# **IB IL SGI 2/P-PAC**

Inline analog strain gauge input terminal, two precise inputs, 4, 6-wire connection method



Data sheet 7647 en 04

© PHOENIX CONTACT 2013-01-17

# 1 Description

The terminal is designed for use within an Inline station.

This terminal provides a precision input module to connect weighing cells, force transducers, mass force transducers and comparable, based on the strain gauges.

The strain gauges can be connected using 6 or 4-wire technology.

Thanks to a serial interface the measured value can be output directly on a weight display.

There are two options for data exchange:

- Via process data
- Via PCP (both inputs in the "Analog Values" PCP object) -

The measured values are represented by standardized 16-bit values.

#### **Features**

- Two high-precision inputs for the strain gauges
- Measuring ranges adjusted with nominal characteristic values upon delivery ±1 mV/V, ±2 mV/V, ±3 mV/V, ±3.33 mV/V, ±4 mV/V and ±5 mV/V
- Path adjustment in the process environment
- Connection of the strain gauges with 6- and 4-wire technology
- Sensor supply voltage provided by the terminal, no external power supply required
- For each channel: Low-resistance, floating N/O contact for the 80% calibration (shunt calibration)
- Serial interface for external weight displays
- Channels are configured independently of one another using the bus system.
- Tare weight adjustment
- Status message when zero point is reached and resting of measured value
- Diagnostic indicators
- Hardware version 01 or later:
   Approved for use in zone 2 potentially explosive areas



#### WARNING: Explosion hazard when used in potentially explosive areas

When using the terminal in potentially explosive areas, observe the corresponding notes.



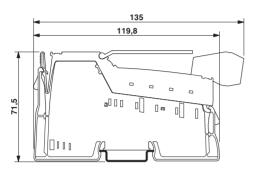
This data sheet is only valid in association with the IL SYS INST UM E user manual.



Make sure you always use the latest documentation.

It can be downloaded from the product at www.phoenixcontact.net/products.




