF); // receive mail
if (res == 0 RX || s == G5 R MX { /'l check status
printf ("\nReceived v=% res=% ", v, res); /] use when correct
}
}

Thetask jobO usesamailbox to send informationto jobl. When jobl runs
with ahigher priority than jobO, the mail isinstantly delivered. The mailbox
buffers up to 20 messageswhen jobl runswith the same or lower priority than
jobO.

The os mbx_send and os_mbx_wait functions provide atimeout value that
allows function termination when no mail can be delivered within the timeout
period.

1 When creating high-priority tasks using a mailbox, initialize the mailbox before it might be used
by a high-priority task.

48

Chapter 4. RTX RTOS Kernel

Semaphores

Semaphores are utilized to synchronize tasks within an application. Although
they have asimple set of callsto the operating system, they are the classic
solution in preventing race conditions. However, they do not resolve resource
deadlocks. RTX ensures that atomic operations used with semaphores are not
interrupted.

Binary Semaphores

Synchronizing two tasks is the ssimplest use case of a semaphore:

0s_sem semh; /] declare the senmaphore

__task void jobO (void) {
os_sem.init(semd, 0);

while(1l) {
do_func_A();
os_sem send(sem) ; /'l free the senaphore
}
}

__task void jobl (void) {

while(1l) {
os_sem wai t (semA, OxFFFF); [/l wait for the semaphore
do_func_B();
}
}

In this case the semaphore is used to ensure the execution of do_func_A() prior
to executing do_func_B().

Getting Started: Creating Applications with pVision 49

Counting Semaphores (Multiplex)

Use amultiplex to limit the number of tasks that can access a critical section of
code. For example, aroutine to access memory resources and that supports a
limited number of callsonly.

os_sem npl xSeng; /] declare the senaphore

__task void jobO (void) {

os_sem.init (nplxSema, 5); /] init semaphore with 5 tokens
while(1l) {
os_semwai t (npl xSema) ; /] acquire a token
processBuffer();
os_sem send (npl xSema) ; /] free the token

}
}

In this example, we initialize the multiplex semaphore with five tokens. Before a
task can call processBuffer(), it must acquire a semaphore token. Once the
function has completed, it returns the token to the semaphore. If more than five
calls attempt to invoke processBuffer(), the sixth must wait until one of the five
running tasks returnsits token. Thus, the multiplex semaphore ensures that a
maximum of five calls can use processBuffer() simultaneously.

Interrupt Service Routines

Aninterrupt is an asynchronous signal from the hardware or software that forces
the microcontroller to save the execution state. Interruptstrigger a context
switch to an interrupt handler. Software interrupts are implemented as
instructions in the instruction set of the microcontroller and work similar to
hardware interrupts. Interrupts can be classified as a:

= Maskableinterrupt (IRQ) — a hardware interrupt that can be ignored by
setting a bit in a bit-mask

= Non-maskable interrupt (NMI) — a hardware interrupt that cannot be
configured and thus cannot be ignored

= Software interrupt — generated within a processor by executing an instruction

50

Chapter 4. RTX RTOS Kernel

RTX ensures that interrupts execute correctly and leaves the machinein awell-
defined state. Interrupt service routines, also known as interrupt handlers, are
used to service hardware devices and transitions between operation modes, such
as system calls, system timers, disk I/O, power signals, keystrokes, watchdogs;
other interrupts transfer data using UART or Ethernet.

Hints for working with interrupt functionsin RTX:

= Functions that begin with os_ can be called from atask but not from an
interrupt service routine

= Functionsthat begin withisr_ can be called from an IRQ interrupt service
routine but not from atask. Never use them from FIQ.

= Never enable any IRQ interrupt that callsisr_ functions before the kernel has
been started

= Avoid nesting IRQ functions on ARM7/ARMO9 targets
= Useshort IRQ functionsto send signals and messages to RTOS tasks

= Interrupt functions are added to applications the same way asin non-RTX
projects

= By default, interrupts are globally enabled at startup

Another important concept is the interrupt latency, which is defined as the period
between the generation and servicing of that interrupt. Thisis especially
important in systems that need to control machinery in real time, and therefore
require low interrupt latency. RTX ensures that a subroutine will finish its
execution in an agreed maximum length of time and that the interrupt latency
does not exceed a predefined maximum length of time.

The genera logic of an ISR looks like the following code example. The interrupt
function extO_int sendsan event to process task and exits. Thetask

process _task processesthe external interrupt event. In this example,

process _task issimple and only counts the number of interrupt events.

Getting Started: Creating Applications with pVision 51

#def i ne EVT_KEY 0x00001

OS_TI D pr_t ask;

i nt num.ints;

_irg void extO_int (void) { // external interrupt routine
i sr_evt_set (EVT_KEY, pr_task); /'l send event to ‘process_task’
acknYour | nterrupt (); /'l acknow edge interrupt;

}

__task void process_task (void) {
num.ints =0;

while(1l) {
os_evt_wait_or (EVT_KEY, OxFFFF);
num i nt s++;
}
}

__task wvoid init_task (void) {

enabl eYourInterrupt ();
pr_task = os_tsk_create (process_task, 100); /] create task with prio
os_tsk_delete_self ();

}

Press F1 to browse through the numerous examples and additional information in
the on-line help.

Memory and Memory Pools

The compilers delivered with the Keil development tools provide accessto all
memory areas, regardless of the microcontroller architecture. Variables can be
explicitly assigned to a specific memory space by including a memory typein the
declaration, or implicitly assigned based on the memory model. Function
arguments and atomic variables that cannot be located in registers are a so stored
in the default memory area. Accessing the internal data memory is considerably
faster than accessing the external data memory. If possible, place often-used
variables into the internal memory space and less-used variablesinto the external
memory space.

RTX provides thread-safe and fully reentrant* allocation functions for fixed sized
memory pools. These functions have a deterministic executiontime that is

! variable length memory allocation functions are not reentrant! Disable/enable system timer
interrupts using tsk_lock() and tsk_unlock() during the execution of malloc() and free().

52

Chapter 4. RTX RTOS Kernel

independent of the pool usage. Built-in memory allocation routines enable you
to dynamically use the system memory by creating memory pools and use fixed
sized blocks from the memory pool. The memory pool needs to be properly
initialized to the size of the object.

#i ncl ude <rtl.h>
os_nbx_decl are (MsgBox, 16); /] declare an RTX nui | box

U32 npool [16*(2 * sizeof (U32)) /4 + 3]; // menory for 16 nmessages

__task void rec_task (void); /] task to receive a nessage
__task void send_task (void) { /] Task to send a nessage

U32 *nptr;

os_tsk_create (rec_task, 0);

os_nbx_init (MsgBox, sizeof (MsgBox)); /1 init nailbox

mptr = _alloc_box (npool); // alloc. nenory for the nessage

mptr[0] = 0x3215f edc; /] set message content

nptr[1] = 0x00000015;

os_nbx_send (MsgBox, nptr, Oxffff); /1 Send the nessage to ' MsgBox'

os_tsk_delete_self ();

}

__task void rec_task (void) {
U32 *rptr, rec_val[2];

os_mbx_wait (MsgBox, & ptr, Oxffff); /1 Wit for nessage
rec_val[0] = rptr[0]; /] Store content to 'rec_val’
rec_val[1] = rptr[1];

_free_box (npool, rptr); /'l Rel ease the nenory bl ock

os_tsk_delete_self ();

}
void main (void) {

_init_box (npool, sizeof (npool), sizeof (U32));
os_sys_init (send_task);

}

To send amessage object of avariable size and use the variable size memory
block, you must use the memory allocation functions, which can be found in
stdlib.h.

Getting Started: Creating Applications with pVision

53

RTX and ARTX166 Function Overview

Function Group
Task Management

Event/Signal Functions

Semaphore Functions

Mailbox Functions

Memory Management

Mutex Management

System Clock (Timer-
Ticks)

RTX

create-task, delete-task, pass-
task, change-priority, running-
task-id, running-task-priority,
lock-task, unlock-task, system-
init, system-priority

clear-event, get-event, set-event,
wait-event, isr-set-event

initialize -semaphore, send-
semaphore, wait-semaphore,
isr-send-semaphore

check-mbx, declare-mbx,
initialize -mbx, send-mbx, wait-
mbx,

isr-receive-mbx, isr-send-mbx,
imrvr AlhAnls miba

e
create-pool, check-pool, get-
block, free-block

initialize-mutex, release-mutex,
wait-mutex

delay-task, wake-up-task, set-
slice, create-timer, kill-timer, call-

ARTX166

create-task, delete-task, pass-
task, change-priority, running-
task-id, running-task-priority,
lock-task, unlock-task, system-
init, define-task

clear-event, get-event, set-event,
wait-event, isr-set-event

initialize -semaphore, send-
semaphore, wait-semaphore,
isr-send-semaphore

check-mbx, declare-mbx,
initialize -mbx, send-mbx, wait-
mbyx,

isr-receive-mbyx, isr-send-mbx,

initialize-mutex, release-mutex,
wait-mutex

delay-task, wake-up-task, set-
slice, create-timer, kill-timer, call-

timer timer
Generic WAIT Function interval-wait interval-wait
RTX and ARTX166 Technical Data
Technical Data RTX ARTX166
max Tasks 250 250
Events/Signals 16 per task 16 per task
Semaphores, Mailboxes, unlimited unlimited
Mutexes
min RAM 2 — 3 KBytes 500 Bytes
ARM7/ARM9 Cortex-Mx
max Code Space 4.2 KBytes 4.0 KBytes 4.0 KBytes
Hardware Needs 1 on-chip timer SysTick timer 1 on-chip timer
Task Priorities 1-254 1-254 1-127
Context Switch <7usec @ 60 MHz <4pusec @ 72 MHz <15 psec @ 20 MHz
Interrupt Lockout 3.1 ysec @ 60 MHz not disabled by RTX 0.2 psec @ 20 MHz

54 Chapter 4. RTX RTOS Kernel

RTX51 Tiny and RTX166 Tiny Function Overview

Function Group RTX51 Tiny RTX166 Tiny
Task Management create-task, delete-task, create-task, delete-task,
running-task-id, running-task-id,
switch-task, set-ready, delay-task
isr-set-ready
Signal Functions send-signal, clear-signal, isr- send-signal, clear-signal, isr-
send-signal send-signal,
wait-signal
System Clock (Timer-Ticks) reset-interval delay-task
Generic WAIT Function wait wait

RTX51 Tiny and RTX166 Tiny Technical Data

Technical Data RTX51 Tiny RTX166 Tiny
max Tasks 16 32

Signals 16 32 max

RAM 7 + 3 Bytes/Task 8 + 4 Bytes/Task
max Code Space 900 Bytes 1.5 KBytes
Hardware Needs No Timer 1 on-chip Timer
Context Switch 100-700 Cycles 400 — 4000 Cycles
Interrupt Lockout < 20 Cycles <4 psec, 0 ws.

Getting Started: Creating Applications with pVision

Chapter 5. Using pVision

ThepVision IDE is, for most developers, the easiest way to create embedded
system programs. This chapter describes commonly used pVision features and
explains how to use them.

General Remarks and Concepts

Before we start to describe how to use pVision, some general remarks, common
to many screens' and to the behavior of the development tool, are presented. In
our continuous effort to deliver best-in-class devel opment tools, supporting you
in your daily work, pVision has been built to resemble the look-and-feel of
widespread applications. This approach decreases your learning curve, such that
you may start to work with pVision right away.

Based on the concept of windows:
= pVision windows can be re-arranged, tiled, and attached to other screen areas
or windows respectively

= |tispossibleto drag and drop windows, objects, and variables

= A Context Menu, invoked through the right mouse button, is provided for
most objects

= You can use keyboard shortcuts and define your own shortcuts
= You can use the abundant features of a modern editor

= Menuitemsand Toolbar buttons are grayed out when not available in the
current context

= Graphical symbols are used to resemble options, to mark unsaved changes, or
reveal objects not included into the project

= Status Bars display context-driven information

= You can associate pVision to third-party tools

The screenshots presented in the next chapters have been taken from different example programs
and several microcontroller architectures to resemble the main feature, sometimes the special
feature, of that topic. The same window, dialog, or tab category will ook dightly different for
other microcontroller architectures.

56 Chapter 5. Using pVision

A Toclbars

+ Project Name . Menu bar |
Meas@be - piVision e _
File Edid View Project Flash Debug Peripherals Tools SVCS Emduw Heip
IOl B G 0 e P SR | @ adcln] -2l (@ o [
=R e ¢ OREElA D E. .08 % A
| i -- Breakpoint il
E s e LET o ol ies Symbots % -
=7 0x000007E4 E3R06000 MOV RE,: S
0000007 ot fila: oxon Mk I e Sarabien
= 128:. & 2 300000 | | Mam Adddre T -
23352 TR Canctants oy St OptIOI"IS changed a0, b e 1 il | ype l_ -
Next statement 0000008 TT—ETRUTEIT— T RO.I| e -
sy - Application
and Breakpoint & J«L - '
i 5 | g Medude — =
2 Blinky | BD0000IAD Function
-1z Simulator else | 5 Mode ﬁ
Bookmark 124 if (interval.mses—- == 0) Modus
ookmar 125 4995004 interval.mses = 2887 AO0000AA sy 1000] of ..
=Ty if (fnce S =i
] STM32FL i T e e 040000034 struct e
.63 Retarget | (127 e .| IX4000T0 amy{1E]of uchar
. T — e o y fJ
| B, [(rou[Ere e] [[| o
/% Analog0({) simunlates analog input values given to chi =] ~
e e e e L R e A P Address: [0 nstruction [E
Signal void analogld (float limit) 53,00.500003: LDAH R
floar volcs: |0x0000000F 733 |E2800001 | ADD RORDZG:00(
Illoxooooooie: | 65532 | (x0DODOTAC |E3CO0B01 | BIC RO.RD.HDMIODT
{"Analogd {%f} encered.\n", limic); l0m0000002D: 65533 | [xDOO00740 | ESSF1430 LDR R1JPC.H04
j* fozeves </ - |loxoooconsc FERM | (hNONI7SZ | FICTOORE | STAM ANJRI A0
” = loxooooor 65535 | Ox0DODO748 | ESOOFFA | CMP AO.SM00000: 1
loxoooooosa: | 65536 | (xDDGDO7AC | TADDOOIC | BNE OxDOODOTCH
> - ||oxooooo06e:
ASSIGH BreakDisable BreakEnable Brgakiill BreakList 10200000078 00 00 40 E2 DT FO 21 ES 0O DO A0 EL 00 00 40 =
| Buite Butput | 57 command | Gleinain Fies | % |Eican suack [JRiacais [[@waten 1 | Tmemony1 |
Real-Time Agent: Target Stopped . Simulation t: 167045508 sec L1
- Command Ling | Commands available | "~ Status bar |

W To launch pVision click the pVision icon on your desktop or select
= pVision from the Start Menu.

Window Layout Concepts

Y ou can set up your working environment® in uVision at your discretion.
Nevertheless, let us define three major screen areas. The definition will help you
to understand future comments, illustrations, and instructions.

! Any window can be moved to any other part of the uVision screen, or even outside of pVision to
any other physical screen, with the exception of the objects related to the Text Editor.

Getting Started: Creating Applications with pVision

57

Project Windows Editor Windows
([Binky - p¥ision | . =]
File Edit View P&n]er.l Flash Debug Peripherals Tools SCCS Window Help
GAd s F [_las@ Y Vi-EEY
2 EO hiteu ¢+ DBEE 36 2l
e
WorkSpace T =
= delay (ox02000890)
= 524 Simulator oaier et
= 25 Startup Cede gL Ve
[#) STM32F10xs
= 3 Instialisation 4] LCD _4bite v x
[%] STMEZ Init.c YT E_i-‘_’éj.u“ k e
= 5 Configuration 148 nnsigned char stacus: =)
[#] RTX_Configc _ 149 = |
Ltidgaa : 150 do |
— .. T 19028 sctatus = lcd read stactus(); ol |
i project [B Register o
* | Sisck Frames | Vakse/Address L'_
¥ % delsy)
+ ® lcd_read_status()
O
2 |

TP TR [T [P '.l

t1: 1820061347 se0 ||

‘ Output Windows ‘

The Project Windows areaisthat part of the screen in which, by default, the
Project Window, Functions Window, Books Window, and Registers Window are

displayed.

Within the Editor Windows area, you are able to change the source code, view
performance and analysis information, and check the disassembly code.

The Output Windows area provides information related to debugging, memory,
symbols, call stack, local variables, commands, browse information, and find in
filesresults.

If, for any reason, you do not see a particular window and have tried
displaying/hiding it several times, please invoke the default layout of pVision
through the Window — Reset Current Layout Menu.

58

Chapter 5. Using pVision

Positioning Windows

The pVision windows may be placed onto any area of the screen, even outside of
the uVision frame, or to another physical screen.

= Click and hold the Title Bar* of awindow with the left mouse button

= Drag the window to the preferred area, or onto the preferred control, and
release the mouse button

Please note, source code files cannot be moved outside of the Editor Windows.

Invoke the Context Menu of thewindow’s Title Bar to change the docking
attribute of awindow object. In some cases, you must perform this action before
you can drag and drop the window.

uVision displays docking helper controls’, emphasizing the area where the
window will be attached. The new docking areais represented by the section
highlighted in blue. Snap the window to the Multiple Document Interface (MDI)
or to a Windows area by moving the mouse over the preferred control.

New location of moving window Snap to Windows area
(highlighted area) T

TPagefohject name Snap to M

1 You may click the page/object name to drag and drop the object.
2 Source code files stay in the Text Editor’ s window.

3 Controlsindicate the area of the new window position. The new position is highlighted.

Getting Started: Creating Applications with pVision 59

pVision Modes

pVision operates in two modes: Build M ode and Debug Mode. Screen settings,
Toolbar settings, and project options are stored in the context of the mode. The
File Toolbar isenabled in all modes, while the Debug Toolbar and Build
Toolbar display intheir respective mode only. Buttons, icons, and menus are
enabled if relevant for a specific mode.

The standard working mode is Build M ode. In this mode you write your
application, configure the project, set preferences, select the target hardware and
the device; you will compile, link, and assemble the programs, correct the errors,
and set general settings valid for the entire application.

In Debug M ode, you can aso change some general options and edit source code
files, but these changes will only be effective after you have switched back to
Build Mode, and rebuild your application. Changes to debug settings are
effectiveimmediately.

Menus

The Menu bar provides access to most p1Vision commands including file
operations, editor operations, project maintenance, devel opment tool settings,
program debugging, window selection and manipulation, and on-line help.

File Menu

The File Menu includes commands that open, save, print, and close source files.
The Device Database and License Manager dialogs are accessed from this
menu.

Edit Menu

The Edit Menu includes commands for editing the source code; undo, redo, cut,
copy, paste, and indentation, bookmark functions, various find and replace
commands, source outlining functions, and advanced editor functions. Editor
configuration settings are also accessed from this menu.

60

Chapter 5. Using pVision

View Menu

The View Menu includes commands to
display/hide avariety of windows. You can
also enable/disable the StatusBar. The
Periodic Window Update option is useful
in Debug M ode to force the screens to
periodically refresh. If thisoption has not
been selected, you can manually update the
screens viathe Toolbox.

Project Menu

The Project Menu includes commands to
open, save, and close project files. You can
Export your project to a previous version of
pVision, M anage project components, or
Build the project. In addition, you can set
Optionsfor the project, group, and file. You
can manage multiple projects through the
Multi-Project Workspace... Menu.

Flash Menu

The Flash Menu includes commands you
can use to configure, erase, and program
Flash memory for your embedded target
system.

I=
=

W

]

1

2 gl B O &l M EE]S

#
i

Status Bar

Toolbars

Project Window

Books Window
Functions Window
Templates Window
Source Browser Window
Build Qutput Window
Find In Files Window

Command Window
Disassembly Window
Symbaol Window
Reqgisters

Call 5tack

Watch

Memory

Serial

Analysis

Trace

System Viewer

Toolbox
Full 5creen

Periodic Window Update

Getting Started: Creating Applications with pVision

Debug Menu

The Debug Menu includes commands that Debug

start and stop a debug session, reset the CPU, Start/Stop Debug Session Ctrl+F5
run and halt the program, and single-step in
high-level and assembly code. In addition,

2% Reset CPU

commands are available to manage S F
breakpoints, view RTOS Kernel information, '{' Zul
and invoke execution profiling. Y ou can | Fit
1 T}l Step Over F10
modify the memory map and manage -
debugger functions and settings. gy =it curl-Fi1
4} Runto Cursor Line Ctrl=F10
5 Show Mext Statement
TOOIS Menu Ereakpoints... Ctri=B
@ Insert/Remove Breakpoint Fa
Configure and run PC-Lint or set up your) Enable/Disable Breakpoint Ctrl=F9
own tool shortcutsto third party utilities. (3 Disable All Ereakpoints
@ Eill A1l Breakpoints Ctrl=5hift=F9
SVCS Menu 05 Support v
Execution Profiling 3
The SVCS Menu allows you to configure Memory Map..
and integrate your project development with Inline Assembly...
third-party version control systems. Function Editor (Open Ini File)...
Debug Settings...
Help Menu
The Help Menu includes commandsto start | Heip |
the on-line help system, to list information @ uvision Help
about on-chip peripherals, to accessthe € Open Books Window

knowledgebase, to contact the Technical
Support team, to check for product updates,
and to display product version information.

Simulated Peripherals for 'LPC2129°
Internet Support Knowledgebase
Contact Support
Check for Update

About pVision..,

62

Chapter 5. Using pVision

Peripherals Menu

The Peripherals Menu includes dial ogs to Peripherals
display and change on-chip peripheral settings. System Control Block v
The content of this menu istailored to show the Vectored Interrupt Controller

specific microcontroller options selected for your
application. Dialogs are typically available for

Pin Connect Block

System Configuration, Interrupts, UARTS, 12C, if; :
Timer/Counters, General Purpose I/O, CAN, -

Pulse-Width Modulators, Real-Time Clocks, SN

and Watchdog Timers. Thismenu isactivein SPlInterface »
Debug Mode only. Timer v

Pulse Width Modulator

A/D Converter

CAN 4
Real Time Clock

Watchdog Timer

Window Menu

The Window Menu includes Window

commands to split, select, and :l_. Debug Restare v

close various windows in the =g LeDUQ RESTOTE VIEWs...

Text Editor. Beset View to Defaults

In addition, you can define your 2plit

own screen |layouts through the Close All

Debug Restore Views... dialog,

and switch back and forth ChkeibARMAExamplesi\Blinky\Abstract bt
between the screen layouts you C:\Keil\ARM"Examples'Blinky\Blinky.c
defined.

Restore the default layout through Reset View to Defaults at any time.
Currently open source code windows are listed at the bottom of the Window
Menu.

Getting Started: Creating Applications with pVision 63

Toolbars and Toolbar Icons

The pVision IDE incorporates several Toolbars with buttons for the most
commonly used commands.

= TheFile Toolbar contains buttons for commands used to edit sourcefiles, to
configure pVision, and to set the project specific options

= TheBuild Toolbar contains buttons for commands used to build the project

= The Debug Toolbar contains buttons for commands used in the debugger

TheFile Toolbar isaways available, while the Build Toolbar and Debug

Toolbar will display in their context. In both modes, Build M ode and Debug
M ode, you have the option to display or hide the applicable Toolbars.

File Toolbar
ISH@ %an 9 PRBB =EER L
| @ ADC cRe R e [E] A

New File — opens an empty text window

Open File—diaog to open an existing file

Save File — saves the contents of the current file
Save All — saves changesin all open files

Cut — deletes the selected text and copiesit to the clipboard

o= W K

Copy — copies the currently selected text to the clipboard
Paste — inserts text from the clipboard to the current cursor position

Undo changes — removes prior changes in an edit window

?7 5 [

Redo changes — restores the last change that was undone

1_\

Navigate Backwards — moves cursor to its former backward position

64

Chapter 5. Using pVision

&

EI-ID‘

$ O 0 ¢ B %

F B

Navigate Forwards — moves cursor to its former forward position
Bookmark — sets or removes a bookmark at cursor position

Previous Bookmark — moves the cursor to the bookmark previous to the
current cursor position

Next Bookmark — moves cursor to the bookmark ahead of the current
cursor position

Clear All Bookmarks — removes bookmarks in the current document
Indent — moves the lines of the highlighted text one tab stop to the right
Unindent —moves all highlighted text lines one tab stop to the left

Set Comment — converts the selected code/text to comment lines
Remove Comment — converts the selected text lines back to code lines

Find in Files—searches for text in files; results shown in an extra
window

Find — searches for specified text in current document

Incremental Find —finds expression as you type

Debug Session — starts/stops debugging

Breakpoint — sets or removes a breakpoint at cursor position

Disable Breakpoint — disables the breakpoint at cursor position

Disable All Breakpoints —disables all breakpointsin all documents
Kill All Breakpoints—removes all breakpoints from all documents
Project Window — dropdown to enable/disable project related windows

Configure — dialog to configure your editor, shortcuts, keywords, ...

Getting Started: Creating Applications with pVision 65

Build Toolbar
WA Whad %3 | Simulator A

2 Trandate/Compile — compiles or assemblesthe file in the current edit
window

%] Build —builds and links those files of the project that have changed or
whose dependencies have changed

¥4 Rebuild —re-compiles, re-assembles, and re-links all files of the project

#& Batch Build — re-builds the application based on batch instructions. This
feature is active in a Multi-Project environment only.

Stop Build — halts the build process

%3 Download — downloads your application to the target system flash

-l Target — drop-down box to select your target system (in the Toolbar
example above: Simulator)

A% Target Options —dialog to define tool and target settings. Set device,
target, compiler, linker, assembler, and debug options here. Y ou can aso
configure your flash device from here.

e File Extensions, Environments, and Books — dialog to configure targets,
groups, default folders, file extensions, and additional books

B Manage Multi-Project Workspace — dialog to add or remove individual

projects or programs to or from your multi-project container

66

Chapter 5. Using pVision

Debug Toolbar

Od=
RET

B

© M

g B o £ B

B reul v DREEGE- 2 2-.-m- 0 % &

Reset — Resets the microcontroller CPU or ssimulator while debugging
Run — continues target program execution to next breakpoint

Stop — halts target program execution

Step One Line — steps to the next instruction or into procedure calls
Step Over — steps over asingle instruction and over procedure calls
Step Out — steps out of the current procedure

Run to Line —runsthe program until the current cursor line

Show Current Statement — Shows next statement to be executed
Command Window — displays/hides the Command Window
Disassembly Window — displays/hides the Disassembly Window
Symbol Window — displays/hides Symbols, Variables, Ports, ...
Register Window — displays/hides Registers

Call Stack Window — displays/hides the Call Stack tree

Watch Window — drop-down to display/hide Locals and Watch Windows
Memory Window — drop-down to display/hide Memory Windows

Serial Window — drop-down to display/hide UART-peripheral windows
and the Debug printf() View

Logic Analyzer —displays variable values graphically; Also used asa
drop-down to display/hide the Performance Analyzer and Code Coverage
Window.

Getting Started: Creating Applications with pVision

67

Performance Analyzer —displays, in graphical form, the time consumed
by modules and functions as well as the number of function calls

Code Coverage — dialog to view code execution statistics in a different
way than with the Performance Analyzer

System Viewer — view the values of your Peripheral Registers
Instruction Trace — displays/hides the Instruction Trace Window

Toolbox — shows/hides the Toolbox dialog. Depending on your target
system, various options are available.

Debug Restore Views — drop-down to select the preferred window layout
while debugging

Additional Icons

=
{1

0,
7

)

Print — opens the printer dialog

Books — opens the Books Window in the Project Workspace
Functions — opens the Functions Window in the Project Workspace
Templates — opens the Templates Window in the Project Workspace
Source Browser — opens the Source Browser Window in the Output
Workspace. Usethisfeature to find definitions or occurrences of
variables, functions, modules, and macros in your code.

uVision Help — opens the uVision Help Browser

File— Source file; you can modify these files; default options are used

File— Source file; you can modify these files; file options have been
changed and are different from the default options

File or Module — header files; normally, included automatically into the
project; options cannot be set for these file types

68

Chapter 5. Using pVision

Folder or Group — expanded — icon identifying an expanded folder or
group; options correspond to the default settings

Folder or group — expanded —icon identifying an expanded folder or
group; with changed options that are different from the default settings

Folder or group — collapsed — with options corresponding to default
settings

Folder or group — collapsed — with options changed and different form
default settings

Lock — freezes the content of awindow; prevents that window from
refreshing periodically; Y ou cannot manually change the content of that
window.

Unlock — unfreezes the content of awindow; allows that window to
refresh periodically. You can manually change the content of that
window.

Insert — creates or adds an item or object to alist

Delete - removes an item or object from alist

Move Up - moves an item or object higher up in the list

Move Down - moves an item or object down in the list
Peripheral SFR (Peripheral Registers, Special Function Register)
Simulator VTREG (Virtual Register)

Application, Container

Variable

Parameter

Function

Getting Started: Creating Applications with pVision

69

Project Windows

Proj ect Windows display information about the
current project. The tabs at the bottom of this area
provide accessto:

Project structure and management. Group your
files to enhance the project overview.

Functions of the project. Quickly find and
navigate between functions of the source code.

Microcontroller Registers. Only available while
debugging.

Templates for often-used text blocks. Double
click the definitionsto insert the predefined text
at cursor position.

Books specific to the pVision IDE, the project,

=853 LPC2129 Simulator
E-£5 Startup Code

Startup.s

E{ﬁ Systern Calls

- [#] Retarget.c

i -- stdio.h
rt_misc.h

- [#] Serial.c

‘... [] Ipe2Lioch

45 Source Code
[(] Getline.c
(- [#] Mcommand.c

- |#] Measure.c
-5 Documentation

]EIP..| {} F..|§R..|[].,T.. |@5..|

and sometimes to the microcontroller used. Configure and add your own

books to any section.

Chapter 5. Using pVision

The Functions Window Functions x | Functions x
displays al functions of & [u] Getline.c e it pm_code]
. ‘.. @ getline (char*ling,int n) T ;
your project or of open o O Weommande " i W
editor files. - fonor HLEL
- 2] Retarget.c fiputte [int ch, FILE* f)
; ; & spseitlntretum code) || SRR L
Double-click afunction to & _ttywrch (int ch) e o)
jump tO. its definition. e : ::::: ((i:IIt_EhTJFILE*fJ m:?s[;\;gl__c]ﬁsplay [struict mrec: display)
Invokeits Con_text M enu & D) Serialc Lbase E;]o.d]
to toggle the displaying - & getkey (void) S lveid] _
mode of this window or S] | SotoFunction
scan thef”es 3 Scan Project Files
z Scan Current Editor Files
tsc: Display Modules
| Pr-:uj...|@8-:u-3ks| {}Fun.. | [].,Ten1...| | Bl Pro... |@Ba... | {}Fu.. |[].,Te... |
The Templates Window provides user-defined text Templates x
blocks, which can be defined through the fiefine
) ; . .
Configuration — Templates dialog. g';ncti;ug
[x]
. . .-y . Enum
Double-click a definition or invoke the Context -
Menu to insert often-needed constructs into your code funclion
. H
flles. :felse
. . itch Insert T lat
Alternatively, you can typethefirst few lettersof the Voo
template name followed by Ctri+Space to insert the i\ Configure Templates..
text. i
EPr-J...|@B-:... | {}Fu.. |[]..Te... |7

Getting Started: Creating Applications with pVision

71

Editor Windows

The Editor Windows are used to:

= \Write, edit, and debug source files.
PressF1 on language elements for help.

= Set breakpoints and bookmarks

= Set project options and initialize target
systems by using powerful
configuration wizards

= View disassembly code and trace
instructions while debugging

Typically, this area contains the Text
Editor with source code files, the

Measure.c [[] LpcavecH [[] 1PCoboH. [[2) measuren [[¥] Mcomme
ZI2] sernn
213 char cmdbuf [1000]; /* comn
214
215 -

23216/-]int main (void) {
27| int is
218 | int idx;
219
220 PINSELI = 0x15400000%
3271 | IODIRL = DxFFO0DOD:

222 ADCR = 0x002E0401;

223

224 | init_serial ();

276 | ChangeSFRO():

226

27| /* setwp nterrupt */
228 | TOMRD = 1

229 TOMCR = 3;

[|

[Startup.s | 5] Measuresco] L JLPC2mcr | |- LPczbmiti. | s
Epand Al | Colapse & | Hip |
[Option Value

[Stack Configuration (Stack Sizes in Bytes)
(=1 Heap Configuration

=
Disassembly Window, Performance i i
Analyzer, and Logical Analyzer.

§ TextEditor), Configuration Wizard
Editor Configuration
Configure Editor settings, | fowsten : — =
COIOI’S an d fontS, user EdT:; ::ICn.:-nrs&Fnr'ﬂs‘ User Keywords | Shortcut Keys Templates. | Other |
defined keywords, shortcut | ey smmms e =
keys, and templates
through the Configuration EierTea Fea
dialog.
You can invoke this dialog ;ﬂ'
VI a the ConteXt M erlu Of // TODQ: enter the block content here
the Template Window, puble
the Edit — Configuration
Menu, or

Cancel Help

=, through the File Toolbar command.

Chapter 5. Using pVision

Using the Editor

Y ou can view text NANG [CANC |-l ABSIRACEIG v %
filesin the Editor OIfJ#ifdef Taz | Cose %
. . 002 #define Close All But This
sideby side. Invoke | aerine| (e
the Context Menu O | tdefine| | oo
. #define
of the file tab and W7 | sencee
ChOOSG a hOFI ZOI’]ta| EBS #include ™ E MNew Horizontal Tab Group
or vertical i SO v I S S
M2 // 2 total of 31 such Ject structures exists
arrangement. -
M4 | struct stCanCbj
. 05§ {
Files can be dragged 06 | wbyte wbDacalzl:
and dropped from Tl uiony wicamam:
oneTab Group into | | wiors wcowncers . -
the Othef, or can be ‘021 uword uwM3GCFG; V. figuration F i Llj
moved to the Next
Tab Group through
the Context Menu.
In addltlon' you can mac [[arstRactTer | v x| CAN.C v X
. . . Close = -
tl Ie afl Ie Vertlca] Iy EELE Close All But This gglahizzii:rggga ox100 :I
and horizontally. 03 Clozean B foerine T om0l
Complete your code 005 | CopyFullPath 05 #define IDO Ox101
. 006 . 108 $define ID1 0Ox100
|n any part Of the% 007 Open Containing Folder pa 007 | #endif
regmens ey | e
oio Move To Mext Tab Group i 010 -
0L /% Int Vector at 0080H, DD1E#fd 55 = J
H i = arge 1 e arge -
Double-click the e e carns @] aerine o oxioo E
tiling line to remove L. e R _faefine 0T 0x0d
thefragmentati on. 016 | #endif Tile the file horizontally or vertically | 2= igg 2}"2;
e — oo
Double-click afile's o /‘Z?ﬁifitieéio;p“ o W——
H gend = 1; il ma il
tab to close the file. : Sl o

Getting Started: Creating Applications with pVision

73

Output Windows

By default, the Output Windows' are displayed at the bottom of the pVision
screen and include:

The Build Output Window includes errors and warnings from the compiler,
assembler, and linker. Double-click a message to jump to the location of the
source code that triggered the message. Press F1 for on-line help.

The Command Window allows you to enter commands and review
debugger responses. Hints are provided on the Status Bar of that window.
Press F1 for on-line help.

TheFind in Files Window allows you to double-click aresult to locate the
source code that triggered the message

The Serial and UART windows display 1/0 information of your peripherals
The Call Stack Window enables you to follow the program call tree

The Locals Window displays information about local variables of the
current function

The Watch windows provide a convenient way to personalize a set of
variables you would like to trace. Objects, structures, unions, and arrays may
be monitored in detail.

The Symbols Window is ahandy option to locate object definitions. You
can drag and drop these items into other areas of pVision.

The Memory windows enable you to examine values in memory areas.
Define your preferred address to view data.

The Sour ce Browser Window offers afast way to find occurrences and
definitions of objects. Enter your search criteriato narrow the output.

! Since almost all objects can be moved to their own window frame, the terminology ‘ page’ and
‘window’ isinterchangeably used in this book.

74

Chapter 5. Using pVision

Other Windows and Dialogs

Peripheral Dialogs and Windows
Peripheral Dialogs and Windows allow you to review and modify the status of

on-chip peripherals. These diaogs are dependent on the target system you
selected at the beginning of your project and thus the options provided will vary.

On-line Help

pVision includes many pages of on-line manuals and context-sensitive help. The
main help system is available from the Help Menu.

%) ARM Development Toals = |]

Hide

- @ [

Back

Print

Options

We are constantly adding new devices and simulation support for on-chip peripherals so
be sure to check web-based Device Database™ if your plan to use a device that is
currently not listed in your local Vision installation.

Conterts | |ndex | Search | Favortes |

'@ @ RealView® Compiation Tools Introduction ~
= @ Getting Started User's Guide
= @ wVision® IDE User's Guide

This Getting Started User's Guide provides an overview of the Keil ARM toolchain and
contains the following chapters.

Q RealView Compiler User Guide

@ RealView Compiler Rsference Guids
@ RealView Librariss and Floating Poirt Suppe
0 RealView Assembler User Guide
@ ARM Instruction Set User's Guide
@ RealView Linker User Guide

® Q RealView Linker Reference Guide
& @ RealView Liiities Guide

@ RLARM Real Time Library User's Guide
@ NCB1700 User's Guide

= @ MCB2100 User's Guide

= @ MCB2103 User's Guide

= @ MCB2130 User's Guids

@ NCB2140 User's Guide

@ NCB2300 User's Guide

@ NCB2400 User's Guide

@ NICB2900 User's Guide

@ MCBSTM32 User's Guide

@ MCBSTMA3ZE User's Guide

= @ MCBSTRY User's Guide

= @ MCBSTR730 User's Guide

@ MCBSTR750 User's Guide

@ NCBSTRS User's Guide

@ MCBTMPM3220 User's Guide

= @ ULINK2 User's Guide

i

Introduction gives an overview of the development tools and discusses the folder
structure.

Development Tools describes the major features of the Keil ARM development
tools including the pVision IDE/Debugger. It explains how to select the Keil CARM
Compiler, GNU, or ADS/RealView toolchain,

Creating Applications describes how to create projects, edit source files, compile
and fix syntax errors, and generate executable code.

Testing Programs describes how you use the pVision debugger to simulate and
test your entire application.

Sample Programs provides several sample programs that show you how to use
Keil pvision/ARM and the related development tools.

Using On-chip Peripherals shows how to access the on-chip peripherals with the
development tools.

CPU Setup provides information about the CPU startup code and the tool
configuration.

JTAG Debugging discusses how to use the Keil ULINK USB-ITAG Adapter to debug
in your target system.

Flash Programming describes how to setup Keil ULINK for Flash programming via
the JTAG interface.

RDI Interface Driver explains the usage of RDI compliant Debugaing Solutions.

]

1,

] Revision History

Context sensitive on-line help is available in most dialogs in pVision.
Additionally, you can pressF1 in the Editor Windows for help on language
elements like compiler directives and library routines. Use F1 in the Output
Window for help on debug commands, error messages, and warnings.

Getting Started: Creating Applications with pVision 75

Chapter 6. Creating Embedded Programs

pVision is aWindows application that encapsul ates the Keil microcontroller
development tools aswell as several third-party utilities. pVision provides
everything you need to start creating embedded programs quickly.

pVision includes an advanced editor, project manager, and make utility, which
work together to ease your devel opment efforts, decreases the learning curve, and
helps you to get started with creating embedded applications quickly.

There are severa tasksinvolved in creating a new embedded project:

= Creating aProject File

= Using the Project Windows

= Creating Source Files

= Adding Source Filesto the Project

= Using Targets, Groups, and Files

= Setting Target Options, Groups Options, and File Options
= Configuring the Startup Code

= Building the Project

= CreatingaHEX File

= Working with Multi-Projects

The section provides a step-by-step tutoria that shows you how to create an
embedded project using the pVision IDE.

Creating a Project File
Creating a new pVision project requires just three steps:

1. Select the Project Folder and Project Filename
2. Select the Target Microcontroller
3. Copy the Startup Code to the Project Folder

76

Chapter 6. Creating Embedded Programs

Selecting the Folder and Project Name

To create anew project file, select the Project — New Project... Menu. This
opens a standard dialog that prompts you for the new project file name. Itis
good practice to use a separate folder for each project. You may use the Create
New Folder button in this dialog to create a new empty folder.

Select the preferred folder and enter the file name for the new project. puVision

creates a new, empty project file with the specified name. The project contains a
default target and file group name, which you can view on the Proj ect Window.

Selecting the Target Microcontroller

After you ha\/e Select Device for Target 'LPC2129 Simulator'... ===
selected the folder and | <
decided upon afile Vendor: NXP founded by Philps)
H Device: LPC2129
name for the project, S
HVision asks you to
choose atar get £ LPC205 | [ARM7TOMI-S based high-pefommance 32t RISC Microcortrollerwith TF -
. . 1 LPC2105/01 %gi}éBﬂt’:ﬁ:h‘f gashdR‘rOﬂM ws‘h clnl-fys‘:am Frogramming (ISF) and In-Applic
. vectore Sl ontroller,
ml Crocontro' I a" Thl S L3 LPC2106 ITwo UARTs, |12C serial interface, 2 5P| serial interfaces
H H €3 LPC2106/01 \Two timers (7 capture/compare channels),
aep IS Very | mportarlt --£3 LPC2109 PVWM unit with up to 6 PWM outputs,
X L ! £ LPC210s/0 4-chamnels 10bi ADC, 2CAN chamnes. }
since pVision Qo e e
customizes the tool -3 Lpeatts
. . --£3 LPC2119/01
settings, peripherals, €1 Lz
h £3 LPC2124/01
and dialogs for that 0 [EEE L
particular device.
_—
The Select Device~

dialog box lists al the devices from the pVision Device Database.

Y ou may invoke this screen through the Project — Select Devicefor Target...
Menu in order to change target later.