#### Table of contents Local diagnostic indicators ......9 Installation instructions 10

# 3 Ordering data

| Description                                                                                                                                                                   | Туре                  | Order No. | Pcs. / Pkt. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-------------|
| Inline analog strain gauge input terminal, complete with accessories (connector and labeling field), two precise inputs, 4, 6-conductor connection method                     | IB IL SGI 2/P-PAC     | 2884907   | 1           |
| Accessories                                                                                                                                                                   | Туре                  | Order No. | Pcs. / Pkt. |
| Inline shield connector (Plug/Adapter)                                                                                                                                        | IB IL SCN-6 SHIELD    | 2726353   | 5           |
| Connector, for digital 1, 2 or 8-channel Inline terminals (Plug/Adapter)                                                                                                      | IB IL SCN-8           | 2726337   | 10          |
| Labeling field, width: 12.2 mm (Marking)                                                                                                                                      | IB IL FIELD 2         | 2727501   | 10          |
| Insert strip, Sheet, white, Unlabeled, Can be labeled with: Office-Drucksysteme, Plotter: Laser printer, Mounting type: Insert, Lettering field: $62 \times 10 $ mm (Marking) | ESL 62X10             | 0809492   | 1           |
| Shield connection clamp, for shield on busbars, contact resistance $<$ 1 mOhm (Assembly)                                                                                      | SK 8                  | 3025163   | 10          |
| Shield connection clamp, for shield on busbars, contact resistance < 1 mOhm (Assembly)                                                                                        | SK 14                 | 3025176   | 10          |
| Shield connection clamp, for shield on busbars, contact resistance < 1 mOhm (Assembly)                                                                                        | SK 20                 | 3025189   | 10          |
| Shield connection clamp, for shield on busbars, contact resistance < 1 mOhm (Assembly)                                                                                        | SK 35                 | 3026463   | 10          |
| Support for busbars (Assembly)                                                                                                                                                | AB-SK                 | 3025341   | 10          |
| Support, Length: 95.5 mm, Width: 6.2 mm, Color: gray (Assembly)                                                                                                               | AB-SK 65              | 3026489   | 10          |
| Support, Length: 10 mm, Width: 56 mm, Height: 20 mm, Color: silver (Assembly)                                                                                                 | AB-SK/E               | 3026476   | 10          |
| PEN conductor busbar, 3mm x 10 mm, length: 1000 mm (Assembly)                                                                                                                 | NLS-CU 3/10 SN 1000MM | 0402174   | 10          |
| Power terminal block, Connection method Screw connection, Load current : 41 A, Cross section: $0.5~\text{mm}^2$ - $6~\text{mm}^2$ , Width: 7 mm, Color: silver                | AK 4                  | 0404017   | 50          |
| Connection terminal block, Connection method Screw connection, Load current: 41 A, Cross section: 0.5 mm² - 6 mm², Width: 7 mm, Color: green-yellow                           | AKG 4 GNYE            | 0421029   | 50          |
| Connection terminal block, Connection method Screw connection, Load current: 41 A, Cross section: 0.5 mm² - 6 mm², Width: 7 mm, Color: black                                  | AKG 4 BK              | 0421032   | 50          |
| Software CD for FDT container for integrating device DTMs (free download)                                                                                                     | AX+ BASIC             | 2985068   | 1           |
| DTM library                                                                                                                                                                   | AX DTM LIB            | 2988065   | 1           |
| Documentation                                                                                                                                                                 | Туре                  | Order No. | Pcs. / Pkt. |
| User manual, English, Automation terminals of the Inline product range                                                                                                        | IL SYS INST UM E      | -         | -           |
| Application note, English, Inline terminals for use in zone 2 potentially explosive areas                                                                                     | AH EN IL EX ZONE 2    | -         | -           |
| User manual, English, for the Peripherals Communication Protocol (PCP), only available as a download.                                                                         | IBS SYS PCP G4 UM E   | 2745169   | 1           |
| User manual, English, Porting using PCP compact                                                                                                                               | IBS PCP COMPACT UM E  | -         | -           |

# 4 Technical data

# Dimensions (nominal sizes in mm)



| Width  | 48.8 mm |
|--------|---------|
| Height | 136 mm  |
| Depth  | 71.5 mm |

| _  |      |     |    | -  | _ |
|----|------|-----|----|----|---|
| Ge | Inte | 160 | ın | aı | а |
|    |      |     |    |    |   |

| Color                                    | green                                                |
|------------------------------------------|------------------------------------------------------|
| Weight                                   | 220 g                                                |
| Operating mode                           | Process data operation with 3 words, PCP with 1 word |
| Ambient temperature (operation)          | -25 °C 55 °C                                         |
| Ambient temperature (storage/transport)  | -25 °C 85 °C                                         |
| Permissible humidity (operation)         | 10 % 95 % (according to DIN EN 61131-2)              |
| Permissible humidity (storage/transport) | 10 % 95 % (according to DIN EN 61131-2)              |
| Air pressure (operation)                 | 70 kPa 106 kPa (up to 3000 m above sea level)        |
| Air pressure (storage/transport)         | 70 kPa 106 kPa (up to 3000 m above sea level)        |
| Degree of protection                     | IP20                                                 |
| Protection class                         | III, IEC 61140, EN 61140, VDE 0140-1                 |

| Connection | data | Inline | connectors |
|------------|------|--------|------------|

| Connection method                 | Spring-cage connection                   |
|-----------------------------------|------------------------------------------|
| Conductor cross section, solid    | 0.08 mm <sup>2</sup> 1.5 mm <sup>2</sup> |
| Conductor cross section, stranded | 0.08 mm <sup>2</sup> 1.5 mm <sup>2</sup> |
| Conductor cross section [AWG]     | 28 16                                    |

### Interface Inline local bus

| Connection method    | Inline data jumper |
|----------------------|--------------------|
| Transmission speed   | 500 kBit/s         |
| Transmission physics | Copper             |

# Inline potential routing / Power consumption

| Communications power U <sub>L</sub>     | 7.5 V DC                |
|-----------------------------------------|-------------------------|
| Current consumption from U <sub>L</sub> | max. 100 mA, typ. 85 mA |

| Inline potential routing / Power consumption    | <del></del>                                                                                                                                                                           |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I/O supply voltage U <sub>ANA</sub>             | 24 V DC                                                                                                                                                                               |
| Current consumption from U <sub>ANA</sub>       | max. 100 mA 25 mA (in case of typical load of 350 Ohm per channel) 7 mA (for no-load operation without strain gauge or display) 80 mA (For a maximum load of 55 $\Omega$ and display) |
| Power consumption                               | Typ. 1.2 W (Device in nominal operation) max. 3.2 W (Device with maximum load)                                                                                                        |
| Voltage output                                  |                                                                                                                                                                                       |
| Number of outputs                               | 2                                                                                                                                                                                     |
| Impedance                                       | $>$ 55 $\Omega$ (per channel)                                                                                                                                                         |
| Output voltage                                  | typ. 5 V                                                                                                                                                                              |
| Output current                                  | max. 90 mA (per channel)                                                                                                                                                              |
| Short-circuit protection of the voltage outputs | Yes, at least 1 minute through temperature monitoring                                                                                                                                 |
| Floating N/O contact                            |                                                                                                                                                                                       |
| Quantity                                        | $2 (K_{a1}-K_{b1}, K_{a2}-K_{b2})$                                                                                                                                                    |
| Volume resistance                               | <1 Ω (typical)                                                                                                                                                                        |
| Volume resistance                               | 5 Ω (maximum)                                                                                                                                                                         |
| Typical response time                           | 100 ms (typical)                                                                                                                                                                      |
| Serial interface                                |                                                                                                                                                                                       |
| Name                                            | V.24 (RS-485) serial interface                                                                                                                                                        |
| Network                                         | Yes                                                                                                                                                                                   |
| Addressing                                      | Address 1 = Measured gross/net value<br>Address 2 = Measured tare value                                                                                                               |
| Termination resistor                            | 120 Ω                                                                                                                                                                                 |
| Transmission protocol                           | STX/ETX                                                                                                                                                                               |
| Input channels for strain gauge                 |                                                                                                                                                                                       |
| Number of inputs                                | 2                                                                                                                                                                                     |
| Connection method                               | 6 or 4-wire, twisted pair shielded cable                                                                                                                                              |
| Characteristics                                 | $\pm 1$ mV/V, $\pm 2$ mV/V, $\pm 3$ mV/V, $\pm 3.33$ mV/V, $\pm 4$ mV/V, $\pm 5$ mV/V                                                                                                 |
| Bridge difference U <sub>d</sub>                | Measuring range specified by selecting the characteristic                                                                                                                             |
| Bridge voltage U <sub>0</sub>                   | 5 V                                                                                                                                                                                   |
| Measured value representation                   | 15 bits + sign bit (process data); 15 bits + sign bit and measured display value i the ASCII character set (PCP)                                                                      |
| Process data update                             | typ. 100 ms (12.5 ms, depends on the configuration)                                                                                                                                   |
| Resolution A/D                                  | 24 bit                                                                                                                                                                                |
| A/D conversion time                             | Typ. 100 ms (12.5 ms, depends on the configuration)                                                                                                                                   |
| Averaging                                       | Can be parameterized: None or using 4,16 or 32 measured values; default setting: using 16 measured values                                                                             |
| Limit frequency                                 | 0.3 Hz (with default setting)                                                                                                                                                         |
| Programming Data                                |                                                                                                                                                                                       |
| ID code (hex)                                   | DF                                                                                                                                                                                    |
| ID code (dec.)                                  | 223                                                                                                                                                                                   |
| Length code (hex)                               | 03                                                                                                                                                                                    |
| Length code (dec.)                              | 03                                                                                                                                                                                    |
| Process data channel                            | 48 Bit                                                                                                                                                                                |
| Input address area                              | 6 Byte                                                                                                                                                                                |