! For some devices, 1Vision requires additional parameters you must enter manually. Please read
the device description in the Select Device dialog carefully, asit may contain extra instructions for
the device configuration.

2 |f you do not know the actual device you will finally use, uVision allows you to change the device
settings for a target after project creation.

Getting Started: Creating Applications with pVision

77

Copying the Startup Code

All embedded programs require some kind of microcontroller initialization or

startup code™? that is dependent of the tool chain and hardware you will use. It is

required to specify the starting configuration of your hardware.

All Keil tools include chip-specific wision
startup code for most of the devices
listed in the Device Database. Copy
the startup code to your project folder
and modify it there only. pVision

L s) Project?

% Copy Standard 8051 Startup Code ta Project Folder and Add File to

Ves No

automatically displays adialog to copy

the startup code into your project folder. Answer this question with YES.

pVision will copy the startup code to your project folder and adds the startup file

to the project.

The startup code files are delivered with embedded comments used by the
configuration wizard to provide you with a GUI interface for startup

configuration.

Using the Project Windows

Once you have created a project file successfully, the
Project Window shows the targets, groups, and files of
your project. By default, the target nameis set to Tar get
1, while the group’s name is Sour ce Group 1.

The file containing the startup code is added to the
source group. Any file, the startup file included, may be
moved to any other group you may define in future.

The Books Window, also part of the Project Windows,
provides the Keil product manuals, data sheets, and
programmer’ s guides for the selected microcontroller.
Double-click abook to open it.

= X
1423 Target1
=45 Seurce Group 1
o [#] STM32F10x.s

]EIProm @Ba... []¢Te... {} Fu...

Books X
= m WVision
@ uVision Release Notes
E{II Tools User's Guide
- Release Notes
O Cornplete User's Guide Sele
& RTL-ARM Release Notes
Q RV Compiler Introduction

3

< i
EPI'D‘.‘|@BO... |[]¢Te... | {} Fu... |

! The startup code' s default settings provide a good starting point for most single-chip

applications. However, changes to the startup code may be required.

2 Library and add-on projects need no startup code.

Chapter 6. Creating Embedded Programs

Right-click the Books Window to open its Context Open

Menu. Choose Manage Books..., to invoke the Bl Manage Books...
Components, o e e =
Environments and Project Components | Folders/Bxtensons Books |

Books' dialog to modify

the %ttings of the exiti ng f:::l 2;:; Nm X+ ';:l as::;»:ﬂ 13| % | # | ¥ | |Device Specic i1 | X |4 ¥
menuals or add your own

manuals to the list of

books.

Later, while developing

the program, you may use

the Functions Window [;ﬁjfm‘ lﬁfz::__i:’;___ f‘*a”" et =
and Templates Window (i

aswell.

Creating Source Files

Use the button on the File Toolbar or the select the File— New... Menu
to create anew sourcefile

This action opens an empty Editor Window to enter your source code. pVision
enables color syntax highlighting based on the file extension (after you have
saved thefile). To usethisfeature immediately, save the empty file with the
desired extension prior to starting coding.

Il Savethenew sourcefile using the button on the File Toolbar or use the
File— Save Menu

! Most microcontroller manuals are part of the toolset, or are available on the Keil Development
Tools CD-ROM.

Getting Started: Creating Applications with pVision

79

Adding Source Files to the Project

After you have created and saved SousceFilel.c. |], 0ut

your source file, add it to the project. | &3 Target1 |
Files existing in the project folder, =9
but not included in the current
project structure, will not be

compiled. opentizp e

%] Rebuild all target files
£

,;;\ Cptions for Group 'Source Group1'.., Alt+F7

DOpen File

Open List File

E4 Build target F7

Right-click afile group in the
Project Window and select Add
Filesto Group from the Context

Translate File

Stop build

Add Group..

Menu. Then, select the sourcefile | Add Files to Group ‘Source Group ..

or source f| I esto be ajded Remave Group ‘Source Group 1° and its Files
|i Manage Components...

A %If'eXpI anatory WI ndOW WI II Show Include File Dependencies

gmqle you'through the steps of @, G O] LLs

adding afile.

Add Files to current Project Group

Using Targets, Groups, and Files

The pVision's very flexible project management structure alows you to create
more than one Tar get for the same project.

A Target isadefined set of build options that assemble, compile, and link the
included filesin a specific way for a specific platform.

Multiplefile groups may be added to atarget and multiple files may be attached
to the same file group.

Y ou can define multiple tar gets for the same project as well.
Y ou should customize the name of targets and groups to match your application
structure and internal naming conventions. It isagood practiceto create a

separate file group for microcontroller configuration files.

d4 Usethe Components, Environment, and Books... dialog to manage
your Targets, Groups, and Files configuration

Chapter 6. Creating Embedded Programs

To change the name of a Target, Group, or File you may either:

= Double-click the Components, Environment and Books ==
deg red Item or Project Companierts | Folders/Extensions | Books |

n H|gh||ght theitem Project Targets: 11| % | 4+ | 4 | |Groups 3[4 [| [Fies: x|+ ¥
and press F2 T [T

Change the name and

click the OK button.
Changes will bevisiblein
the other windows as
soon as this dialog has
been closed.

Set as Cumert Target Add Files

#1 Insert - create anew target or group
w Delete- remove atarget, group, or source file from the project
4 Move Up - move atarget, group, or source file up thelist

4 Move Down - move atarget, group, or source file down the list

Instead of using the Move Up or Move Down buttons, you may drag and drop the
source files within the Project Window to re-arrange the order of thefiles.

Getting Started: Creating Applications with pVision

Setting Target Options

A% Openthe Optionsfor Target diaog from the Build Toolbar or from the

Project Menu
Options for Target 'Simulator’ @
Device Target | Output | Listing | User | CAC++ | Asm | Linker | Debug | Litilities |
STMicroelectronics STM32F103RB
Code Generation
¥al (MHz): |8.0
Operating system: |N0ne j [Use Cross-Module Optimization
[Use MicroLIB -
[Use Link-Time Code Generation
Read/Only Memory Areas Read/Write Memory Areas
default off-chip Start Size Startup default off-chip Start Size MNaolnit
~ Rom: | | o - Ram: | | -
I Rowz | | s ~ RAmz | | r
~ Rom3: | | ' ~ Ram3: | | -
on-chip on-chip
¥ IROM1; |BBODDDDD [Cx20000 a3 W IRAM1 |(x20000000 [B<5000 ~
I IRomz: | | C I IRAmMZ: | | r
OK | Cancel | Diefaults | Help

Through this dialog, you can

= change thetarget device
= set target options
= and configure the development tools and utilities

Normally, you do not have to make changes to the default settingsin the Tar get
and Output diaog.

The options available in the Optionsfor Target dialogs depend on the
microcontroller device selected. Of course, the available tabs and pages will
change in accordance with the device selected and with the target.

When switching between devices, the menu options are available as soon as the
OK button in the Device Selection dialog has been clicked.

82

Chapter 6. Creating Embedded Programs

The following table lists the project options that are configurable on each page of
the Target Options diaog.

Dialog Page Description

Device Selects the target device from the Device Database

Target Specifies the hardware settings of your target system

Output Specifies the output folders and output files generated

Listing Specifies the listing folders and listing files generated

User Allows you to start user programs before and after the build process

C/C++ Sets project-wide C/C++ Compiler options

Asm Sets project-wide Assembler options

Linker Sets project-wide Linker options. Linker options are typically required to
configure the physical memory of the target system and locate memory classes
and sections.

Debug Sets Debugger options, including whether to use hardware or simulation

Utilities Configures utilities for Flash programming

Setting Group and File Options

In uVision, properties of objects and options can be set at the group level and on
individual files. Usethis powerful feature to set options for files and groups that
need a configuration different from the default settings. To do so, open the
Project Window:

= Invoke the Context Menu of afile group and select Optionsfor Group to
specify the properties, compiler options, and assembler options for that file

group

= Invoke the Context Menu of a source file and select Optionsfor Fileto
specify the properties, compiler, or assembler optionsfor that file

Treat Target options similar to general options. They are valid for the entire
project and for that target. Some options can be defined at the group level and on
individual files. File-level options will supersede group-level options, which in
turn, supersede the options set at the target level.

i3 £8 Red dotson theicon’sleft side are an indication that the options of
that item differ from the general target options

Getting Started: Creating Applications with pVision

Configuring the Startup Code

Keil toolsinclude files with chip-specific startup code for most of the supported

devices.

Elinky - pVision (o= =]
Eile Edit View Project Flagsh Debug Peripherals Tools 35VCS Window Help
=2" N~ R) = = [[adc1_int -
& (XY $% | OnChip Flash M- |
- x
[=-£21 On-Chip Flash
- ource Files Expand Al Collapse Al Help
#] Blinky.c
| START V2,466 Option Value
ocumentation [=l- Definitions for Systern and User Stack
D ABSTRACT.THT -~ STKSZ: Maximum System Stack Size selection 00200
~USTSZ: User Stack Size Definition
~UST1SZ: User Stack Size for local register bank 1 0:0020
+- UST2SZ: User Stack Size for local register bank 2 0:0020
[#- Definitians for Startup Code
CPU Configuration
QCDS Debug Peripheral Suspend Configuration [
Peripheral Cenfiguration
[+ Definitions for Reset Configuration Register RSTCON [
[+~ Definitions for PLL Control Register PLLCON [
- Definitions for Watchdog Timer Control Register WDTCON [
[+l Definitions for Frequency Output Signal FOCON [v
[#- External Bus Canfiguration
]Elpmject (0, Templ...| £} Fundti. | TextEditor J, Configuration Wizard
o [
-:_';IEulId Qutput _RFlnd in Files

Keil startup files contain assembler code with options you can adjust to your
particular target system. Most startup files have embedded commands for the
MVision Configuration Wizard, which provides an intuitive, graphical, and
convenient interface to edit the startup code.

Simply click the desired value to change data. Alternatively, you can use
the Text Editor to directly edit the assembly sourcefile.

Keil startup files provide agood starting point for most single-chip applications.
However, you must adapt their configuration for your target hardware. Target-
specific settings, like the microcontroller PLL clock and BUS system, have to be
configured manually.

84

Chapter 6. Creating Embedded Programs

Building the Project

Several commands are available from the Build Toolbar or Project Menu to
assemble, compile, and link the files of your project. Before any of these actions
are executed, files are saved.

2 Trandate File— compiles or assembles the currently active source file

% Build Target — compiles and assembles those files that have changed,
then links the project

#¥ Rebuild — compiles and assembles all files, regardless whether they have
changed or not, then links the project

While assembling, compiling, and linking, pVision displays errors and warnings
in the Build Output Window.

Highlight an error or
warning and press F1 to
get help regarding that
particular message.
Double-click the message
to jump to the source line
that caused the error or
warning.

pVision displays the e
message O Error(s), 0 :
Warning(s) on
successful completion of
the build process.
Though existing
warnings do not prevent
the program from running correctly, you should consider solving them to
eliminate unwanted effects, such as time consumption, undesirable side effects,
or any other actions not necessary for your program.

EO-data=l3i0 EW-data=33 Il-dasta=l3&s
rrox(=), 0 Warning(s).

Getting Started: Creating Applications with pVision

85

Creating a HEX File

Check the Create HEX File box under Optionsfor Target — Output, and
pVision will automatically create aHEX file during the build process.

Select the desired HEX format through the drop-down control to generate

formatted HEX files, which are required on some Flash programming utilities.

Options for Target 'Simulator’ @I
Device | Target Output | Lising | User | C166 | EC++ | A166 | L166 Locate | L166 Misc | Debug | Utities |

Select Folder for Objects... | Name of Executable: |TwinCAN

{+ Create Executable: \TwinCAN

[v Debug Information v Browse Information
W Creste HEXFie HEX Fomat: [HEX 386 (H167) +] Star: | End: |
HEX-86
HEX-386 (H167) H Fil Byte: | Offset: |
(" Create Library: \TwinCAN.LIB [Create Batch File

0K | | Cancel | | Defaults

86

Chapter 6. Creating Embedded Programs

Working with Multiple Projects

Sometimes, application devel opment requires working with more than one
project at the sametime. With single projects, that requires closing the current
project and opening the new project. The pVision Multi-Project feature allows
you to define a group of projects as a Multi-Project file and to work with those
projects in one Project Window.

By combining pVision projects, which logically depend on each other, into one
M ulti-Pr oject, you increase the overview, consistency, and transparency of your
embedded system application design. pVision supports you in grouping various
stand-alone projects into one project overview.

While all features described for single-projects al so apply to Multi-Projects,
additional functionalities are required and are availablein the pVision IDE.

Creating a Multiple Project

Choose Project — New Multi-Project Workspace... | eroject

to create anew Multi-Project file. Thisopensa New ision Project...
standard Windows dialog that prompts you for the New Multi-Project Workspace...
new project file name. Open Project...

To open an existing Multi-Project, choose

Project —Open Project. You can differentiate a Multi-Project file from a stand-
alone project file by itsfile extension. A file containing a Multi-Project has the
extension filename.uvmpv rather than filename.uvpr oj — the naming convention
for stand-alone projects.

Managing Multiple Projects

Invoke the M anage M ulti-Project Wor kspace Components dia og through the
Project — Manage — M ulti Project Workspace... Menu, or
use the Manage M ulti-Pr oject Workspace... button of the Build Toolbar .

B ManageMulti-Project Workspace... —diaog to add individual
projects or programs to your Multi-Project

Getting Started: Creating Applications with pVision

87

Add eXl S[I ng Sand-al one Manage Multi-Project Workspace Components
pl’O] eCtSLZ tO yOUI’ M U|t| - p\ision Project Components |

Project. Usethe controls

pVision Projects:

to change thefile order, to
add or remove project files,
or to define the active
project.

ers

Removing or deleting a
project from thislist will
not physically delete the
project files, or the

RM\RL

C:\Keil\ARM"Boards"Kei "\MCBSTM32\RTX_Blinky"Blinky uvproj

A RM*Boards"Keil"MCBSTM32\Timer\Timer uvproj
RM"Boards"Keil"\MCBSTM 32" Measure\Measure uvproj
RM"Boards"SILICA\LPC2103"Blinky"Blinky .uvproj
A \bruneul 1% Documents yVisionywVision MultiProject \Measure \Measure uvproj
A\Keil ARM"\Boards\Keil\MCBZ2300"\RTX _Traffic \ TRAFFIC uvproj
4 Examples" Traffic\ TRAFFIC uvproj
ExamplesFarMemony.1MB Constants on Classic 8051%ConstFar.uvproj
“Boards'Keil \MCBSTM32"Blinky* j

Blinkey .uvproj

respective project from the
storage location.
[setsshoie Pt |

OK | Cancel | Help |
Activating a Multi-Project
To switch to another project, right click |project X
the project name you wish to activate, 5= WorkSpace
and click Set as Active Project. g ‘ Set a2 Active Projec
In this example, Measure isthe BHE3
currently active project, whereas Blinky B3 TRAFFIC
isjust about to become the active g gl?”;;Fa’

. -- n

project. 21 Blinky

To uniquely identify the currently
active

{77 Measure

project, yVision highlightsits namein black. All actions executed within the
pVision IDE apply only to this project; therefore, you can treat this project the

same way you treat a stand-alone project.

! Only existing projects can be maintained and added to a Multi-Project. You have to create the

stand-alone project prior to managing it in the Multi-Project environment.

2 Projects can have identical names as long as they reside in different folders.

88

Chapter 6. Creating Embedded Programs

Batch-Building Multiple Projects

While you can compile theindividual projects one-by-one, the Multi-Project
environment provides a more convenient way to compile al the projectsin one
working step.

Use the Batch Build" command from the Build Toolbar or from the Project —
Batch Build Menu to build, re-build, or clean the Project Targets.

Batch Build — opens the window which lets you select the targets and

actions
Select the checkbox of the [atenguid =
pI‘O] eCtS and rd ataj tal’getS Select Project Targets:
you wish to build, re-build, ey Build
or clean. ¥ McBSTM32 Rebuild
[=- Blinky
]]) Wl iator| Clean
Object fileswill be created (Do
based on the settings & ConstFar
outlined in the respective ey o 5 Coratants on Class: 8051 seectal
project. No ‘in common’ -2 LPC2129 Simieter Deselect Al
Obj ect file will be created L.V McB2130
in addition. T st
i.J¥ MCBSTM32
= TRAFFIC $
-V Simulator

The Build button compiles and assembles those files that have changed and links
the selected targets.

The Rebuild button compiles or assembles al files and links the selected targets.

The Clean button removes the object files for the selected targets.

! Batch Build can be used in a Multi-Project setup only.

Getting Started: Creating Applications with pVision

Chapter 7. Debugging

The uVision Debugger can be configured as a Simulator® or as a Target
Debugger®. Go to the Debug tab of the Options for Target dialog to switch
between the two debug modes and to configure each mode.

The Simulator is a software-only product that simulates most features of a
microcontroller without the need for target hardware. By using the Simulator,
you can test and debug your embedded application before any target hardware or
evaluation board is available. pVision aso smulates awide variety of
peripheralsincluding the serial port, external 1/0O, timers, and interrupts.
Peripheral simulation capabilities vary depending on the device you have
selected.

The Target Debugger isahybrid product that combines uVision with a
hardware debugger interfacing to your target system. The following debug
devices are supported:

= JTAG/OCDS Adaptersthat connect to on-chip debugging systems like the
ARM Embedded ICE

= Target Monitorsthat are integrated with user hardware and that are
available on many evaluation boards

= Emulatorsthat connect to the MCU pins of the target hardware
= |In-System Debugger sthat are part of the user application program and
provide basic test functions

Third-party tool developers may use the Keil Advanced GDI to interface pVision
to their own hardware debuggers.

No matter whether you choose to debug with the Simulator or with atarget
debugger, the pVision IDE implements a single user interface that is easy to
learn and master.

! The Smulator offers more capabilities and features than those available when debugging on
target hardware. The Simulator runs entirely on the PC and is not limited by hardware
restrictions.

2 Programs run on your target hardware. You can debug your application with restrictions.

Chapter 7. Debugging

Options for Measure - Target 'LPC2129 Simulator'

=

To debug programs
using the Simulator,
check

Use Simulator on the
left side of the Debug
diaog.

To debug programs
running on target
hardware, check

Use <Hardware
Debugger> on the right
side of the Debug
diaog.

Device | Target | Output | Listing | User | C/C++| Asm | Linker Debug | Uilties |

@ Use Smulator
[~ Limi Speed to Real-Time

Settings || { Use: |ULINK ARM Debugger v | Settings

[+ Load Application at Startup ¥ Run to main{) ¥ Load Application at Startup [Run to main)
Initialization File Initialization File:
[\Weasure i J Edt.. || [J
Restore Debug Session Settings Restore Debug Session Settings

[¥ Breakpoints ¥ Toolbox [¥ Breakpoints ¥ Toolbox

[V Watchpoints & PA I~ Watchpoints

[¥ WMemory Display [¥ WMemory Display
CPUDLL: Parameter: Driver DLL: Parameter:
SARMODLL [<LPC2100 [sARMDLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
[DARMP.DLL ~ [pLPC2103 [TARMPDLL [pLPC2103

oK I Cancel ‘ Defaults ‘ Help

In addition to selecting whether you debug with the Simulator or Target
Debugger, the Debug dialog provides a great variety of debugger configuration

options.

Control Description

Opens the configuration dialog for the simulation driver or the

Settings

Load Application at Startup
Limit Speed to Real-Time

Run to main()

Initialization File

Breakpoints

Watchpoints & PA

Memory Display
Toolbox
CPU DLL

Driver DLL

Dialog DLL

Advanced GDI target driver

Loads the application program when you start the debugger

Limits simulation speed to real-time such that the simulation
does not run faster than the target hardware

Halts program execution at the main C function. When not set,
the program will stop at an implicit breakpoint ahead of the main

function

Specifies a command script file which is read and executed
when you start the debugger, before program execution is

started

Restores breakpoint settings from the prior debug session

Restores watchpoints and Performance Analyzer settings from

the prior debug session

Restores memory display settings from the prior debug session
Restores toolbox buttons from the prior debug session

Specifies the instruction set DLL for the simulator. Do not

modify this setting.

Specifies the instruction set DLL for the target debugger. Do not

modify this setting.

Specifies the peripheral dialog DLL for the simulator or target
debugger. Do not modify this setting.

Getting Started: Creating Applications with pVision

91

Simulation

pVision ssimulates up to 4 GB of memory from which specific areas can be
mapped for reading, writing, executing, or a combination of these. In most cases,
pVision can deduce the correct memory map from the program object module.
Any illegal memory access is automatically trapped and reported.

A number of device-specific simulation capabilities are possible with uVision.
When you select a microcontroller from the Device Database, uVision configures
the Simulator accordingly and selects the appropriate instruction set, timing, and
peripherals.

ThepVision Simulator:

= Runsprograms using the ARM7, ARM9, Thumb, Thumb2, 8051,
C166/X E166/X C2000 instruction sets

= |scycle-accurate and correctly simulates instructions and on-chip peripheral
timing, where possible

= Simulates on-chip peripherals of many 8051, C166/XE166/XC2000, ARM7,
ARMY9, and Cortex-Mx devices

= Can provide external stimulus using the debugger C script language

Starting a Debug Session

When you start a debug session, pVision loads the application, executes the
startup code, and, if configured, stops at the main C function. When program
execution stops, uVision opens a Text Editor window, with the current source
code line highlighted, and a Disassembly Window, showing the disassembled
code.