| Programming Data        |        |
|-------------------------|--------|
| Output address area     | 6 Byte |
| Parameter channel (PCP) | 2 Byte |
| Register length (bus)   | 64 Bit |

| PROFIBUS telegram data      |         |  |
|-----------------------------|---------|--|
| Required parameter data     | 23 Byte |  |
| Need for configuration data | 5 Byte  |  |

| Error messages to the higher level control or computer system  |                                           |
|----------------------------------------------------------------|-------------------------------------------|
| Failure of the power supply at U <sub>ANA</sub>                | Error message in the process data         |
| Failure of or insufficient communications power U <sub>L</sub> | I/O error message sent to the bus coupler |
| Peripheral fault                                               | Error message in the process data         |
| Electrical indiction/indiction of the voltage or               |                                           |

| Electrical isolation/isolation of the voltage areas                                                               |                        |
|-------------------------------------------------------------------------------------------------------------------|------------------------|
| Logic/analog I/O (digital isolator)                                                                               | 500 V AC, 50 Hz, 1 min |
| RS-485/analog I/O (isolating distance)                                                                            | 500 V AC, 50 Hz, 1 min |
| N/O contact K <sub>a1</sub> - K <sub>b1</sub> / analog I/O (isolating distance)                                   | 500 V AC, 50 Hz, 1 min |
| N/O contact K <sub>a2</sub> - K <sub>b2</sub> / analog I/O (isolating distance)                                   | 500 V AC, 50 Hz, 1 min |
| Functional earth ground/analog I/O (isolating distance)                                                           | 500 V AC, 50 Hz, 1 min |
| Logic/RS-485 (digital isolator)                                                                                   | 500 V AC, 50 Hz, 1 min |
| N/O contact K <sub>a1</sub> - K <sub>b1</sub> / RS-485 (isolating distance)                                       | 500 V AC, 50 Hz, 1 min |
| N/O contact K <sub>a2</sub> - K <sub>b2</sub> / RS-485 (isolating distance)                                       | 500 V AC, 50 Hz, 1 min |
| Functional earth ground/RS-485 (isolating distance)                                                               | 500 V AC, 50 Hz, 1 min |
| Logic / N/O contact K <sub>a1</sub> - K <sub>b1</sub> (optocoupler)                                               | 500 V AC, 50 Hz, 1 min |
| N/O contact K <sub>a2</sub> - K <sub>b2</sub> /N/O contact K <sub>a1</sub> - K <sub>b1</sub> (isolating distance) | 500 V AC, 50 Hz, 1 min |
| Functional earth ground / N/O contact K <sub>a1</sub> - K <sub>b1</sub> (isolating distance)                      | 500 V AC, 50 Hz, 1 min |
| Logic / N/O contact K <sub>a2</sub> - K <sub>b2</sub> (optocoupler)                                               | 500 V AC, 50 Hz, 1 min |
| Functional earth ground / N/O contact K <sub>a2</sub> - K <sub>b2</sub> (isolating distance)                      | 500 V AC, 50 Hz, 1 min |
| Logic/functional earth ground (isolating distance)                                                                | 500 V AC, 50 Hz, 1 min |

# **Approvals**

For the latest approvals, please visit www.phoenixcontact.net/products.

#### 5 Additional tables

| Tolerances at T <sub>A</sub> = 25°C                        |                                                                    |         |
|------------------------------------------------------------|--------------------------------------------------------------------|---------|
| Nominal characteristic value                               | Relative deviation in % related to the measuring range final value |         |
|                                                            | Typical                                                            | Maximum |
| ±1 mV/V, ±2 mV/V, ±3 mV/V,<br>±3.33 mV/V, ±4 mV/V, ±5 mV/V | ±0.01%                                                             | ±0.05%  |

The typical values contain the typical offset error, gain error and linearity error in the respective configuration related to the positive measuring range up to 100% of the nominal characteristic value.

This data is valid for nominal operation (preferred mounting position,  $U_S$ = 24 V) with a conversion time of 100 ms and a 16-sample average value.

The maximum tolerance values represent the worst case measurement inaccuracy. Besides the maximum offset error, the gain error and the linearity error, the maximum tolerance values also comprise the longtime drift as well as the maximum tolerances of the test and calibration equipment.

Please also observe the values for temperature drift and the tolerances under influences of electromagnetic interferences.

| Additional tolerances influenced by electromagnetic fields                                                            |                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Type of electromagnetic interference                                                                                  | Typical deviation in % related to the measuring range final value |  |
| Electromagnetic fields; field strength<br>10 V/m according to EN 61000-4-3/<br>IEC 61000-4-3                          | < ±0.1%                                                           |  |
| Conducted interference, Class 3<br>(10 V test voltage) according to<br>EN 61000-4-6/IEC 61000-4-6                     | -                                                                 |  |
| Fast transients (burst) up to an inter-<br>ference voltage of ±2.2 kV in acc.<br>with EN 61000-4-4 /<br>IEC 61000-4-4 | -                                                                 |  |

The values refer to nominal operation with default settings.

| Temperature and drift response ( $T_A = -25^{\circ}C$ $+55^{\circ}C$ ) |                                                                    |          |
|------------------------------------------------------------------------|--------------------------------------------------------------------|----------|
|                                                                        | Relative drift in ppm/K related to the measuring range final value |          |
|                                                                        | Typical                                                            | Maximum  |
| ±1 mV/V, ±2 mV/V, ±3 mV/V,<br>±3.33 mV/V, ±4 mV/V, ±5 mV/V             | 5 ppm/K                                                            | 15 ppm/K |

The typical value contain the typical offset value and gain value in the respective configuration in the temperature range from -25°C up to +55°C related to the positive measuring range up to 100% of the nominal characteristic value.

This data is valid for nominal operation (preferred mounting position,  $U_S=24 \text{ V}$ ) with a conversion time of 100 ms and a 16-sample average value.

The maximum tolerance values represent the worst case measurement inaccuracy. Besides maximum offset and gain drift, they also comprise longtime drift as well as the maximum tolerances of the test and calibration equipment.

# 6 Internal circuit diagram

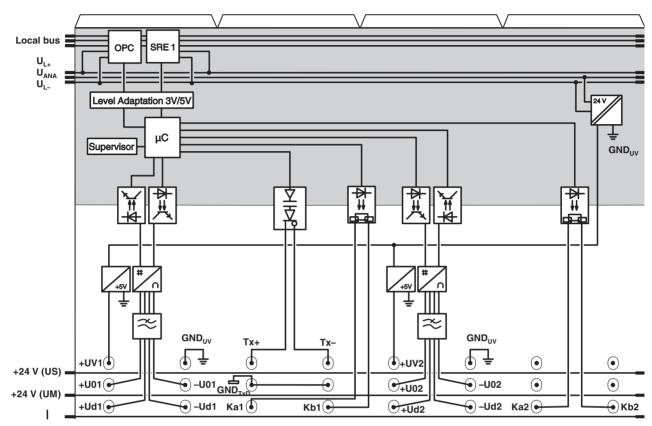
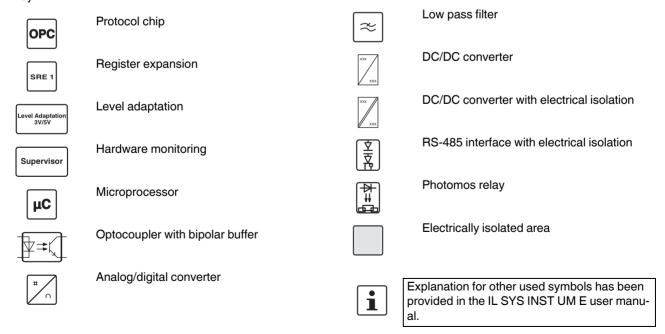