@) Usethe Start/Stop Debug Session command of the Debug Toolbar to
start or stop a debugging session. Screen layouts are restored when
entering and saved automatically when closing the Debugger.

== Thecurrent instruction or high-level statement (the one executed on the
next instruction cycle) is marked with ayellow arrow. Each time you
step, the arrow moves to reflect the new current line or instruction.

92 Chapter 7. Debugging

This screenshot below shows some of the key windows available in Debug
Mode.

Source Editor

Peripheral Window
I

Register Window Disassembly Window

| i Blinky - pVision
File Edit - View Flash Debug Perighersls Tools SCCS Wil

e w8 BT |
=

L) AT [BUTZ
1.743 m0x000002C0 ©3IS60000
1LMImon0eoroacs 1A00G001
1.743mfox000002CE E3A0000L
247 CC EAQ000000
E

ESeFL0cE
E5811000
E1D00721
CROG001T

Show or hide the system viewer
windows

FP47 mi0x00020304
5247 mox 00000208
1,743 mpox 000002 DE
5247]

| MR ot | Latch | Pyim |
]

E
i]
=
=}
= N
(=1
)
] — =S
o L
211.182um 1 |— T
e Fant? ™ | | Mesk: i
e Heme. [Address [Tiee [«
bl e 00000000 0x40000050: 410000 -] Biky I Modie
@ el e 30000000 0x4000005C 1 3 For5e7 Modie |
0X400000A8 1 504040 LEDmatrtc Made Ly
040000054 1 @ 00U | eSDOOOO2D | amey(S] ofunt
10%400000C0 @ dms. it
L UREUDUDULL Lo INTEM |m a3 of wirt
0x40000008 g irtensly | Cu200000K8 | ucher -
0x400000E4 |l
_n;qoon_on_rn. : 5 > .mmﬁm“h
Snaw ar nide the system naer winoows REal-Time Agent: Target Sroppen simuiatian 11:0.12405331 fee Cap|
Call Stack ‘ Memory Window Symbols Window

Performance Analyzer

Getting Started: Creating Applications with pVision 93

Debug Mode

Most editor features are also available while debugging. The Find command can
be used to locate source text and source code can be modified. Much of the
Debugger interface isidentical to the Text Editor interface.

However, in Debug M ode the following additional features, menus, and
windows are available:

Debug Menu and Debug Toolbar —for accessing debug commands

Peripherals Menu —is popul ated with peripheral dialogs used to monitor the
environment

Command Window —for executing debug commands and for showing
debugger messages

Disassembly Window — provides access to source code disassembly
Registers Window — to view and change values in registers directly
Call Stack Window —to examine the programs call tree

Memory, Serial, and Watch Windows— to monitor the application

Performance Analyzer Window — to fine tune the application for
performance

Code Coverage Window —to inspect the code for safety-critical systems
Logic Analyzer Window —to study signals and variablesin agraphical form
Execution Profiler —to examine the execution time and number of calls
Instruction Trace Window — to follow execution of the program sequence
Symbol Window — to locate program objects comfortably

System Viewer —to supervise periphera registers

Multiple Debug Restor e L ayouts— can be defined to switch between
preferred window arrangements

Besides the disabled build commands, you may not:

Modify the project structure
Changetool parameters

94

Chapter 7. Debugging

Using the Command Window

Generic compile and Command x
. . define button "Analogl 0..3V", "Analogl(3.0)™ -
debug |nf0rmat|on al'e define button "Stop gﬂalugl", "signalgkjt.ll ;-\nalogl"
displayed here while 1€ pisplay()
1 L& "ADC1 IN1
stepping throu_gh th(_a code. .7
Additional notifications . _ _
. i *%% error 899: signal() already activated
are provided if, for push 52 ()
example, memory areas 5 ;
cannot be accessed. Enter >
ASSIGN BreakDisable BreakEnable BreakKill Breaklist BreakS3et |

debugger commands on
the Command Line of the
Command Window. Valid instructions will rise on its status bar with hints to
parameters and parameter options. Insert expressions to view or modify the
content of registers, variables, and memory areas. Y ou can invoke debugger
script functions as well. We strongly advise you to make use of the detailed on-
line help information, by pressing F1. Describing the many options availableis
beyond the scope of this book.

Using the Disassembly Window

Configurethiswindow by pisssemby E
. ; - 0014 p9x02000128 4668 MOV 0, =p -
|nvok| ng I1ts Context 0014 1x08000123 F3808809 MSR PSP, r0
i 0042 p9x0200012E 4804 LDR 0, [pe, #16] ; BOx0B000140
Menu. You can usethis 0042 p=028000130 €800 LDR 0, [z0, $0x00]
. . . 0014 p9x02000132 07CO L5L3 0,0, $31
window to view thetime 0014 p9x02000134 BFLE ITE HE
. . 0014 908000136 2002 MOVNE x0,$0x02
an instruction needs to 0014 p9x08000138 2003 MOVEQ ~ £0,$0x03
X B 00%819x0800013A F3208814 MSR CONTROL, £0
execute or to d|Sp|ay the = JROBOOO13E 4770 B 1r _
)x08000140 12DC BSRS r4,r3, $11
number of calls. You can 1x08000142 0800 LSRS 0,20, 40
alloc box:
also set or remove)=02000144 FEDFCOle LDR.W 12, [pc,$24] : @0x02000160
X 1x08000148 F3EFS305 MRS r3, TIPSR a
breakpoints and : '
bookmarks.

View atrace history of previously executed instructions through the
View —Trace— View Trace Records Menu. To view ahistory trace, enable the
option View — Trace — Enable Trace Recording.

If the Disassembly Window is the active window, single-stepping works at the
assembler instruction level rather than at the program source level.

Getting Started: Creating Applications with pVision

95

Executing Code

pVision provides several ways to run your programs. Y ou can

= Instruct the program to run directly to the main C function. Set thisoptionin
the Debug tab of the Optionsfor Target dialog.

= Select debugger commands from the Debug Menu or the Debug T oolbar

= Enter debugger commands in the Command Window

= Execute debugger commands from an initialization file

Starting the Program

Select the Run command from
the Debug Toolbar
or Debug Menu
or type GO in the Command Window to run the program

Stopping the Program

€ Select Stop from
the Debug Toolbar
or from the Debug Menu
or pressthe Esc key whilein the Command Window

Resetting the CPU

fa7 Select Reset from
the Debug Toolbar
or from the Debug — Reset CPU Menu
or type RESET in the Command Window to reset the simulated CPU

Chapter 7. Debugging

Single-Stepping

1 To step through the program and into function calls use the Step
command from the Debug Toolbar or Debug Menu. Alternatively,
you enter TSTEP in the Command Window, or pressF11.

{* To step through the program and over function calls use the Step Over
command from the Debug Toolbar or Debug Menu. Enter PSTEP in
the Command Window, or press F10.

.
2

To step out of the current function use the Step Out command from the
Debug Toolbar or Debug Menu. Enter OSTEP in the Command
Window, or press Ctrl+F11.

Examining and Modifying Memory

pVision provides various ways to observer and change program and data
memory. Several windows display memory contents in useful formats.

Viewing Register Contents

The Registers Window shows the content of Registers x
microcontroller registers. To changethe content of a 225 =
H H H RO 00000004
register double-click on the value of the register. iy 020000008
H R2 000007100
You may also press F2 to edit the selected value. R3 008000401
R4 08000520
RS 08000520
RE 00000000
R7 00000000
RE D 00000000
RS 00000000
R1D 00000000
R11 D 00000000
R12 00000000
R13 (5P} 20000208
R14 (LR} 02000391
R15{PC} 02000488
+ - xPSR 01000000
+ Banked
* System
= Intemal
Mode Thread
Privilege Privieged
Stack MSP
States 27936734
Sec 0.38801158
= Registers

Getting Started: Creating Applications with pVision

97

Memory Window

Monitor memory areas through four distinct Memory Windows.

Open the M emory Window from the Debug T oolbar or the
View —Memory —Memory[x] Menu

The Context Menu alowsyou to select the Memory 1 g
output format. | o mrtores —— mE
0x00000001: 002 OOQ 032 253 000 000 008
- . . OXOOOOOOOSE Ooi Decimal
Enter an expressionin the Addressfield to ox00000016: 500 § 1| unsignes \

0x0000001D: 000

monitor the desired areaor object. Tochange iicoocoozs: oo

o

o

q

a Signed 3
0x0000002B: 000 O

o

o

o

o

the content of an address, double-click onthe oicesooss: oo d

Float

value and modify it. 2x00090040: 915 4 | pouste

0x00000047: 008

0Ox0000004E: 000 Q Madify Memory at 0x00000009
To update the Memory Window periodically, — Jx22299%%: 222 3 setsreatpoint at 000000000
enable View — Periodic Window Update. Sx00000082: 205 | Acd Mimenledeos to.. :
U% Update WI ndOWS | n the Tool box to |-5-'JCaII Stack Iﬁmza\s |,;;J\.at(h 1 |j Memory 1

refresh the windows manually.

11 Tostopthe Memory Window from refreshing, uncheck View — Periodic
Window Update, or use the L ock button to get a snapshot of the window.
Y ou may compare values of the same address space by taking snapshots of
the same section in asecond Memory Window.

Memory Commands

The following memory commands can be entered in the Command Window.

Command Description

ASM Displays or sets the current assembly address and allows you to enter
assembly instructions. When instructions are entered, the resulting op-
code is stored in code memory. You may use the in-line assembler to
correct mistakes or to make temporary changes to the target program.

DISPLAY Displays a range of memory in the Memory Window (if it is open) or in the
Command Window. Memory areas are displayed in HEX and in ASCII.

ENTER Allows you to change the contents of memory starting at a specified
address
EVALUATE Calculates the specified expression and outputs the result in decimal,

octal, HEX, and ASCII format
UNASSEMBLE Disassembles code memory and displays it in the Disassembly Window

98

Chapter 7. Debugging

Breakpoints and Bookmarks

In uVision, you can set breakpoints and bookmarks while:

= Creating or editing your program source code
= Debugging, using the Breakpoints dialog, invoked from the Debug Menu
= Debugging, using commands you enter in the Command Window

Setting Breakpoints and Bookmarks

To set execution breakpointsin the Mixed Mode
source code or in the Disassembly

X Assembly Mode
Window, open the Context Menu and

select the I nsert/Remove Breakpoint Address Range '
Command, Show Disassembly at Address...

Set Program Counter
You can double-click the gray sidebar of |3 gunte cursor line Crl=Fi0
the Editor Window or Disassembly
Window to set abreakpoint, or use the L R T e e
breakpoint buttons of the File Toolbar . Q| Enable/Disable Breakpoint Ctrl+F9

Inline Assembly

Breakpoints and bookmarks visualize in o
Load Hex or Object file..,

the Editor and the Disassembly

Window alike and differ in their Instruction Trace »

coloring. Breakpointswill display in Execution Prafiling v

red, where as bookmarks can be o

recogni zed by their blue color. % Insert/Remove Bookmark Ctri+F2
=3 Copy Ctrl+C

Analog actions are required to define
bookmarks. In contrast to breakpoints, bookmarks will not stop the program
executing.

Use Bookmarks to set reminders and markersin your source code. Define the
critical spots easily and navigate quickly between bookmarks using the bookmark
navigation commands. Y ou can also define a bookmark and a breakpoint on the
same line of code concurrently.

Whereas bookmarks do not require additional explanations, breakpoints are
discussed in detail in the following section.

Getting Started: Creating Applications with pVision

99

Breakpoints Window

Invoke the Breakpoints [reakpoints =
Window from the Current Breskpoirts:
Debug M enu. L; 00: (E) Ox00000AG0

[02: {A readwrite (x4000000C len=4). ’startflag’. count=4,

[v] 03: (A write OxE0034000 len=4), 'ADCR == 0x002E0401", count=4,
Y ou have to stop the (-] 04: (F) (x00000A54
program running, to get
accessto thisdiaog. P '

Access

MOdIfy existi ng Bxpression: [setinterval sec == 100 [Read [Wiite
breakpoints and add new Court: [T = Size: -
breakpoi ntsviathis Command: [pintf(\"%u. Interval.sec set to: n \". setinterval sec). = -
dialog. Enable/disable
breakpoints using the Defre | KilSelected | WIAI | [o= | Hep |

checkbox in the

Current Breakpointslist. Double-click on an existing breakpoint to modify its
definition.

Define a breakpoint by entering an Expression. Depending on the expression
entered, one of the following breakpoint types is defined:

An Execution Breakpoint (E) is defined when the expression specifies a
code address. This breakpoint istriggered when the specified code addressis
reached. The code address must refer to the first byte of a microcontroller
instruction.

An Access Breakpoint (A) is defined when the expression specifies a
memory access (read, write, or both) instruction. This breakpoint istriggered
when the specified memory access occurs. 'Y ou may specify the number of
bytes or objects (based on the expression) which trigger the breakpoint.
Expressions must reduce to a memory address and type. Operators (&, & &,
<. <=. >, >=, ==, I=) may be used to compare val ues before the Access
Breakpoint triggers and halts program execution or executes the Command.

A Conditional Breakpoint (C) is defined when the expression specifiesa
true/false condition and cannot be reduced to an address. This breakpoint is
triggered when the specified conditional expression istrue. The conditiona
expression isrecalcul ated after each instruction. Therefore, program
execution may slow down considerably.

100 Chapter 7. Debugging

When a Command has been specified for a breakpoint, pVision executes the
command and continues to execute your target program. The command specified
can be apVision debug function or signal function. To halt program execution
inapVision function, set the _break_ system variable. For more information,
refer to System Variables in the on-line help.

The Count value specifies the number of times the breakpoint expression istrue
before the breakpoint is triggered.

Breakpoint Commands

The following breakpoint commands can be entered in the Command Windows.

Command Description

BREAKSET Sets a breakpoint for the specified expression. Breakpoints are program
addresses or expressions that, when true, halt execution of your target
program or execute a specified command.

BREAKDISABLE Disables a previously defined breakpoint
BREAKENABLE Enables a previously defined breakpoint that is disabled
BREAKKILL Removes a previously defined breakpoint

BREAKLIST Lists all breakpoints

Y ou may also set execution breakpoints while editing or debugging using buttons
on the File Toolbar.

Watchpoints and Watch Window

By default, Watch Windows consist of four page tabs: the L ocalsto view
variables of the current function, two Watch pages for personalized watchpoints,
and the Call Stack showing the program tree. Through the Watch Window, you
can view and modify program variables. Nested function calls arelisted in this
window aswell. The content is updated automatically whenever you step
through the code in Debug M ode and the option View — Periodic Window
Updateisset. In contrast to the L ocals Window, which displays all local
function variables, the Watch Window displays user-specific program variabl es.

Getting Started: Creating Applications with pVision

101

Watchpoints

Define watchpointsto observe wateh 1 %
variables, objects, and memory Nama Value
areas affected by your target \Measure'mdisplay 00000000
program. Watchpoints can be {on}m & BeB000)>15 &ml
defined in tWO.WatCh pag&s = \I‘ufl:leasure\setintewal struct interval { ... }
The L ocals Window contains min 00
items of the currently executed sec 00
function. Items are added CLOET(EC &ﬂmu
au'Fomatlcal Iy tothe Locals
Window.

|r:,,-1jCaII Stack |;:§"Jana|s |g§i|Watch 1 |j:;?ﬂ-.f\.-'atchz |

There are several waysto add a

watchpoint:

In any Watch Window, use thefield <double-click or F2 to add>
Double-click an existing watchpoint to change the name

In Debug M ode, open the Context Menu of avariable and use Add <item
name> to... — Watch Window. pVision automatically selects the variable
name beneath the mouse pointer. Y ou can aso mark an expression and add
it to the Watch Window.

In the Command Window, use the WATCHSET command to create a new
watchpoint

Finally, drag-and-drop any object from the Symbols Window or from source
codefilesinto the Watch Window

Modify local variables and watchpoint values by double-clicking the value you
want to change, or click on the value and press F2. Remove a watchpoint by
selecting it and press the Del key.

Watchpoint Commands

The following watchpoint commands can be entered in the Command Window.

Command Description

WATCHSET Defines a watchpoint expression to display in a Watch Window

WATCHKILL Deletes all defined watchpoint expressions in any Watch Window

102 Chapter 7. Debugging

Serial I/0O and UARTSs

pVision providesthree Serial Windows, named «UART #{ 1|2|3} », for each
simulated on-chip UART. Serial data output from the simulated microcontroller
are shown in these windows. Characters you type into the Serial Window are
considered input to the simulated microcontroller.

UART #1 X || Toolbox (==
4EE ARk k&% REMOTE MEASUREMENT RECORDER #*#*## s mmmadddy -~
.) . X) Update Windows
| Thi=s program is a simple Measurement Recorder. It is based on |
| the STR912FW44 and records the state of the Buttons 52,53 and | 1 Button Key2
| the wvoltage on the four analog inputs ADO trough AD3. | 2 Button Key3
+ command -+ syntax —-—-—-—-— + function + T e oo |
| Read | B [n] | read <n» recorded measurements | 3 __JEEEEiEﬁL__
| Display | D | display current measurement values | 4 Analog10..3V
| Time | T hh:mm:s= | set time | 5 Stop Analog1
| Interval | I mm:=s=s.ttt | set interval time
| Clear | C | clear measurement records
| Quit 1 Q | gquit measurement recording | =
| Startc | 5 | start measurement recording

Command: r 1
Command: d

Display current Measurements: (ESC to abort)
Time: 0:00:22.858 GPICA:0001 GPICC:3000 Al1:2.70V A2:0.00V A3:0.00V

The serial output can be assigned to aPC COM port using the ASSIGN
Debugger command.

Several modes for viewing the data are provided:

= BasicVT100 Termina Mode

= Mixed Mode
= ASCIl Mode
= HEX Mode

Y ou can copy the content of the window to the clipboard or save it to afile.
Where applicable, you can use the Toolbox* features to interact with the
program.

1 You can add, remove, and change Toolbox buttons at any time. Use the Command Linein the
Command Window for this purpose.

Getting Started: Creating Applications with pVision 103

Execution Profiler

The Execution Profiler in pVision records the amount of time and the number
of times each assembler instruction and high-level statement in your program
executes.

The amount of time and the number of calls, which are displayed in the
Disassembly Window and in the Editor Window alike, are cumulative values.

Measure.c [Getline.c r Mcommand.c [Serial.c r Retarget.c] h¥a

x
163 461 mdisplay = 07 /* mdisplay = 0 for ready sig. */ z‘

166 461 = TIM3->5R &= ~(1<<0}; /* clear UIF flag =

163 3467 |}

175 1&*istatic int read index (char *buffer) {
o176 | int index = o:

177 int args; Jﬂ
»

Enable the Execution Profiler through the Debug — Execution Profiling Menu.

Invoke the Context M enu of the Disassembly Window to switch between the
time and calls.

When you locate program hotspots (with the Perfor mance Analyzer), the
Execution Profiler makesit easy to find real performance bottlenecks.

104

Chapter 7. Debugging

Code Coverage

The Code Coverage
Window marks the code
that has been executed, and
groups the information
based on modules and
functions.

Use thisfeature to test
safety-critical applications
where certification and
validation is required.

Y ou can detect instructions

Code Coverage

Update || Reset

Module: | <Al Modules>

=l

Modules/Functions | Execution percentage

= Meommand
measure_display 0% of 40 instructions
set_time 0% of 51instructions
set_interval 0% of 80instructions
* Getline
=l Measure
save_cument_measur... 0%
adc_Init 100% of 60 instructions
TIM3_IRQHandler
read_index
clear_records
main
STM32_Init
LCcD
Serial
Retarget

of 36 instructions

0% of 48 instructions
100% of 17 instructions
3% of 262 instructions

4
4
4
4

44% of 125 instructions,

10 condjumpis) not fully executed

that have been skipped, or have been executed fully, partialy, or not at all.

Code Cover age data can be saved to afile. Y ou can even include a complete
CPU instruction listing in thisreport. To make use of all these features, examine
the COVERAGE command in the Command Window.

In addition to the Code Coverage Window, pVision provides color-coded hints
on the side bar of the Disassembly and Editor Window. The colors have the

following meaning:

= Linesnot executed — are marked with agrey block

= Fully executed lines — are marked with a green block

« Skipped braches — are marked with an or ange block

= Executed branches — are marked with a blue block

= Lineswith no code —are marked with alight grey checked block

Getting Started: Creating Applications with pVision 105

Performance Analyzer

ThepVision Performance — [Fetomanceansiyzer x
. Module/Function Calls | Time(Sec) Time(%) -
Analyzer displaysthe SR [—
. . =1+ Measure ms N mmm— |
execution time recorded Mo e | 0 | o | |
for functions in your Wirmde | ®1 | sz 1|
application program. il B I
main] 12 113ms (682
= Serial 42088ms |26%
Results show up as bar sendher | e o N
graphs dlong with the Braell i 5 8
1 + i 0 0% |
number of calls, the time Lot ol |
spent in the function, and #° Getine b 0%
- STM32 It Ous 0% 1 hd
the percentage of the total

time spent in the function.

Use thisinformation to determine where your program spends most of itstime
and what parts need further investigation.

Objects are sorted automatically dependent on the time spent.

Invoke the Context M enu of the Performance Analyzer to switch to another
presentation of your investigation. Y ou can drive the output to display statistics
of modules or functions. Eventually, you might need to clean up the collected
datato get afresh summary.

Double-click an object exposed in the Module/Function column to jump to the
source code line.

Chapter 7. Debugging

Logic Analyzer

TheLogic Analyzer . — -
dISp| ays values of St o AT [MStAEs s ot v |G | o] sk

variables or virtual :

registers and shows the aee G e
remenaimests Il T
Add values through the o mEiInE
Setup ... button or drag i '
and drop objects from ' / :
other windows into the i e e
Logic Analyzer. - LT PRI Sy
Press Del, or use the satie j===) e .
Setup... button,

or invoke the Context Menu
to remove items from the list.

The Logic Analyzer window contains several buttons and displays severa fields
to analyze datain detail. Move the mouse pointer to the desired |ocation and
wait one second to get additional information, which pops-up automatically.

Control Description

Setup... Define your variables and their settings through the Logic Analyzer Setup dialog

Export... Saves the currently recorded signals to a tab-delimited file

Min Time Displays the start time of the signal recording buffer

Max Time Displays the end time of the signal recording buffer

Range Displays the time range of the current display

Grid Displays the time range of a grid line

Zoom Changes the time range displayed. Zoom All shows the content of the buffer
recording the signals. Zoom Sel zooms the display to the current selection (hold
Shift and drag the mouse to mark a section).

Show Opens the Editor or Disassembly Window at the code that caused the signal
transition. It will also stop the program from executing.

Setup Configures the range of a signal. The Auto button configures the minimum and

Min/Max maximum values based on the values from the current recording. The Undo button
restores the settings prior to using Auto.

Getting Started: Creating Applications with pVision 107

System Viewer

Peripheral Registers are memory mapped registers =
. uVision SFR-Grid CheckSFR
that a processor can write to and read from to Vedtored Tnterupt Cont e 10

control aperipheral device. pVision providesan Fin Connect slock

General Purpose Input/Output (GPIO)

advanced method for viewing and debugging Hemary Accelerator Madue (4214
these peripheral registers. receLedagian P

Power Control
Invoke the System Viewer from the Eeematimeet
Debug Toolbar or from the
View — System Viewer Windows Menu. You A

Universal Asynchronous Receiver Transmitter 0 (UARTO)

can define up to 100 different peripheral ODjeCtStO | unwersa agnchionous Recener tansmter 1 wary
monitor their behavior. ECiefce

SPI0 (Serial Peripheral Interface 0)

SPIL (Serial Peripheral Interface 1)

The System Viewer offersthe following features: e o

CAN Acceptance Filter RAM

= Parseamicrocontroller device C header file s e
into a binary format AN Contrater 1 (cAn
- . CAN Controller 2 [CAN2)
= Additional properties can be added to the CAN Controler 3 (Ca1E)
()

CAN Controller 4 (CAN4,

header file to provide extrainformation such
as Peripheral Register descriptions and the
data breakdown of an Periphera Register

= Thevalue of aPeripheral Register is uVision SFR-Grid CheckSFR x
updated either from the Simulator or Bzad

Watchdog

H Property Value
from the target hardware ThIS can = uVision SFR-Grid CheckSFR
happen when the target is stopped, or = [GRSFRO @0x40000030 :- 0x00000080
periodically by enabling the e eainta”
V|9N b PerIOdIC W|nd0W Update Enable nibble bit 0
Menu 7-bit field (%]

Unused halfword 0
= At any time, the content of a
Peripheral Register can be changed
simply by overwriting its value in the
Wstan V|a/ver g:s:;o_@:g::ggooom:: 0x000000B0

PropertyGrid attribute checker

[® Pin Connect Block | 8 uvision SFR-Grid ... | [12C Interface

108

Chapter 7. Debugging

Symbols Window

The Symbols Window displays information from the Debugger in an ordered
and grouped manner and can be called viathe Debug Toolbar or from the
View—Symbol Window Menu. This functionality includes objects:

= Of simulated resources as the virtual registers, Simulator VTREG, with
accessto I/O pins, UART communication, or CAN traffic

= From Peripheral Registers, Peripheral SFR, to access peripherals

= Of the embedded application, recognizable by the name of the program, with
access to functions, modules, variables, structures, and other source code

elements

Use this functionality to find items quickly. Drag and drop the objects to any

other window of pVision.

Mask works similar to a
find function. Enter your
search criteriaand browse
theresults. For nested
objects, the entire tree is
displayed if aleaf itemis
found. Thefollowing
search criteriamay be
used:

matchesadigit (0-9)

$ matches any single
character

* matches zero or more
characters.

Configure the window by
invoking the Context
Menu.

Symbols x
Mask: |m* [Case Sensitive
MName Address | Type
Simulater VTREG
+- P Peripheral SFR
- B Measure Application
+-(77 Runtime Library
+ Getline Madule
= Mcommand Madule
= @ measure_display (e DO000264 Function
=l i@ display [F13+5-28) struct mrec
= i@ time struct clock
@ min uchar
i@ mesec ushort
—- @ =et_interval (00000304 Function
+- @@ itime [R13+8-16] struct interval
@ min [R13=-20] it
@ msec [R13+8-28] int
+- @ set_time (00000308 Function
= Measure Module
@ mdisplay (40000008 int
i@ measurement_interval | (e4 0000004 int
@ menu (ke D0002540 amay[860] of uchar
& main (e DO000320 Function
Retarget Module
[o] Serial Module

|.5-'jCaII Stack |g'§7~:_'lL-:|caIs |j§§'.-‘."atch1 |

Memory 1 | _IE Symbals

Getting Started: Creating Applications with pVision

109

Browse Window

The Browse Window enables you to search for objects in the code. This feature
can be used in Debug and Build Mode. Nevertheless, the browse information is
only available after compilation. Y ou have to set the option Optionsfor Target
— Output —Browser Information to signal to the compiler to include browse
information into the object file. Launch this window viathe File Toolbar or
View — Source Browser Window.

Enable or disable the Filter on buttons, enter your search criteriain the Symbol
field and narrow the result through the File Outline drop-down. Y ou can sort the
results by clicking the header controls. Click an item to browse the occurrences
and locate its usages. Double-click alinein the Definition and References page
to jump to the code line.

Browse x
Symbol: | | Memary Spaces: [eram
Fitter on: Macros Data [data
IV const
Functions Sfr{Bits) [l som
Parameters Types V¥ code
File Ovtline: |:aII files j
& MName | Class Type Space | Uses + | Definitions and References - time
vsscanf function func code 1 E-E] C\KeilARM\Examples\Measurelmeasure.h
vsprintf function func code 1 : -id? [D] Line 19, member of tag 'mrec’
vsnprintf f“”‘t!U” func code 1 |_f_|--- C:\Keil\ ARMExamples'Measure\Measure.c
\rsc.antff :unc:!on :unc coje 1 _____ id.§ [R Line 106 [rfw]
vprin unction unc code 1 0 s .
vfscanf function func code 1 ‘d: [R] LfnelO? ["‘:]
viprintf function func code I ‘d: [R] L!nelﬂg [rfw]
val data uint data 6 | i idy [R]Line 110 [w]
ungete function func code 1 e il [R]Line112 [rfw]
toupper function func code 2] id.§ [R]Line113 [w]
tolower function func code 1 Pl i '.d,§ [R]Line 115 [r/w]
tmpnam function func code 1 Pl i -“.4 [R]Line 116 [w]
tmpfile function func code 1 i@ [R]Line 173 [w]
time member struct data 19 s : .
P ——————e A I idy [R]Line222[r]
el function func code 2 s A
stdout macro none 5 |'_—‘|--- IC?KelI\ABM\Examples\Measure\Mcommand.c
stdin macro none [iy [R]Line30[r]
stderr macro none 1] 'l# [R]Line31[r]
startflag data int data 6 | i id.§ [R]Line32[r]
stack_limit member uint data 1 Pl i ;d‘ [R]Line33[r]
stack_base member uint data 1 | i -“.4 [R]Line 59 [w]
ssc.antff :un:?on :unc coje i _____ id.§ [R]Line 60 [w]
sprin unction unc code 1 i i .
snprintf function func code 1 - ld: [R] L!neﬁl (w]
- ™ sl iy [R]Line 62 [w]

Invoke the Context M enu while pointing at an item. Dependent on the object
class you will get different options. For functions, you can invoke the callers
graph and the call graph.

110 Chapter 7. Debugging

Toolbox
The Toolbox contains user-configurable buttons that Toolbox =
execute debugger commands or user-defined functions. [Update Wingows |
Click on aToolbox button to execute the associated 1 utton Kay2
command. Toolbox buttons may be clicked at any time,) Button Key3
even while the program executes. . WySesiie |

. . . Analogl 0.3V
Define a Toolbox button using the Command Window N St:::nalog ;
and the DEFINE BUTTON™? command. Use the same °

command to redefine the button. The general syntax for thiscommand is:

DEFI NE BUTTON "button_| abel ", "comand"

Where:
button_| abel isthe name that displaysin the Toolbox

command is the command that executes when the button is pressed

The following examples show the commands used to create the buttons in the
Toolbox shown above:

DEFI NE BUTTON "Deci mal Qutput", "radi x=0x0A"

DEFI NE BUTTON "My Status Info", "MyStatus ()" /* call debug function */
DEFI NE BUTTON " Anal ogl 0..3V', "anal og0 ()" /* call signal function */
DEFI NE BUTTON " Show R15", "printf (\"RL5=%94XH\\n\")"

Remove a Toolbox button with the KILL BUTTON® command. The button number
required in this statement is shown on the | eft side of the button. For example:

KILL BUTTON 5 /* resenbles to: “Renpve the ‘Stop Anal ogl’ button” */

! The printf() command defined in the last example introduces nested strings. The double quote (*)
and backslash (\) characters of the format string must be escaped with \ to avoid syntax errors.

2 Use this command to redefine the meaning of a button or change the description.

3 The Update Windows button in the Toolbox is created automatically and cannot be removed.
When pressed, this button updates the contents of several Debugger windows.

Getting Started: Creating Applications with pVision 111

Instruction Trace Window

To follow the instruction sequence history, invoke the Instruction Trace
Window from the Debug Toolbar or viathe View — Trace Menu. Usethis
window in conjunction with the Disassembly Window. Trace recording hasto
be enabled to gather the information needed. To do so, use the

View — Trace — Enable Trace Recording Menu.

Double-click any linein the Instruction Trace Window to jump to or open the
Disassembly Window. Usethe predefined Filter options to view the instruction
tree in the preferred mode.

Instruction Trace x
. . L Fiter: [Execution-Al - 2
Thisfunctionality is [[e
: i v
availablefor the o Gonooraer | e OO ARG ot
. . 51 | B0ODIZ68 |EN2FFFIC BX Ri2
Simulator and while 54 | BDOODIZEC | 4C05 DR R4 [FC#BO014]
. 55 | BDOODIZGE | 4D06 DR R5[PC#E0015]
debuggl ng the tar get 5% | L00ODIZ70 | E004 B mD000IZTC
; s 57 | B00ODIZTC | 42AC CMP R4RS5
hardware. Thewindow’s 58 | GOOODIZZE | D3FE BCC x000D1272
. 59 | B000M1Z72 | 0020 S ROR4ED
IOOk and feel mi ght Vary, B0 | DxDDOD1Z74 | CBOF LDMIA ROL{RO-R3}
) . 61 | 00001276 | FO0D BL _ARM_common_call_via_r3{00001B7C) - Part 41
snce it depends on the 62 | 0x0D001278 | FCB1 BL _ ARM_common_call_via_r3{(x00001B7C) - Part #2
driver setti ngs of the [Disassemoly | El mnstruction Trace

debugging environment.

Defining Debug Restore Views

Multiple window layouts are possible in Debug M ode to switch quickly between
preferred screen settings and window arrangements. Invoke the layouts from the
Window — Debug Restore Views... dialog, or from the Debug Toolbar.
Restore defaults through Window — Reset View to Defaults.

Deﬂ ne and save yOUI’ Debug Restore Views @
prEferred IOOk and fed Global Views: . Project Views: ¥
through the Window Dfauk [ooo | s

Restore Views... dialog. [V || [Memortrengemer

Global Views propagate to |

al your projects, where

Project Views are bound curendy Acive Vew_ oo |
to that particular project. enensrersemert k) ot | [o]

112 Chapter 8. Using Target Hardware

Chapter 8. Using Target Hardware

This section describes the debugging possibilities of uVision in conjunction with
your target hardware. The Keill ULINK USB-JTAG Adapter family is discussed
in detail, and third-party adapters are mentioned.

The following device families are supported by the Keil ULINK adapters:
« 8051 ULINK for Infineon XC8xx, ST uPSD3xxx, and NXP LPC95x

= 166 ULINK for Infineon C166, XE166, and X C2000
= ARM ULINK, ULINKProfor ARM7, ARM9, and Cortex-Mx devices

The pVision Debugger interfaces to the target hardware through the following
drivers, which are provided by Keil:

= 8051 Monitor, FlashMon, MonADI, 1SD51, EPM 900, I nfineon DAS
= 251 Monitor

« 166 Monitor for C166

« 166 Monitor, Infineon DAS for XE166, XC2000

» ARM SEGGER J-Link/J-Tracefor ARM7, ARM9, and Cortex-Mx

In addition, many third-party vendors offer pVision drivers for their hardware,
for example:

= 8051 CypressUSB development kits for EZ-USB devices
= 8051 Quickcore FPGA based Pro8051 device

« 8051 SST Softl CE for FlashFlex51 devices

= 8051 SilabsDebug Adapter for C8051Fxxx devices

= ARM Signum Systems JTAGjet for ARM7, ARM9, and Cortex-Mx
devices

Getting Started: Creating Applications with pVision

113

Configuring the Debugger

A% Choose Target Options —from the Build Toolbar and select the Debug

tab

Alternatively, you can use
the Project — Optionsfor

Target Menu, to open this
diaog.

Check the Use radio button
and select the appropriate
debug interface.

Control Description

Settings

Load Application at Startup
Limit Speed to Real-Time

Run to main()

Initialization File

Breakpoints

Watchpoints & PA

Memory Display
Toolbox
CPUDLL

Driver DLL

Dialog DLL

Options for Timer - Target 'MCBSTM32'
Device | Target | Output | Listing | User | C/C++| Asm | Linker Debug | Utittes |

Settings || @ Use: [ULINK ARM Debugger v| Setings
UILINK ARM Debugge;
ULINK Cortex Debuggsr
RDI Interface Driver
v
¥ Load | o Blastor Cortow Debugger
Initializatid | uminary Eval Board

" Use Simulator
[Limit Speed to Real-Time

¥ Load Application at Startup
Initialization File
[Bl
Restore Debug Session Sttings
[Breakpoints ¥ Toolbox
¥ Watchpoints & PA
¥ Memary Display

[¥ Run to main{) b main()

¥ Breakpoints
¥ Watchpoints
¥ Memory Display

¥ Toolbax

CPUDLL: Parameter:
[sARMCM3.DLL [

Driver DLL: Parameter:
[SARMCM3.DLL |

Dialog DLL: Parameter:
[pARMSTM.DLL [»STM32F103RB

Dialog DLL:
[TARMSTM DLL [pSTM32F103RE

Parameter:

==

ok | [Cancel | [Defats |

Opens the configuration dialog for the simulation driver or the
Advanced GDI target driver

Loads the application program when you start the debugger

Limit simulation speed to real-time such that the simulation does

not run faster than the target hardware
Program execution halts at the main C function. When not set,

the program will stop at an implicit breakpoint ahead of the main

function

Specifies a command script file which is read and executed
when you start the debugger, before program execution is
started

Restores breakpoint settings from the prior debug session

Restores watchpoints and Performance Analyzer settings from
the prior debug session

Restores memory display settings from the prior debug session
Restores toolbox buttons from the prior debug session

Specifies the instruction set DLL for the simulator. Do not
modify this setting.

Specifies the instruction set DLL for the target debugger. Do not

modify this setting.

Specifies the peripheral dialog DLL for the simulator or target
debugger. Do not modify this setting.

Chapter 8. Using Target Hardware

Programming Flash Devices

The pVision IDE can be configured to program the Flash memory of your target
system. You can use third-party Flash programming tools that you may attach to
and invoke from the devel opment environment. Flash programming is
configured from the Utilities tab of the Optionsfor Target dialog. You haveto
select the target driver, or athird-party command-line tool, which is usually
provided by the chip vendor.

Options for Measure - Target 'LPC2129 Simulator’ ==
Device | Target | Output | Listing | User | C/C++ | Asm | Linker | Debug lilties |
Configure Flash Menu Command

{+ |Use Target Driverfor Flash Programming

ULINK ARM Debugger - Settings ™ Update Target before Debugging
it Fie: | |
" |se Extemal Tool for Flash Programming
Command:|—:':;]:"3]
Arguments:| #H" "% S0 COM1: 9600 1
=3
QK | Cancel | Defaults | Help

Select Use Target Driver for Flash Programming to use atarget adapter, like
the Keil ULINK USB-JTAG Adapter, SEGGER J-Link, EPM900 Emulator, or
Silabs adapter to program your system’s Flash memory.

Select Use External Tool for Flash Programming to use athird-party
command-line utility, like FlashMagic, to program your system’s Flash memory.

%3 Once configured, the Download to Flash button of the Build Toolbar
or Flash Menu downloads the program to your target system’s Flash
memory

Y ou can configure the pVision Debugger to automatically download to flash
memory. To do so, check Update Target before Debugging.

Getting Started: Creating Applications with pVision 115

Configuring External Tools

To configure puVision for Flash' programming with a command-line utility, select
Use External Tool for Flash Programming and specify the Command and the
Argumentsto be used.

A% Choose Target Options —from the Build Toolbar and select the
Utilitiestab

Alternatively, you can use the Project — Optionsfor Target Menu to open the
Utilities dialog.

Options for Measure - Target 'LPC2129 Simulator' ==
Device | Target | Output | Listing | User | C/Cs+ | Asm | Linker | Debug Utilties .
Configure Flash Menu Command

(" Use Target Driver for Flash Programming
||_|_ NK ARM Debugger J r
Init. File: | J

{* Jse Extemal Tool for Flash Programming;

Command:|LPC210x_ISP.EXE
Arguments: ["#H" "X SD COM1: 3600 1

[+ Run Independent

Ok | Cancel | Defaults | Help

Project-specific items, like the path for the generated HEX file, output file name,
device name, or clock frequency can be used in the Arguments field.

Please use the on-line Help for additional information.

! The pvision Device Database provides the correct configuration for memory Flash of many
microcontroller devices.

116

Chapter 8. Using Target Hardware

Using ULINK Adapters

TheKell ULINK USB-JTAG family of adapters, further referred to as ULINK,
connects your PC's USB port to your target system. The connection between the
microcontroller and the ULINK unit can be established viathe JTAG" port pins
of the embedded system. The ULINK adapters enables you to:

= Download target programs

= Examine memory and
registers

= Single-step through
programs

= |nsert multiple breakpoints

* Run programsin red-time o =
| [EIKEIL ULINKZ Y

= Program Memory Flash il

Before using the Debugger on target hardware, you have to configure the
pVision IDE to use the ULINK adapter, or any other external tool suited for
Flash programming.

The pVision Debugger can display memory contents and variablesin severa
familiar formats. Memory and variables are updated periodically, providing an
instant view of the current program status, even during program execution. It is
possible to set breakpoints that trigger on accessing a specific variable.

The Keil ULINK adapter family supports Flash device programming with
configurable programming algorithms. Y ou can choose from preconfigured
programming al gorithms, or customize the a gorithms according to your needs.
External Flash memory programming is supported for many target systems as
well.

! The ULINK adapters support a wide variety of devices and protocols, and support your target
hardware port pin characteristics.

Getting Started: Creating Applications with pVision 117

ULINK Feature Comparison

Feature ULINK2 ULINKPro
Run control debug (ARM & Cortex-Mx) Yes Yes

Run control debug (8051 & C166) Yes -

Data Trace(Coretex-M3) Yes Yes
Instruction Trace(Cortex-M3) - Yes

JTAG Clock Speed 10MHz 50MHz

Flash Download 28 KBytes/s 600 KBytes/s

Configuring pVision for ULINK Adapters

When using ULINK adapters, you must change afew settings, so that the
pVision IDE knows how to use the ULINK adapters for debugging. In detail,
you must configure:

= Debug Settings

= Trace Settings (for Cortex-Mx devices only)

« Flash Download

Connect the ULINK adapter to your PC. Only then, the ULINK configuration is
possiblein puVision.

A% Click Target Optionsfrom the Build Toolbar and select the Debug tab,

or open the dialog from the Project — Optionsfor Target — Debug
Menu

Click the Settings button to open the Target Driver Setup dialog.