Figure 1 Internal wiring of the terminal points

Key:



# 7 Local diagnostic indicators

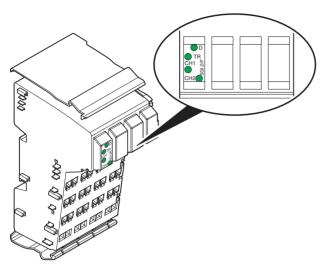



Figure 2 Local diagnostic indicators

| Designa- | Color     | Meaning                                                 |
|----------|-----------|---------------------------------------------------------|
| tion     |           |                                                         |
| D        | green     | Diagnostics (bus and logic voltage)                     |
| TR       | green     | PCP communication                                       |
| CH 1     | green     | Diagnostics of channel 1                                |
|          | Green ON  | Channel 1 is OK                                         |
|          | green OFF | Channel 1 not connected or not                          |
|          |           | supplied or open circuit                                |
| CH 2     | green     | Diagnostics of channel 2                                |
|          | Green ON  | Channel 2 is OK                                         |
|          | green OFF | Channel 2 not connected or not supplied or open circuit |

An open circuit is detected according to the following table:

| Faulty sensor cable | Open-circuit message in diagnostics |
|---------------------|-------------------------------------|
| +U <sub>V</sub>     | No                                  |
| GND <sub>Uv</sub>   | Yes                                 |
| +U <sub>0</sub>     | Yes                                 |
| -U <sub>0</sub>     | Yes                                 |
| +U <sub>d</sub>     | Yes                                 |
| -U <sub>d</sub>     | Yes                                 |

#### Note regarding open circuit message

During power up or configuration the system does not detect whether a sensor is connected or if a cable break has occurred (all cables disconnected) due to the measuring principle.

In this case, you will not obtain any valid data. As such, take the time to ensure that the sensor is fully connected.

If an open circuit message is output, first remove the cause prior to resetting the message.

If you do not remove the cause of the open circuit message and perform a voltage reset or configure the module, the module itself will behave according to the following table.

| Open circuit message trig-<br>gered by                                                                               | Behavior following voltage reset or configuration |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| No sensor connected/cable break                                                                                      | Malfunction not detected and not reported         |
| Defective sensor cable (GN-D <sub>Uv</sub> , +U <sub>0</sub> , -U <sub>0</sub> , +U <sub>d</sub> , -U <sub>d</sub> ) | Malfunction is detected and reported              |