118 Chapter 8. Using Target Hardware

Configuring Debug Settings

TheTar ga Driver Setup Cortex M Target Driver Setup =
dia og depends on the Debug | Tracs | Fissh Download |

. . ULINK USB - JTAG/SW Adapter JTAG Device Chain
target device selected in Serial No =l IDCODE Device Name |_IRlen
H TDO
your project. ULINK Ve [TEIVZ e |
Device Family: [Cortex-M TOI
. Firmware Version: [V/1.37 " Automatic Detection —
Please use the on-line Help P swi ot [T =] || C Ml Corguaion
for additional information. Max Cocc [Tz = l—
Debug
Connect & Resst Options Cache Options Dowrload Options
Connect: [Nomnal _v| Reset:[Autodetect | | | W Cache Code I Verfy Code Download
[# Reset after Connsct F¥ Cache Memory | | I~ Download to Flash

Configuring Trace Settings

TheTracedia og tab Cortex-M Target Driver Setup =
controlsthereal-timetrace | oo '™ | towiona]
operati ons. Core Clock: | 10.000000 MHz ¥ Trace Eriskls
Trace Port Timestamps Trace Everts
Serial Wire Output - UART/NRZ W Encble Prescaler:[1 =| | | [~ CPI-Cycles per Instruction
Please use the on-line Help W0 Clock Prescaer. [© — B o
for additional information. , ¥ dsices Prscae 1026756 =] | | 5 Load St U yckes
SWO Clocke:| 1250000 MHz [Periodic Period: | <Disabled> I FOLD: Folded Instructions
Emor: <SW Port net selected> I on Data R/W Sample [+ EXCTRC: Exception Tracing
The Trace features are 1T St e
. 31 Port 2423 Port 16 15 Port 8 7 Port 0
ava |ab|e for COrteX-MX Enable: |FFFFFFFF WRV Wi RV RV R
. Privilege: | Bx00000007 Port 31.24 [Port 23..16 [v Port 15.8 ¥ Pot 7.0 ¥
devices only.
Cancel Help

Getting Started: Creating Applications with pVision 119

Configuring Flash Download
TheKeil ULINK drivers support awide variety of Flash-based microcontrollers.

A% Click Target Optionsfrom the Build Toolbar and select the Utilities
tab, or open the dialog from the Project — Optionsfor Target Menu

To configure uVision for a specific driver, select Use Target Driver for Flash
Programming and choose the appropriate driver from the drop-down control.

Use the Settings button to open the driver-specific Flash Download Setup
dialog.

Here' you can Conflgure Flash Download Setup ==
Download Function RAM for Algorithm

how Flash Download wogp © EmseFulChip ¥ Program

works and specify the B ot [reokmirn || S

programming algorithms Programming Agorihm

that are required by your e o o

target system.

Please use the on-line Help
for additional information. Star: [G00000000 Size: 00020000

Add Remove OK | Cancel ‘ Help

120

Chapter 8. Using Target Hardware

Programming Algorithms

The ULINK driver alows
you to specify the
programming algorithm
used to program Flash
memory.

Use the Add button of the
Flash Download Setup
dialog to open this dialog
Add Flash Programming
Algorithm.

From here you can select
one or more programming
algorithms, one for each
different Flash device.
Highlight your preferred

=]

Add Flash Programming Algerithm
Description | Device Type | Device Size |
ADUCTOZX Fash (v1.1) On-chip Flash B2k
ADUCTOIX Flash 32KB (v1.4) On-chip Flash 30k
ADUCT03X Fash 64KE {v1.1) On-chip Flash B2k
ADuUCT70% Fash S6KE (v1.4) COn-chip Flash Sdlc
ADUCT0EX Flash 32KE {v1.0) On-chip Flash 30k
ADUCT12¢ Flash (v1.2) On-chip Flash 126k
ADUCTZZS Fash (v1.2) On-chip Flash 126k
AMZ9F1600B Flash Ext. Flash 16-bit 2M
AMZ9F1600T Flash Ext. Flash 16-bit 2M
AMZIF32008B Flash Ext. Fash 16-bit 4M
AMZSF3200B Dual Fash Ext. Fash 32-bit &M
AMZ9F3200T Fash Ext. Flash 16-bit 4M
AMZ9F3200T Dual Fash Ext. Flash 32-bit &M
AMZ25<033 Flash Exd. Flash 8-bit 4M
AMZ5<128 Flash Ext. Fash 16-bit 16M
AMZ29<800BE Fash Ext. Flash 16-bit ™
| | | Cancel

»

m

programming algorithm to Add it for your target hardware.

If the Flash device you use is not listed, you may define new agorithms. Do this
for anew Flash device, which is currently not directly supported by Keil. You
may use the algorithms found in any \FLASH\ folder as a template for new

algorithms.

The programming algorithms included in your kit are stored in these folders:

= ARM Toolset: \KEIL\ARM\FLASH\

= C16x Toolset: \KEIL\C166\FLASH\

Getting Started: Creating Applications with pVision 121

Using an Init File

Some applications or target systems require the execution of specific debug
commands or functions ahead of Flash programming. Thisfeatureistypically
used to define BUS configuration for your device or to program Flash with
auxiliary files, containing code or data, which are not included in your target
program. The debug commands and functions are stored in an initiaization file
defined by the I nit File text box. Thisfile is executed before the Flash download
is performed.

BUS Configuration

Typicaly, the BUS system has to be configured before a device with external
Flash memory can be programmed. If you use the ULINK USB-JTAG adapter,
you may create an initialization file that uses predefined debug functions, like
_WBYTE and _WDWORD, to write to memory and configure the BUS. For
example:

_WDWORD(0xFFE00000, 0x20003CE3) ; /1 BCFQD: Flash Bus Configuration
_VWDWORD(0xE002C014, OxOEG001E4) ; [/ PINSEL2: CSO, OE, WE, BLSO..3

Auxiliary Memory Content

In addition to BUS configuration, theinitialization file may contain instructions
to load auxiliary programs or datainto memory. For example:

LOAD MyFi | e. HEX

By default, the executable specified Project — Optionsfor Target — Output is
downloaded to Flash.

122 Chapter 9. Example Programs

Chapter 9. Example Programs

Each Kell toolset includes example programs, which are ready to run and which
help you to get started. Browse the examplesto learn how the devel opment tools
work and get familiar with the look and fedl, as well as with the behavior of
pVision. You may copy the code of the examples for your own purpose.

Example programs' are stored in the \EXAMPLES\ folder, where each program
residesin a separate subfolder along with its project files. Thus, you can re-build
the examples and evaluate the features of uVision quickly.

While there are numerous example programs for you to examine, this manual
describes and demonstrates only four:

= Hdlo: Your First Embedded Program
= Measure. A Remote Measurement System
= Traffic: A Traffic Light and Pedestrian Cross Walk System

= Blinky: An example of how to usetarget hardware

As described in the previous chapters, many actions or functions of pVision can
be called from atoolbar, amenu, or by entering a command in the Command
Window. Some actions may be triggered through key combinations.

We advise you to try out the various functions of pVision whilein Debug M ode.
Please test the features described in preceding chapters. In particular, get
familiar with the navigation, invoke the Context M enu of various objects, drag
and drop windows to other screen areas or other physical screens, and create and
save personalized layouts. Invoke the Performance Analyzer, Logic Analyzer,
Code Coverage, Symbols Window, and drag and drop items from one window
to another window. Single-step through the code, get familiar with the
Disassembly Window, and inspect how it works in conjunction with the
Register Window, Output Window, and Serial Window.

! Example programs are license free.

Getting Started: Creating Applications with pVision 123

“Hello” Example Program

Thefirst program in any programming language simply prints“Hel | o Wor | d”
to the screen. In an embedded system, there is no screen, so the “Hello” program
sends its output to the on-chip serial port. This entire program has one single
sourcefile, HELLO.C.

This small application helps you to confirm that you can compile, link, and
debug an application. Y ou may perform these operations from the command
line, using batch files, or from pVision using the provided project file.

Thetarget hardware® for the “Hello” project is based on a standard
microcontroller. Examples are provided for all supported architectures and are
located in the folders as specified in the table bel ow.

Architecture Example Folder

ARM \KEIL\ARM\EXAMPLES\HELLO\
C166/XE166/XC2000 \KEIL\C166\EXAMPLES\HELL O\
8051 \KEIL\C51\EXAMPLES\HELLO\

Opening the “Hello” Project

To begin working with the “Hello” project, open the HELLO.UVPROJ project file
from the appropriate example folder.

Select the Project — Open Project Menu and open HELLO.UVPROJ from the
..\EXAMPLES\HELLO\ folder.

Alternatively, you may drag and drop the HELLO.UVPROJ fileinto the pVision
application, or simply double-click thefile.

! Since pvision simulates the target hardware required for this program, you actually do not need
target hardware or an evaluation board.

124

Chapter 9. Example Programs

Once the project has been opened,
pVision shows the source files that
comprisethe project. Thefilesare
shown in the Project Window.
Double-click on HELLO.C to view or
edit the sourcefile. pVision loads
and displays the file contents in the
Editor Window.

K4 Hello - jivisian
Eile Edit Wiew Projecd Flash Debug Periphensls Jook SMCS Window Help

Sloies

wiint mein (voia} o

R . U tem [83 1 |

S @ g] iE IE s [adclnl
i LR & b
T -
© =
m
o
L 24 Symtern Calls &
M] Retsmgetec ch
b 2] Sevialc &
5 25 Saurce Code i
|] Hefod 10
1424 Documentztion 11| ‘#2nclude <=tdaa.bs 4
2] Abstractbe 12| #anclude <LBCZ1an. By LECZIm

Building the “Hello” Project

Compile and link the project using
the Build button of the Build
Toolbar, or select the Project —
Build Target Menu.

pVision runs the assembler and
compiler, to assemble and compile
the source files of the project. The
linker adds the necessary object
modules and combines them into a
single executable program, which
may be loaded by the pVision
Debugger for testing.

Y ou can follow the build processin
the Build Output Window. Errors,
warnings, and additional trace
messages are displayed here.
Double-click an error or warning
message to jump to the source line
that triggered the notification.

Hello - pVision
File Edit View

Project | Flash Debug Peripherals

Tools 5V

Mew pVision Project...

GHd
& i

Mew Multi-Project Workspace...

Open Project...

Close Project
=553 LPC2100 LA
Ea Startup J Export

Manage

Select Device for Target 'LPC2100°...
Remove Item

Options for Target "LPC2100"...

Clean target

Alt+F7

LE] Build target

Rebuild all target files

Batch Build...
@ Translate C\Keil\ARM\Examples\Hell Ctrl+F7
Stop build
=] Project | Oy Temy]
v | 1 ChKeilARM\Examplesi\Hello\Hello
Build target files = 2 B
7 CAKail ST FramnlaciHF L OWHFL It
Build Output x
Build target 'LPC2100' P

compiling Retarget.c...
compiling Serial.c...

compiling Hello.c...

linking...

Program Size: Code=728 RO-data=32

".\Cbj\Hello.axf" - 0 Error(s), O Warning(s).

RW-data=4 ZI-data=1164

Getting Started: Creating Applications with pVision

125

Testing the “Hello” Project

Once the “Hello” program has been

compiled and linked successfully, test it

with the pVision Debugger. Select
Debug — Start/Stop Debug Session
from the menu or from the File Toolbar .
pVision initializes the debugger, starts
program execution, and halts before
entering the main() C function.

WC210

Use the following debugger commands
to control program execution.

i Open the Serial Window UART #1 to display the application’s output

‘lash | Debug | Peripherals Tools SVCS Window He
|@ Start/Stop Debug Session Ctrl=F5 I_\j
5 Reset CPU
= Run F5 I
y i stop ok
] step SR
11" Step Over Flo = 1
i I = K¢
11| Step Out Ctrl+F11 |
{4 Funto Cursor Line Ctrl=F10 r_:

Click the Run button of the Debug Toolbar or choose Debug — Run to
start the “Hello” program. “Hel | o Wor | d” is printed to the Serial

Window and the program entersinto an

€ Click the Stop button to halt the program. Alternatively, press the Esc
key while in the Command Line of the Command Window

@ Usethelnsert/Remove Breakpoint command to set or clear a

breakpoint

&% Test the Reset command to reset the simulated microcontroller. If the

endless loop.

program is still running, it halts at the first breakpoint.

1 Single-step through the program using the Step buttons. The current
instruction, which will execute next, is marked with ayellow arrow. The

yellow arrow moves each time you step.

126 Chapter 9. Example Programs

While debugging, uVision displays the following default screen layout. If you
re-arrange the layout, pVision saves the layout automatically and provides this
layout next time you invoke the debugger. However, you cannot explicitly recall
the changed layout, unless you saved it through the Window — Debug Restore
Views... Menu.

Hello - piVision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

RRN=T =N A REN {j= Jfz | (% adetin1 Be @ ecsd[H]
Hoane < NI s SR .}gg.g-gj-}l,!. =

| Register 26: printf ("Hello World\n"); /% the 'printf' function call =
ERT— 27: E
1°0x00000208 E28FOD0C ADD RO, BC,$0x0000000C
= =L *""“”“"C"ﬁ’"-‘ "‘-'-‘“”“”-‘Af’ T §Ven$ATETES 2printf (0x0000025C)
B i i Uf’uel'?aii'l /* Bn embedded program de
R e e |
e R . . BONES363 *0x00000214 EAFFFFEF = nwnnNnnnata
H t 5 c x
RS 0000022 0x00000218 E002C00 Instruction Trace
RE 00000000 0x0000021C 6CECE32 fper. [Execution-Asm v = e
NxNNNNN220 AFRET20AT
R7 00000000 =
e el || S R N Nr. [Address [Opcode | instnuction |
-Fg 00000000 ||| — = 65517 |(:0OD00214 |EAFFF. [B (x00000214 x|
RID 300000000 e —| 65518 | (x00000214 |EAFFF.. (B (xD0000Z214
R TElint main (voic| ge5ig | (40000214 | EAFFF.. |B 00000214 f]
65520 | 000000214 | EAFFF... | B

Rz Doooooass

1% PINSELO | xDoD00214 B
1% DILCR = O3 go5p3 | (D004 | EAFFF.. | B
] UIDLL = 97: | 65524 |(x00000214 | EAFFF... | B
: 1 ULLCR = O0x0:) g5505 |(xD0O000214 | EAFFF... | B J
S : 65525 | BODDOO214 | EAFFF.. | B (]
o User/System 1% S — ————— 1B e [ki betsd i3 AN =

H- Fast Intemupt
- Intemupt

1+ while (1} { F* An

&= project I = Registers

|Hello World - Address'jmam—- B\:|: Mask: [* ™ Case Sensitive

|0x000001DC: 10 40 2D E9 05 08 AQ E3 2C 10 OF E5 Name [Adsress I Type
|0x000001ES: 00 00 81 E5 83 00 A0 E3 07 18 41 E2 = Simulste

|0x000001F4: OC 00 C1 E5 61 00 A0 E3 00 00 C1 ES +5g Peripher...

|0x00000200: 03 00 AC E3 OC 00 C1 E5 OC 00 8F E2 = B Helo Application

(Z3 Run

:GxODOOOEDC: 12 00 00 EB 00 00 AOQ E1 FE FF FF EA

|0x00000218: 00 CO 02 EO 48 65 6C 6C 6F 20 57 6F Hello Module
_ |loxo0000224: 72 6C 64 OA 00 00 00 00 01 CO 8F E2 [Ret. Module
= |0x00000230: 1C FF 2F E1 05 4C 06 4D 04 EO 20 00 5[] Seral Module
] command |-§'§UART#Z ‘
Real-Time Agent: Not in target Simulation t1: 508

Take the opportunity to get familiar with the new look and fedl, and the
navigation features. See how the content of registers and memory areas can be
changed. Display the valuesin the different representations. We recommend
taking some time and using this simple example to explore the pVision
capabilities.

Getting Started: Creating Applications with pVision 127

“Measure” Example Program

The“Measure” program is a simple example that collects analog and digital data
using methods similar to those that can be found in weather stations and process
control applications. Three source files: GETLINE.C, MCOMMAND.C, and
MEASURE.C are used.

The“Measure” program’ records data received from digital ports and A/D inputs.
A timer, which can be configured between 1 millisecond and 60 minutes,
controls the samplerate and interval. The current time and al data from the
input channels are measured and saved to aRAM buffer.

Please find your preferred “Measure” program in one of the following locations:

Architecture Example Folder

ARM \KEIL\ARM\EXAMPLES\MEASURE\
C166/XE166/XC2000 \KEIL\C166\EXAMPLES\MEASURE\
8051 \KEIL\C51\EXAMPLES\MEASURE\

Opening the “Measure” Project

To start the “Measure” project, open
the project file MEASURE.UVPROJ from E"?;C;:juj"gz:j'
the example folder of your choice.

RS Startup.s —
- -3 System Calls A% Options for File ‘Startup.s’... Alt+F7

Open Startup.s

Compile the program; enable or disable
the include files in the project structure,
invoke the Context Menu of the
Project Window, and toggle Show

Open List File

Open Map File

4 Rebuild all target files

£} Build target F7
Abstract.ty Translate Startup.s

Include File Dependencies. ——

L Eer.. {15 AddGroup.
Three application-related source code Add Files to Group...
filesarelocated in the Sour ce Code S
group. Theserial I/0 and system & anage Components.
modules are placed in the System Show Iaclude File Dependencies

Calls, whereas the startup file resides under the Startup Code group.

! Since pvision simulates the hardware required for this program, you do not actually need target
hardware or an evaluation board.

128 Chapter 9. Example Programs

A project may contain one or more targets, a feature that allows you to build
different versions of your program. The “Measure” project contains several
targets for different test environments including the simulator and evaluation
boards. Select the model with the Simulator target. The following files comprise
the source code:

MEASURE.C Thisfile contains the main C function and the interrupt
service routine for thetimer. The main function initializes all
peripherals and performs command processing. Theinterrupt
routine manages the real-time clock and sampling.

MCOMMAND.C Thisfile processes the display, time, and interval commands.
These functions are called from the main C function. The
display command lists the analog values in floating-point
format to give a voltage between 0.00V and 3.00V.

GETLINE.C Thisfile contains the command-line editor for characters
received from the serial port.

Building the “Measure” Project

There are several commands you can access from the Pr oject Menu and the
Build Toolbar to compile and link the filesin a project.

& Usethe Trandate File command to compile the selected filein the
Project Workspace

% Usethe Build Target command to compile files that have changed
since the last build and link them

¥ UseRebuild All Target Files command to compile and link all filesin
the project

Use the Stop Build command to halt a build that isin progress
Select the Build Tar get command to compile and link the source files of the

“Measure” project. pVision displays a message in the Command Window
when the build process has finished.

Getting Started: Creating Applications with pVision 129

Source Browser

The“Measure” project is configured to generate complete browser and debug
information.

= Usethe Source Browse command from the File Toolbar or View
Menu to view information about program variables and other objects

Testing the “Measure” Project

The“Measure” program is designed to accept commands from the on-chip serial
port. If you have actual target hardware, you may use Hyperterm or another
terminal program to communicate with the board. If you do not have target
hardware, you can use pVision to simulate al aspects of the hardware, for
example, the Serial Window in pVision simulates serial input.

@) Usethe Start/Stop Debug Session command from the Debug T ool bar
or Debug Menu to start the pVision debugger

Using the Serial Commands

Test the following commandsin the Serial Window.

Action Command Description

Clear C Clears the measurement record buffer

Display D Displays the current time and input values continuously

Interval | mm:ss.ttt Sets the time interval for measurement recording. The interval
time must be between 0:00.001 (for 1ms) and 60:00.000 (for 60
minutes).

Quit Q Quits the measurement recording

Read R [count] Displays the saved records. Specify the number of records to be

shown. All records are transmitted if count is not specified. You
can read records on the fly if the interval is greater than one
second, otherwise recording must be stopped.

Start S Start recording. Data inputs are stored at the specified time
interval.

Time T hh:mm:ss Sets the current time in 24-hour format

Chapter 9. Example Programs

Using the Serial Interface

=# Opentheseriadl UART Window from the View Menu or the Debug
Toolbar to view the output

Before you Start runnl ng the \lmtl.z::lvnlr.age on the four analog inputs ADO trough AD3.] T
“Measure” program, open the rea 2| vesa e :
Serial Window so that you can T 1T e }
enter commands and view the e i
program output. | staze 1 S |

Running the Program

Use the step-buttons to execute code commands individually. If the Disassembly
Window is the active window, the debugger steps through assembler instructions
rather than through the source code.

= Thecurrent instruction or high-level statement (the one about to execute)
is marked with ayellow arrow. Each time you step, the arrow movesto
reflect the new current instruction line.

Use the Run command from the Debug Toolbar or Debug Menu to start
debugging the program

€ Usethe Stop command to halt program execution or press the Esc key
while in the Command Window

1 Usethe Step Into command from the Debug Toolbar or Debug Menu
to step through the program and into function calls

{* Usethe Step Over command from the Debug Toolbar or Debug Menu
to step through the program and over a function call

{¥* Usethe Step Out command from the Debug Toolbar or Debug Menu to
step out of the current function

+ UsetheRun To Cursor Line command from the Debug Toolbar or
Debug Menu to run the program to the line you just highlighted

Getting Started: Creating Applications with pVision 131

Viewing Program Code

[E, Usethe Disassembly Window command from the Debug Toolbar or
View Menu to view mixed source and assembly code

Test the various stepping bisassembly x
. . . 0x0800046C 6803 LDR ri, [r1,#0x00] -
commands, first while in the nggaggggsz mogoi A moases
R . ®O8: T2 ri, [pc 2 : x08
Disassembly Window, and then Blexazooes/ | wcaese b1
whilein the Editor Window. 51; | | Assemblybode
. . . 0080004 Address Range 4 0..64K 04EC
Notice the different behavior of 2000008 csaseny ot s 0.128¢
: N 0...256K
the Debugger gig;ggg: Set Program Counter o 04EC
oxo20004 *{} Runta Cursar line Ctrl+F10 oan lbaEs
0080004 .
Cadll the Context M enu of the 0x020004 I"M'_RE_’"°"E_E”_E"°°_‘“ - 0..16M
. . . lox020004 Enable/Disable Breakpoint Ctrl=F9 0.4GB BES
windows while moving the mouse s I — 1
. . . 0x080004 Inline Assembly... ; BOx0Z0004ES
over various code lines. Notice 0%080004 Load Hex or Object file... a1
the different options. They ox050004 | tnstrucion rae >
depend on whether the statement oxoso00q | DeMien Frofiing bpoeos B
can be executed or not. Noticethe ooy ™ meetRemeesoomare color2 | 7 Coxpeonosze
Ilr_]es marked gr%r]l gray, or g:g;gggqsf‘ f:f: LUK TI, |p§tr!¥_,cuj ; BOx030004EC
without any color. Invoke the o T b
ConteXt M enu Whlle pOI ntl ng on lomag;éeao 4813 1_1:'1:’_“3 ;;Ti:_;ge?m @OxX080004F0
the memory address. ™ T '

Using the Call Stack

Use the Call Stack Window command of the Debug Toolbar or View
Menu

(rm |

pVision tracks function nesting
and displays datain the Call
Stack Window. Double-click
on theline of afunction to jump
to the source code.

Call Stack
Stack Frames | Walue/Address
% stm3dZ2_Init]
- @ main()
i@ cmdbuf k2000057 "™
@i k<0280028C0
@ ide 080028C0

].;,'_'. Call Stack |j§§'.-‘."atch 1 |

Memary 1 |_IES}'n1h-:|Is |

Chapter 9. Example Programs

Using the Trace Buffer

In any programming process, it is often required to investigate circumstances that
led to a certain state. Y ou can guide the pVision Debugger to record instructions
into a trace memory buffer. In Debug M ode, you can review the trace buffer
using the View — Trace — Show Recordsin Disassembly command.

2] Usethe Trace Windows command from the Debug Toolbar or from the
View —Trace—Instruction Trace Window Menu to view executed
instructions stored in the trace buffer

Instruction Trace X | Disassembly X
Fiter ,W‘ - -10 0x0000025C ETFE B 0x0000025C »
-3 0x0000025C E7FE B 0x0000025C
Nr Address Opcode Instruction -2 0x0000025C ET7FE B 0x0000025C
(x0000025C 3 (x0DD0025C -7 0x0000025C ETFE B 0x0000025C
65518 | b«D0ODD25C | EVFE B (0000025C] 0x0000025C ET7FE B 0x0000025C
65515 | (eDOODD25C | EFFE B [0000025C -5 0x0000025C ETFE B 0x0000025C
65520 | b«D0ODO25C | EVFE B (< 0000025C =1 0x0000025C ETFE B 0x0000025C
65521 (x0000025C | EFFE B (kc0000025C -3 0x0000025C ETFE B 0x0000025C
65522 | beD0OD0Z25C | EVFE B (x0000025C -2 0x0000025C ETFE B 0x0000025C
65523 | (bxD0ODO25C | EFFE B (0000025C -1 0x0000025C ETFE B 0x0000025C
65524 | eD0ODD25C | EFFE B [k 0000025C 0x000002 5C ETFE B 0x0000025C
65525 | (xD0ODD25C | ETFE B (0000025C 0x0000025E 0000 LSL RO, RO, #0
65526 | OxD0OO025C | EFFE B (x0000025C 0x00000260 ECECE548 DD 0xECECES4E
65527 | b«D0ODD25C | EVFE B (0000025C 0x00000264 7266206F DD OxT266206F 2
65528 | OD0ODD25C | EFFE B [0000025C - 4 F

Whereas the trace information is always available in the Disassembly Window,
the Instruction Trace Window is enabled for ARM devices only.

In addition, inspect the Register s Windows showing register contents of the
selected instruction.

Invoke the Context M enu of the Disassembly Window to review the options
offered.

When you double-click in the I nstruction Trace Window, the Disassembly
Window shows the corresponding instruction.

Getting Started: Creating Applications with pVision

133

Using Breakpoints

MVision supports execution, access, and complex breakpoints. The following
example shows how to create a breakpoint that is triggered when the value 3 is

writtentocurrent.ti ne. sec.

Open the Breakpoints dialog from
the Debug — Breakpoints Menu.
Enter the Expression
current.tinme.sec==3 and
select the Write check box. This
specifies the breakpoint to trigger
when the program writes the value
3tocurrent.time.sec. Click
the Define Button to set the
breakpoint. Double-click any
breakpoint definition to redefineit.

Breakpoints

Currertt Breakpoints

ite Ox40000032

- (E) (x00000134. "“\Serial\18".
- (E) 0x0000015A, "\Serial\32".
: (E) (x000001DC
- (A write (40000032 len=1). ‘current time sec ==3',
- (C) _time min’. count=70.

Access
Expression |currervt.nme s8c =<3 ¥ Read [V Write
Count: [1 :I: Size:
o =l f ™ Bytes
Commend: | ' Objects
Dcfne | [K Seected i | Cose | Help

Reset the CPU to test the breakpoint, which will trigger and halt program
execution when the number 3 iswrittentocurrent. ti me. sec. The program
counter line of the Debug Window marks the position where the breakpoint

triggered.

Viewing Memory Contents

Menu to display the memory content

L d

pVision displays memory in
various formats and reserves four
distinct Memory Windows.

Define the starting Addressto
view the content, or drag and drop
objects from the Symbols
Window into the Memory
Window.

Open the Context Menu to

Use the Memory Window command from the Debug Toolbar or View

Use the L ock/Freeze icon to prevent values from refreshing

Memory 2 x
| Address: [\LCD_dbit'wait_whils_bu D i
0x08000202: -0.502763 —1. #QNEN ~1.835542:029
0x0800020E: £1.33713e+011 EEEEE 2420 2s
0x0800021R: Se+024 Decimal

0x08000226: 7.263892+024 Unsigned b
0x08000232: -1.98577e+028)

O%OB00023E: 3.1943e-029 SR 4
0x0800024R: -3.40241e+038 s

0x08000256: 1.15457e+020

0x08000262: 2493.27 Float

DXD800026E: 1.73079e+010 Double

0x0800027R: 10304

0x08000286: -1.03551e+034 Modify Memory at 0:0800020F

0x08000292: 306504

OxOS00029E: —1.03551e+034 Set Breakpoint at 0x0300020E

0=080002RA: -1.08551e+034) | 444 cp abitwait_while_busy to.. *
0x08000256: -2,38195e+028

DXD80002C2: -1.89677e+031 -3,86238e+030 544.769
0x080002CE: 3.928192+018 3.63194=+024 2.12947 o

change formats, modify memory, or set breakpoints.

134 Chapter 9. Example Programs

Watching Variables

The pVision Debugger provides two Watch Windows to which you can add
variables, structures, and arrays for easy reference. The Watch Window updates
at the end of each execution command. Enablethe View —Periodic Window
Update Menu to refresh the content of this window during program execution.

& Usethe Watch Window command on the Debug Toolbar or View
Menu to launch the functionality or invoke the L ocals

The L ocals page shows local Watch 1 x
symbols of the currently Name [Value
executed function. \Measure\mdisplay 000000000
(PORTO & (x8000)>>15 (00000001

‘ “PortD [7BFFFFFF
The WaIChpageS di Spl ay =\ Measure\setinterval struct interval { ...
program objects, which you min 00
desire to monitor. Structuresand sec 00

msec D000

arrays open on demand when Lotk D 10842AC0
you click on the [+] symbol.
Indented lines reflect nesting.

FELocals |,;£IWatch1 |

There are several ways to add variables to Watch pages.

= Inthe Watch Window, select the last line (<double-click or F2to add>) on
the Watch page. PressF2 or click with the mouse on thisline. Enter the
name of the variable you wish to watch.

= Select avariablein the Editor Window, open the Context Menu (right-
click), and select Add to Watch Window

= Inthe Command page of the Output Window enter ws (for WatchSet)
followed by the Watch Window number (1 or 2) followed by the variable
name

= Simply drag and drop an object into this window
Remove avariable from the Watch Window by selecting the line and press the

Del key or use the Context Menu. Individual elements of structures and arrays
cannot be removed singly.

Getting Started: Creating Applications with pVision 135
Viewing and Changing On-Chip Peripherals
The“Measure” program accepts input from severa 1/0 and A/D ports. Usethe
MVision Debugger to view data and interact with peripherals. Changes made to
the inputs are reflected in the dialog window of each peripheral. Enter D inthe
Serial Window to monitor the output and the changes applied to input values.

2% Reset the simulated CPU

Start the programif it is not running already

= Open the Serial Window if it is closed
The b command causes the S 5
“Measure” program to refresh the
time, 1/0O Ports, and the A/D Inputs
continuously. Theinput from the
I/O Port and the A/D converter o soro.ans
channels can be controlled from
peripheral dialogs, which are
available from the Peripherals Menu.
Using Peripheral Windows
The pVision Debugger provides windows for I/O and serial ports, A/D
converters, interrupts, timers, and for most other chip-specific peripherals.
Open the W| ndOWS from the General Purpose Input/Output 0 (GPIO 0) ==
Peripherals Menu. oo, P B P P e
The windows display the SatUSOf | 5+ S5~ (Lo oo o o
the registers as well as the pins of o e e ———
the simulated device. A/D Converter =

ASD Control
Open the A/D Converter dialog to ADCR: |bx002E0401 SEL: |01 v
view the status of the A/D controls CLKS: |4ck/30t v| CLKDIV: [Bx04 [~ EDGE
and A/D data. You can enter input START: [None +| A/D Clock: [3000000
voltages for the Analog Input, which | “appaa
arereflected in the Seria Window. ADDR: [3:00000000 CHN: [0 F DONE
V3A: |3.3000 VAV3A: | 00000 OVEREN
Analog Inputs

AING: [0.0000 AINT:[0.0000 AIN2:[0.0000 AIN3: [0.0000

136 Chapter 9. Example Programs

Using VTREG Symbols

In addition to the peripherd dialogs, you may use Virtual Target Registers
(VTREG) to change input signals. On the Command Window, you can assign
valuesto VTREG symbols. For example:

PORT0=0xAA55 /* Set digital input PORT to OxAAS5 */
Al N1=3. 3 /* Set analog input AINL to 3.3 volts */

Using User and Signal Functions

The pVision Debugger supports a C-like script language that enables you to use
VTREG symbolsin amore programmatic way. A debug signal functionis
included in the “Measure” program. It can beinvoked using the buttonsin the
Toolbox. Inspect the Command Window and press F1 to invoke the on-line
help for further information.

Using the Toolbox

#+ Usethe Toolbox command from the Debug Toolbar or View Menu to

display the Toolbox dialog
The Toolbox contains user-defined buttonsthat arelinked | Toolbox ==
to debugger commands or to user-defined functions. [Update Vindons_|

Several buttons are predefined for the “Measure” program. Button Key2

Button Key3

1
. : 2
The Analog0..3V button starts a user-defined signal . WySmuwsiio |
4
B

function that provides input to Analog Input 1 on the

. . Analogl 0.3V
simulated microcontroller.

Stop Analog

Definitions... button.

Run the program, and use the
Analogl 0..3 button of the
Toolbox to start changing the
signal on Analog Input 1.
Changes applied to the analog -. P i ! :
inputs arereflected intheLogic [FFin i i ol L
Analyzer.

! The additional signals used in this screenshot are not integrated into the Measure example.

Getting Started: Creating Applications with pVision 137
Using the Logic Analyzer
The pVision Debugger includes a configurable L ogic Analyzer you can useto
trace simulated signal's and variables during program execution.
™ OpentheLogic Analyzer Window
from the Debug Toolbar or View Menu
Add anumber of signalstothe LogiC [setup togic analyzer =
Analyzer, including the smulated : :
A/D input sign al. Cument Logic Analyzer Signals: et
S
Click the Setup button in the L ogic
Analyzer Window to open the Setup
dialog. Presstheins key, enter — -
ADC1_IN1%, which is the name of the Soret Do e e
input signal for A/D Channel 1, and TULE reewem P I
close the Setup dialog. You may Color: M R
prefer to just drag and drop the object ™ Hexadecimal Display
from the Symbols Window into the i
L ogic Analyzer Window. FHEe v | SeRE D
Export / Import

For complex an alysi s, multi plesign as Export Signal Defiritions... ‘ Import Signal Definitions... |
can be selected and recorded. Save war [cese | [Heb |
and load the signal definitions using J
the Export Signal Definitions... _
and Import Signal S R S e

e | N 232 | ST

138 Chapter 9. Example Programs

“Traffic” Example Program

The“Traffic’ program’ is an example that shows how a real-time operating
system can be used in an embedded application. This example simulates the
control of atraffic light and walk signal. During rush hours, the stop signal
controls the traffic flow at an intersection and allows pedestrians to cross the
street periodically or by pressing the “Push for Walk” button. After rush hours,
the traffic light flashes yellow.

You interface the “Traffic” program viathe:

= Serial UART Window, where you can change the current time and the hours
of operation

= Toolbox, where you can click the “Push for Walk” button to cross the street

= Watch Window and 1/O Port dialog, where you can watch the state of the
traffic light and the start/stop pedestrian lights

The following table specifies the |ocation of the “Traffic” project filesfor the
various architectures.

Architecture Example Folder
ARM \KEIL\ARM\RL\RTX\EXAMPLES\TRAFFIC\
C16x/XC16x \KEIL\C166\EXAMPLES\TRAFFIC\
8051 \KEIL\C51\RTXTiny2\EXAMPLES\TRAFFIC\
Project ®
Opening the “Traffic” Project =523 Simulator

Ea Source Files
P Traffic.c
Serial.c
Getline.c
5 Configuration

To start working with the “Traffic” project, open
the TRAFFIC.UVPROJ project file from the
appropriate example folder.

RTX_Cenfig.c
Startup.s
Most Keil example projectsinclude atext file =3 Documentation
named ABSTRACT.TXT that explains the aspects L] Abstract.ud
and the intention of the program and isincluded in <= '
the Project Window. |@ero... [@Bo... [Fu.. [UyTe..]

! Since pvision simulates the hardware required for this program, you do not need any target
hardware, an evaluation board, or a traffic light.

Getting Started: Creating Applications with pVision

139

Using the Configuration Wizard

pVision incorporates a s |

Configuration Wizard that assists B || [

Qption

you in choosing the settings for the ek oo (S S 1

Undefined Mode

startup file and other configuration
files.

Traditionally, these files are o
assembler or other source files, -
which include macros or definitions

you may change depending on your

Yalue

0000 100
50000 07
D000 0000
D000 0000
D000 0040
00000 1050

=
[«
3

r

hardware configuration or ETER ot e
preferences.

The Configuration Wizard simplifies the process of making these selections.

Of course, you may always edit these filesin their original source form by

clicking on the Text Editor tab.

Building and Testing the “Traffic” Project

%] Usethe Rebuild command to compile and link al files of the project

The“Traffic” program is designed to accept commands from the on-chip serid
port, which is completely simulated within pVision, and to display output on a

traffic light, which is connected to 1/0O port pins.

Using the Toolbox

#7 Usethe Toolbox command from the Debug Toolbar or View Menu to

display the toolbox dialog

The Push for Walk button is available on the Toolbox.
Click this button to s mulate a pedestrian who wantsto
cross the road and watch asthe “stop” and “walk” lights
change in the Watch Window.

Toolbox

S

| Update Windows

Push for Walk

140

Chapter 9. Example Programs

Using the Watch Window

i Usethe Watch Window command on the Debug Toolbar or View
Menu. Open the Call Stack Window as well.

The status of the traffic pedestrian
lights displaysin the Watch 1 page
of the Output Windows using
predefined watch expressions.

Using I/O Ports

Y ou may also view the traffic light
signal lines on the 1/0O Port dialog
available from the Peripherals Menu.

Using the Serial Window

The Serial Window displays
information and allows you to
change the time and operating hours
of the traffic light. Set the current
time outside of the rush hoursto
view the flashing yellow light.
Check the Watch Window to
monitor the changed behavior.

Watch 1

Name

Value

(I0TPIN=>16)&1
{CTPINz=17)&1
(I0TPIN==18)&1
(I0TPIN=20041
(0TPIN==21)&1
<double-click or

/i red 1
£ yellow
/7 green
/f stop
Ff walk
F2to add:

== =]

General Purpose Input/Output 1 (GPIO 1) _

==}

GPIO1
I01DIR: |2x00FFO000
IO1SET: | 200210000

3 Bits 24 23 Bits. 16 15 Bits 8 7 Bits 0
TTTTTTT MMMV TTTTTTTT ITTTTTTT

MTTT T ITMTTTWITTTTTTT ITTTTTTT

I01CLR: [200000000 | [T

I01PIN: |0xFF210000
Pins: |&xFF210000

WiV T ETTT W

TRAFFIC LIGHT
| This program is a
| start time and end
| with pedestrian se.
| the yellow caution
4+ command -+ syntax
| Display | D

| Time
| Start
| End

| T hh:mm
| S hamm
| E ha:mm

CONTROLLER using MDK and RTX kernel
simple Traffic Light Controller. Between |

time the system controls a traffic light | | |
1f-service. Outside of this time range |
lamp is blinking. 1

fffff + function

| display times 1

iss | set clock time 1

I

I

n

123 | set start time
135 | set end time

ICommand: d
iStart Time: 07:30:00
Clock Thme: 12:04:05

End Time: 18:30:00
type ESC to abort

Use the serial commands listed in the following table. These commands are plain
ASCII text. Each command must be terminated with a carriage return.

Action Command Description
Display D

Set Current T hh:mm:ss

Time

Set Start Time S hh:mm:ss

Set End Time E hh:mm:ss

Displays the current time and the Start Time and End Time of
operating hours. Press Esc to exit display mode.

Sets the current time for the traffic light. If the current time is
within the operating hours specified by the Start and End times,
the traffic light operates as normal. If the current time is outside
the operating hours, the traffic light flashes the yellow light.

Sets the Start Time for normal operation
Sets the End Time for normal operation

Getting Started: Creating Applications with pVision

141

Displaying Kernel-Aware Debug Information

The pVision Simulator alows you to run and test
applications created with areal-time operating system.

Real-time applications load exactly like other programs.
No specia commands or options are required for

debugging.

Kernel-aware debugging is availablein the form of a
dialog that displays the aspects of the real-time kernel
and the tasksin your program. This dialog can be used

with target hardware.

To open the kernel-aware
debug window, use the
Debug— OS Support
Menu.

Debug

Start/Stop Debug Session

88 Reset CPU

i run

@ stop
{

Breakpoint

Ctrl=+F5

Ctri+F11
Ctrl+F10

Ctrl=B

Enable, eakpoint Ctrl+F9
¢ Disable All Breakpoints
a Kill All Breakpoints Ctrl+Shift+Fa
05 Support »
Instruction Trace L3
Execution Profiling b
Memory Map...
Inline Assembly...
Function Editor (Open Ini File)...
Debug Settings...
RTX Kernel |
Active Tasks Isystem } Event V\ewer}
TID | Task Mame Pricrity | State Delay | Event Value | Event Mask | Stack Load
1 get_escape 1 WAT_OR 00000 00100 res
2 clock 1 WAIT_ITY 97 32%
3 command 1 WAIT_OR <0000 (<0003 1%
4 lights 1 WAIT_AND 488 Q<0000 <0010 36%
5 keyread 1 WAIT_DLY 3 32%
55 os_idle_demon] RUNNING 0%

142

Chapter 9. Example Programs

“Blinky” Example Program

The“Blinky” program is an example application that blinks LEDs on an
evaluation board. The blinking LEDs make it easy to verify that the program
loads and executes properly on target hardware.

The“Blinky” program is a board-specific application, and thus, since the boards
are different, the program may show other board-specific features. Refer to the
board manual for detailed information.

Opening the “Blinky” Project

Select the Project — Open Project Menu and choose the respective
BLINKY.UVPROJ project from the following subfolders:

Architecture

ARM
C166/XE166/XC2000
8051

Example Folder

\KEIL\ARM\BOARDS\vendor\board name\BLINKY\
\KEIL\C166\BOARDS\board name\BLINKY\
\KEIL\C51\EXAMPLES\BLINKY\

Each project contains an
ABSTRACT.TXT file that
explains how to use the
“Blinky” program for that
specific board.