#### **Function identification**

Green

# 8 Terminal point assignment

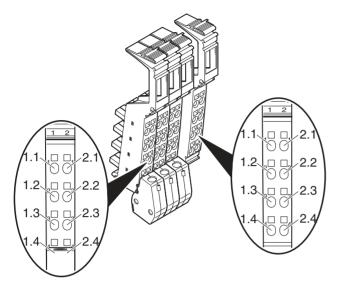



Figure 3 Terminal point assignment

| Terminal point | Signal                              | Assignment                                     |
|----------------|-------------------------------------|------------------------------------------------|
| Connector 1    | •                                   |                                                |
| 1.1 / 2.1      | +U <sub>V1</sub> /GND <sub>Uv</sub> | Jumper supply U <sub>V1</sub>                  |
| 1.2 / 2.2      | +U <sub>01</sub> /-U <sub>01</sub>  | Jumper voltage U <sub>01</sub>                 |
| 1.3 / 2.3      | +U <sub>d1</sub> /-U <sub>d1</sub>  | Jumper difference U <sub>d1</sub>              |
| 1.4 / 2.4      | FE                                  | Shield connection                              |
| Connector 2    | •                                   | ·                                              |
| 1.1 / 2.1      | Tx+/Tx-                             | RS-485 interface                               |
| 1.2 / 2.2      | GND <sub>Tx</sub>                   | Reference potential of the RS-485 interface    |
| 1.3 / 2.3      | K <sub>a1</sub> /K <sub>b1</sub>    | N/O contact for shunt calibration of channel 1 |
| 1.4 / 2.4      | FE                                  | Shield connection                              |
| Connector 3    |                                     |                                                |
| 1.1 / 2.1      | +U <sub>V2</sub> /GND <sub>Uv</sub> | Jumper supply U <sub>V2</sub>                  |
| 1.2 / 2.2      | +U <sub>02</sub> /-U <sub>02</sub>  | Jumper voltage U <sub>02</sub>                 |
| 1.3 / 2.3      | +U <sub>d2</sub> /-U <sub>d2</sub>  | Jumper difference U <sub>d2</sub>              |
| 1.4 / 2.4      | FE                                  | Shield connection                              |
| Connector 4    |                                     |                                                |
| 1.1 / 2.1      | -                                   | Not used                                       |
| 1.2 / 2.2      | -                                   | Not used                                       |
| 1.3 / 2.3      | K <sub>a2</sub> /K <sub>b2</sub>    | N/O contact for shunt calibration of channel 2 |
| 1.4 / 2.4      | FE                                  | Shield connection                              |



No definition is available for the designations of sensor cables. For this reason, the designations used in data sheets may deviate from those used by sensor manufacturers.

#### Examples:

Bridge voltage  $U_{0x}$  = sense input  $U_{S}$ Bridge difference  $U_{dx}$  = signal or output

# 9 Electrical isolation

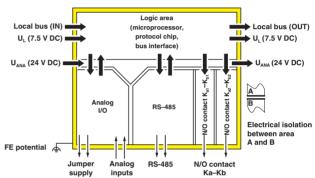



Figure 4 Electrical isolation of the individual function areas

#### 10 Installation instructions

High current flowing through potential jumpers  $U_M$  and  $U_S$  leads to a temperature rise in the potential jumpers and inside the terminal. To keep the current flowing through the potential jumpers of the analog terminals as low as possible, always place the analog terminals after all the other terminals at the end of the main circuit (for the sequence of the Inline terminals: see also IL SYS INST UM E user manual).

### 11 Connection notes

#### Connecting the strain gauges



Connect the strain gauges using shielded twisted pair cables.

### Connecting the shield



Only connect the shield at one point, preferably at the terminal. If the shield is securely connected to the sensor, insulate the shield on the terminal side.

#### **Unused channels**



If a channel (connector 1 or connector 3) is not used, connect the following terminal points on this connector with each other: 1.1, 1.2 and 1.3 as well as 2.1, 2.2 and 2.3.

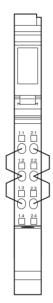



Figure 5 Jumpering the terminal points of unused channels

#### Notes on using the terminal block in Installation in zone 2 12 potentially explosive areas



#### **WARNING: Explosion hazard**

Please make sure that the following notes and instructions are observed.