Youwill alsofind a
detailed description of the
“Blinky” program in the
User’s Guide manual of
the board.

j' AEM Development Tooks | =0]
H - g o

SEG R O

Corterts | indes | Seawh | Favorres | BLINKY '|

et T P

. T s caodocaon Tha BLINKY example program toggles the LEDs on GPIOZ | |
A T and prints the text on the MCB1700 LCD panel. & bar =|

I+ Getting Slarte Users Cuds graph displays on the LCD panel indicating the position of

3 uMsion® DE Uner’s Guide: the potertiomeater,

1+ @ Pealiie Comaler User Cude

[¥ Raclvia Conoer Rafarens Glids Thie BLTNKY example project demonstrates assembling,

(¥ 9@ RealVizw Lbrenes and Aoming Paim Suppe s compding, linking, dewnloading, and debugging using the

[+ W RoalViow fozembler User Guids uVision 10E on the MCS1700 board. The on-board LEDs
[S ARM instnaction Set Lner's Guide make it easy to visually verify that the program loads ang
[+ @ RsalVisw Lrker Ussr Guce executes properly.
[@ RealMizw Linker Roferercs Guids i
[+ @ Realbiew Ltities Suce Loading BLINKY
[@ RLARK Radl-Tim Librry Liers Gude
= ([MEBT700 Users Guade T load the ELINKY project, select Open Project from the
H (2] rodustion Project menu and epen BLINKY UV2 from the
0 Sehp \KETL\ARM\BOARDS | KETL\MCR1700\BLINKY,
) (2] Theary of Oosrshon folder,
(3 Withg Frograma
Bl (@) Bomale Frgems Select Project File

=&
=] Buieing BLINY Lagkin: |y By | = By E
=] Cowraading BLINKY M—
= Pk A 1Y wa IEFleshy
i ’ T mm—

m

Getting Started: Creating Applications with pVision

143

Building the “Blinky” Project

The project may contain several targets, for example:

= Simulator: isaconfiguration to debug code without real target hardware

= Board specific target: is a configuration to download and test the program on

rea target hardware

For testing on hardware
ensure that Board specific
target is selected.

Blinky - pVision

([=3Eo8 =)
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
B3 & " = i= [# adcl_inl
§3 mcesMz [N b
EEr —

=823 MCBSTM32

[=-£5 Retarget
=23 Library

€]

}EIPH. @e..| . |0,T.

543 Startup Code
..... STM32FL0%s

=454 Flash Options |~
..... [.2) STM32F10xC

[+ [#] Retarget.c

LCD_4bit.c
i e . v

v

MCBSTM32
MCBSTM32 + OPT

— AD is used with DMA
AD settings: 12 bit resolution

The
Simulator:

MCBSTM32:

MCESTM32 + OPT: MCESTM32 with Flash Options

tings: 115200 baud, & data bits, ,—uz'

Blinky program is available in different ta:
configured for software Simuls
runs from Internal Flash locat
(used for production or target

(used for programming)

Select the target to use

Use the Rebuild command of the Build Toolbar to compile and link all

project files, or use the Project — Rebuild all target files Menu

The executable files are
placed in an output folder
and are ready for
downloading.

Build Qutput

compiling
compiling
compiling
compiling
compiling
linking...
Program Size:

Pl

Build target 'MCESTM32"
assembling STM32F10x.s...
Retarget.c...
LCD 4bit.c...
Serial.c...

S5TM32_Init.c...
Blinky.cC...

Code=3148

RO-data=396 RW-data=24 ZI-data=512

FromELF: creating hex file...
" . A\Cbj\Blinky.axf" - 0 Error(s),

0 Warning(s).

144

Chapter 9. Example Programs

Downloading the “Blinky” Program

Before using the Download command for the first time, verify the Flash options
in the Project —Optionsfor Target — Utilitiesdialog. Alternatively, you can
use the Flash — Configure Flash Tools... Menu to reach the identical dialog.

Connect the board to your PC.

After you have configured the uVision IDE, the Flash — Download Menu uses
the specified adapter for Flash programming.

Lol

5L Click the Download to Flash Toolbar button, or use the Flash —
Download Menu to flash the application program to the target hardware

The program has been
downloaded, and it runs

successfully on your target

hardware as soon asthe
LEDs are blinking.

Debugging the “Blinky” Program

Target — Debug dialog.

= (Click theUseradio
button and select the
appropriate debug
driver from the drop
down list

= Check Load

Application at Startup

and Run to main()
= Click the Settings

Build Output X
Load "C:\\Keil\\RRM\\Boards\\Keil\\MCBSTM32\\Blinky\\Ob3\\Blinky.RXF" =
Erase Done.
Programming Done.
Verify CK.
To verify the configuration settings for the Debugger, open the Optionsfor
Options for Blinky - Target "MCBSTM32' ==
Device | Target | Output | Listing | User | C/C++ | Asm | Linker Debug | Uiities |
" Use Simulator Settings || ' Use: [ULINK Cotex Debuager =] | Settings
I Limt Speed to Real Time
¥ Load Application at Startup ¥ Run to main{) ¥ Load Application at Startup [¥ Run to main{)
Intialization File: Initalization File:
Restors Debug Session Settings Restore Debug Session Settings
¥ Breakpaints ¥ Toolbax [Breakpoirts ¥ Toolbox
¥ Watchpairts & PA ¥ Watchpoirts
¥ Memery Display [Memery Display
CPUDLL Parsmeter Diver DLL: Parameter
[SARMCM3DLL | [sARmMCM3BLL |
Dialog DLL: Parsmeter Dislog DLL: Parameter:

button and verify the
driver configuration

[DARMSTMDLL [pSTM32F103VE

TARMSTM.DLL |-pSTM32F103VE

ancdl | Defais | Help

Getting Started: Creating Applications with pVision 145

)}

B

v e |

Click Start/Stop Debug Session from the Debug T oolbar, or open the
Debug — Start/Stop Debug Session Menu, to start debugging your
application

Step One Line — use the step commands to debug the application on
target hardware

Reset — Reset the microcontroller while debugging
Run —the program to flash the LEDs on your evaluation board
Stop — program execution

Show Current Statement — Show next statement to be executed in the
code

146 Glossary

Glossary

ASCII
American Standard Code for Information Interchange
Thisisaset of codes used by computersto represent digits, characters,
punctuation, and other special symbols. Thefirst 128 characters are
standardized. The remaining 128 are defined by the implementation.

Assembler
A computer program to create object code by translating assembly
instruction — mnemonics into opcodes, and by resolving symbolic names for
memory locations and other entities. Programs written in assembly
language and translated by an assembler can be loaded into memory and
executed.

CAN
Controller Area Network
Is abus standard, designed specifically for automotive applications,
meanwhile also used in other industries. It allows microcontrollers and
devices to communicate with each other without a host computer.

CMSIS
Cortex Microcontroller Software Interface Standard
A vendor-independent hardware abstraction layer for the Cortex-Mx
processors. It enables consistent, scalable, and simple software interfaces to
the processor for interfacing peripherals, rea-time operating systems, and
middleware, simplifying software re-use, and reducing the time to market
for new devices.

Compiler
A program that translates source code from a high-level programming
language, such as C/C++, to alower level language, for example, assembly
language or machine code. A compiler islikely to perform many or all of
the following operations: lexical analysis, preprocessing, parsing, semantic
analysis, code generation, and code optimization. pVision implements
C/C++ compilers.

Getting Started: Creating Applications with pVision 147

CRC
Cyclic Redundancy Check
Isatype of function to detect accidental alteration of data during
transmission or storage.

Debugger
A computer program to test software. Debuggers offer sophisticated
functions such as running a program step-by-step (single-stepping),
stopping, pausing the program to examine the current state at some kind of
event through breakpoints, and tracking the values of variables.

FPGA
Field-Programmable Gate Array
A semiconductor device that can be configured by the customer after
manufacturing.

GPIO
Genera Purpose |nput/Output
An interface available on microcontroller devicesto interact digitaly with
the outside world. GPIOs are often arranged into groups, typically of 8, 16,
or 32 pins. The GPIO port pins can be configured individually as input or
output.

ICE
In-Circuit-Emul ator
A hardware device used to debug software of an embedded system. It
provides hardware-level run-control and breakpoint features. Some ICEs
offer atrace buffer that stores the most recent microcontroller events.

Includefile
A text file that is incorporated into a source file using the #include
preprocessor directive.

Instruction set
Aninstruction set, or instruction set architecture (ISA), isthe part of the
microcontroller architecture related to programming, including the native
datatypes, ingtructions, registers, addressing modes, memory architecture,
interrupt and exception handling, and external I/0. An ISA includes a
specification of the set of opcodes — the native commands implemented by
aparticular microcontroller.

148 Glossary

JTAG
Joint Test Action Group
The common name used for the IEEE 1149.1 standard called Standard Test
Access Port and Boundary-Scan Architecture. JTAG is often used asa
microcontroller debug or probing port and allows data transfer out of and
into device memory.

Library
Isafile, which stores a number of possibly related object modules. The
linker can extract modules from libraries to use them in building an object
file.

LIN
Local Interconnect Network
Isavehicle bus standard or computer networking bus-system used within
current automotive network architectures. The LIN busisasmall and dow
network system that is used as a cheap sub-network of a CAN bus.

Linker
Is a program that combines libraries and objects, generated by a compiler,
into a single executable program.

Lint
A tool to check C/C++ code for bugs, glitches, inconsistency, portability,
and whether the code is MISRA compliant.

Macro
Defines arule or pattern that specifies how a certain input sequence should
be mapped to an output sequence.

MDI
An application that allows the user to open more than one document from
the same application without having to purposely launch another instance of
the application.

Memory model
Is a definition that specifies which memory areas are used for function
arguments and local variables.

Getting Started: Creating Applications with pVision 149

MISRA
Motor Industry Software Reliability Association
A forum that provides software development standards for the C/C++
programming language, focusing on code safety, portability , and reliability
in the context of embedded systems.

M onitor
Isaprogram for 8051 and C166 devices. It can be loaded into your target
microcontroller to aid in debugging and rapid product devel opment through
rapid software downloading.

Object
A memory areathat can be examined. Usually used when referring to the
memory area associated with a variable or function.

Object file
Created by the compiler, this file contains an organized collection of
objects, which are sequences of instructions in a machine code format, but
might also contain data for use at runtime: relocation information, stack
unwinding information, comments, names of variables and functions for
linking, and debugging information.

OCDS
On Chip Debug Support
A debug port that provides hardware emulation features for the Infineon
166 devices.

Opcode
An operation code is that portion of a machine language instruction that
specifies the operation to be performed. Their specification and format are
laid out in the instruction set architecture of the processor.

Simulation
Isthe imitation of areal thing or process. In pVision, simulation is used to
create embedded applications without using ‘real’ hardware. Y ou can
represent key characteristics and behaviors of the selected system, perform
optimization, safety engineering, testing, and debugging.

Stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically, and holds local function data. Itemsin the stack are
removed on aLIFO (lagt-in, first-out) basis.

150 Glossary

Token
Isafundamental symbol that represents a name or entity in a programming
language.

Thumb, Thumb2
An instruction set for ARM and Cortex devices. Seeinstruction set.

UART
Universal Asynchronous Receiver/Transmitter
Isanindividual IC, or part of an IC, used for serial communications.

Getting Started: Creating Applications with pVision 151
Index
Cortex-MXccooveeeceeecieeeireeene, 15
H ARM7/ARM9
. Advantages.........ccoocevevreeennnnn. 16
“V(':?)r?g s 55 Coding Hints.......cccoevvivennee. 31
Db RIS o RIS LT 3 22
UGOET ..o Microcontrollers.............c......... 21
Debygger MOES. .cvvssevissenes 36 Tool SuUpportcceeevveeeeriene. 23
?ea’t']‘r:gs')atabase """"""""""" gi ASSEMDIEN oo 37
15 = 34 ASISANCE. 1 crvrsvvsvrsvsvsesen 13
Operating Modes..............c....... 59
B
8 BaCh-BUII oo 88
Bookmarks.......c.cccoeeeeeierieeenenne. 98
80,5Ald i 15 Breakpoints........ccooevveecvieeceene 98
Cla\ghcages """"""""""""""""""" 17 Commands.........ccceevveeeenene 100
Coding Hints.........cccocerveeenene 29 1My%n;g' R gg
ﬁ;ﬁ%ﬁé """""""""""""""""" E BUild TOOIDA oo 65
MmOy TYDEs. ..o 17. 19 Building aproject.......c.coceveennee. 84
Tool SuppPOortcccceevvreeeeeene 18
C
A CIC++ COMPIIENcerereerreeeessen 38
AAAING BOOKS ..o 78 (G106, 21105, XC2000 6
Adding Source files..................... 79 Codimg (e T 20
Adding targets, groups, files....... 78 " h”g LS o 3
Additional 100NS.........cverreerren 67 Mo O?y Typea 5
Adg/gg{ages 15 Tool SuUpPOortccceevvveeeeeienee. 21
ARM7IARMO....oorsroeere 16 Col‘fg‘fgzasgson o6
C166, XE166, XC2000............ 16 Pointer A ccess """""""""""""" 27
A CEE;X'MX """"""""""""""""""" ii Code coverage.........ccoovueuernnnnes 104
FCItECIUNES. .o.oovvonns Code, generating optima 8
16Dt 14 . :
: Coding Hints
72 o | A 14 8051 29

152

all architectures...........ccccceveene 28
ARM7/ARMO......cccoviereennn 31
C166, XE166, XC2000............ 30
Cortex-MX.....oceeenereeenieen 32
Compare memory aress............... 97
Compiler ..o 38
Copying the startup code.............. 77
Cortex-MX....cocovnereenereeenceen 23
Advantages..........cccoeveeeenereenn. 16
CodingHints........cocevvnreenne 32
Highlights.........cccooevieieieiee, 24
Tool SuUppPOortcccvevveeerrieenne 25
Creating aHEX file......cccocc..c.... 85
Creating aproject file................... 75
Creating sourcefiles.................... 78
D
Debug features........c..cceeevvreenenne 93
Debug Mode........cccccevvecieiniieennnns 93
Debug Toolbarcccceeeevvreennnns 66
Debugger
Configuring.....c.ccceeeeeeeneneeene 90
ControlS......ccoveeererenineens 90, 113
(5= 1 1] oo [P 91
Windows.......cccevvrenienrreeenne 92
Debugger, Simulator 89
Debugging........cceeeevereeiesiesieeins 89
Development cycle.........cccceeeeee. 33
Development tools.........ccccceeeeee. 33
Directory structure..........cccoeeeuee 12
Document Conventions.................. 5
E
Embedded applications................ 75
Examining memory...........ccccceu.. 96
Example programs..................... 122
Examples

Hello program........cccccceuveeee. 123
Measure program 127
Traffic program........cccoceeeeeeee. 138
Executing code.........ccccovevviurennnne. 95
Execution Profilercccoenee. 103
F
Fileoptions.........ccccovvveecennneeenne 82
FileToolbar........cccooeieiiinininins 63
FIES...ciie s 79
finding object dependencies....... 109
Flash
Auxiliary content.................... 121
BUS configuration 121
Download........ccccceveeivnnenenne 119
Externa TOOIS.......cccoveerinnnne 115
NIt File. e 121
Programming Algorithm........ 120
Programming Devices............ 114
Folder structure..........ccocceveveninnnns 12
G
Getting Help....ccoo oo, 13
Group options........cccoeveeeeerereene. 82
GIOUPS.....covvveieestee e siesee e e 79
H
Hardware requirements................ 11
Help, SUpportccovoveeenereeenne 13
HEX convertercccoeevenenene 38
HEX fil€. oo, 85
Highlights
805L.....ciivireeeee e 18
ARM7/ARMO ..o 22
C166, XE166, XC2000............ 20
CortexX-MX....cooeeiiiieeieeen, 24

Getting Started: Creating Applications with pVision 153
| Creating.....ccoceeeeveeieeseceeeene 86
Managingccceeeeeenereeeneenennn 86
I/O access comparison................. 26
Infineon C166, XE166, X C2000. 20 o)
Installationcccevveeviciecciecnene 11
Object-HEX converter 38
K On-lineHep...cocoeveeeeceee 74
OptionS......ccccovveeveseeese e 81
Kell TOOIS....cccooveeeeiiceece e 9
Kernd information..................... 141 =
L Performance Anayzer................ 105
Peripherdcccccovvveeiiiiceee, 74
Last Minute Changes................... 11 Peripheral Registers........... 107, 108
Library manager............cccoeeveueenene 39 Pointer access comparison 27
Licensing........ccceeeveveeeereseereeenene 11 Preface......coevveeieiieeeeen 3
] 2 39 Product folder structure................ 12
LOCALON ...ecveereecteectee e, 39 Programming algorithm..... 119, 120
Loogic Analyzercccevenenne 106 Project filename............ccoccceveennes 76
Project folder........ooovveveivceenne. 76
Project Window..........ccccccveueennee. 77
M Project, Multi-project.................... 86
Memory commands..................... 97
Y=o U 59 R
Debug......ccovvveverieeese e 61
o 1 59 REGISLErS.....ceececeercece e, 96
File e 59 Release NoOtes.........cocevvrerieinene 11
Flash.....ccocoieeeiecece e 60 Resetting the CPU............ccccueneee... 95
Help..oooeeeeceee 61 Restore Views, Screen layouts... 111
Peripherals.......ccccoeevviceinnnne 62 RTOS
Projectcccoevveveecececeeee 60 [DI=STo] o [N 41
SVCS ... 61 Endlessloop design.................. 40
TOOIS e, 61 RTX variants........ccoeererenenncns 42
VIiBW. i 60 Software concepts..........coeuve... 40
Window......cccoevvireceereeieecienenes 62 RTX
Microcontroller Architectures...... 14 Event Flags.....c..cceovevvvveeenee, 45
Modifying memoryc.cccov.... 96 Function Overview................... 53
Multiple Projects Function Overview, Tiny 54
Activating........cccceveeeeveieecienn, 87 Interrupt Service Routine......... 49
Batch-Building..........ccccovvuuee. 88 Introduction............cccecevrecenne 43

154

Mailbox communication.......... 47
Memory & Memory Pools....... 51
Preemptive Task Switching..... 46
Round-Robin..........cccccevnennnne. 43
Semaphores.......cccoveeevecneeenn, 48
Binary.....ccooeeoeneeeeeieeen 48
Counting.......ccccevveveesesieeinens 49
SingleTasKccceevvceecieiiecen, 43
Technical Data..........ccccceeeenneee 53
Technical Data, Tiny................ 54
TimeDelayccoovvvvveevvieenns 44
Wait functioncc.cceevveeneee 44
S
Sample programs..........ccccceeeene. 122
Selecting amicrocontroller 76
Selecting an Architecture............. 15
Serial /O 102
Setting default folders.................. 78
SIMUIELONcvvvveriiriieeeeeeeeie 91
Simulator, Debuggerc.cevee. 89
Single-Steppingc.coveveveeriennne 96
Software requirements................. 11
SourcefileS....ccvviveirieeereen 78
Starting aprogram.............ceeeeeeee. 95
Starting the debugger 91
Startup code
Configuring.....c.ccceeeeeeeneneeene 83
(6070)7/11o I 77
Stopping aprogram............cceeee... 95
SUPPON ... 13
T
Target Hardware...........cccceeee.. 112
Target options.......cccveeeeveeveeenenne 81
TargetS ..cooeveeieeeeeeeeee 79
B 1] oo [89
Tool options.......cccceevveceeviecieenn, 81

Tool Support
S0 18
ARM7/ARMO ..o 23
C166, XE166, XC2000............ 21
Cortex-MXcoeevvenieereneen, 25
Toolbar
BUild.....oooeiieee, 65
Debug......cccevviieieiiiiese e 66
FIlE o 63
[CONS...eeiiiieiiee e 67
TOOIDOX .. 110
TOOIS. . 33
Debuggers, Adapters................ 10
Middelwarecccoeevveerenienn. 10
Software Development.............. 10
U
ULINK e 116
Configurationc.cccceveeennnne 117
Configure Flash Download119
Features......ooooveiieiiieeieeen, 117
Flash Algorithms.................... 120
using
Simulator.........cccovvieereieeene, 91
Vv
viewing instruction history......... 111
Viewing Registers.......cocevvveenne. 96
VTREG ..o 108
w
Watchpoints.........cccoveeeeeneieennne 101
Commandsccccceeeererennenn 101
Who should Read this Book........... 3
Window
Breakpoints........ccoovveeevvneennne 99

Browseooooccvvviieee e, 109

Getting Started: Creating Applications with pVision 155

Code Coverage.........ccceeeuenen. 104 moving and positioning............ 58
Command........ccccovveienveeeenne 94 Performance Andyazer............ 105
Debug Layouts...........ccccen.e... 111 Peripheralccccoooeiiiieee 74
Disassemblyccoevevvvvciennne 94 Projectccooovevevieeeee e, 69
[0 1 (0] SR 71 summary ofccceeevvvenieniee. 73
Help e 74 Symbols......cccooviiiiieee 108
Instruction Trace...........c........ 111 System Viewerccccuenee.e. 107
Logic Analyzerccccceueneee. 106 UART, Seridcccocvvvveeee. 102

156