#### Approval according to EC directive 94/9/EC

(a) II 3 G Ex nA IIC T4 Gc X

#### Installation notes

- 1. This Inline terminal is a category 3 device and is suitable for installation in the potentially explosive areas of
  - The device meets the requirements of EN 60079-0:2009 and EN 60079-15:2010.
- 2. The Inline terminal must only be installed, operated, and maintained by qualified personnel.
- 3. Please follow the installation instructions given in the IL SYS INST UM E user manual and the package slip.
- 4. When installing and operating the device, the applicable safety directives (including national safety directives), accident prevention regulations, as well as general technical regulations, must be observed.
- 5. Please refer to the corresponding documentation (user manual, data sheet, package slip) and the certificates (declaration of conformity and other approvals, if applicable) for safety-related data.
- 6. Access to the circuits inside the Inline terminal is not permitted. Do not repair the Inline terminal by yourself but replace it with a terminal of the same type.
  - Repairs may only be performed by the manufacturer. The manufacturer is not liable for damage resulting from noncompliance.
- 7. The IP20 degree of protection (EN 60529) of the device is intended for a clean and dry environment.
- 8. Do not subject the Inline terminal to mechanical strain and/or thermal loads, which exceed the limits specified in the product documentation.
- 9. The Inline terminal has not been designed for use in potentially dust-explosive atmospheres.

- 1. Observe the specified conditions for use in potentially explosive areas.
- Install the device in a suitable approved housing (with at least IP54 degree of protection) that meets the requirements of EN 60079-15. Observe the requirements of EN 60079-14.
- In potentially explosive areas, the Inline terminal may only be snapped on or off and cables may only be connected when the power is switched off.
- In zone 2, only connect devices to the supply and signal circuits that are suitable for operation in potentially explosive areas of zone 2 and the conditions at the installation location.

#### Restrictions/limit values

Only Inline terminals that are approved for use in potentially explosive areas may be assembled on this Inline terminal.

Before using an Inline terminal in a zone 2 potentially explosive area, check whether it has been approved for installation within this area.

For a list of terminals that are approved for the potentially explosive areas of zone 2, please refer to the AH EN IL EX ZONE 2 application note.

The maximum permissible current for each tension spring contact is 2 A.

PHOENIX CONTACT 12 7647\_en\_04

# 13 Connection examples

#### 13.1 6-wire connection (a strain gauge load cell per channel) with two indicators

The RS-485 interface has bus capability and can operate several devices. When an address is selected, the current measured value of channel 1 or channel 2 can be displayed.

Use a twisted-pair, shared and shielded data line to connect the displays. Fit a termination resistor to the data cable at the most remote point of the RS-485 network. Use the integrated termination resistors of the display for this purpose.

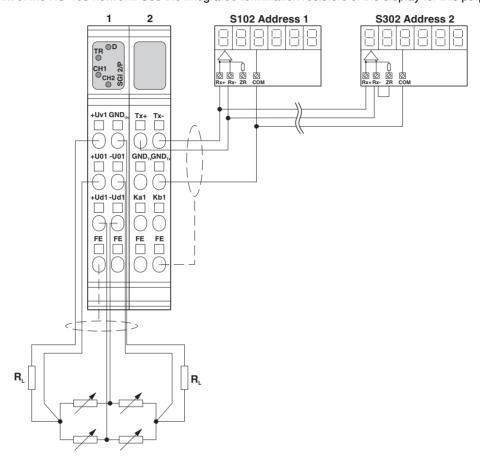



Figure 6 Connection of strain gauges in 6-wire technology

Key:

R<sub>L</sub>: Cable resistance

Address 1: Displays the measured value of chan-

nel 1

Address 2: Displays the measured value of chan-

nel 2



The RS-485 interface transmits a special weighing protocol.

# 13.2 6-wire connection (several strain gauge load cells per channel)

Each channel can supply a current of up to 90 mA. For instance, 6 load cells with a basic resistance of 350  $\Omega$  may be connected in parallel.

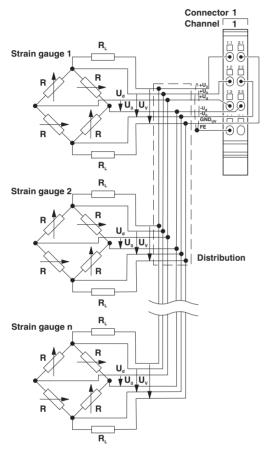



Figure 7 Connection of several strain gauges in 6-wire technology

Key:
R<sub>L</sub>: Cable resistance

#### 13.3 4-wire connection with a shunt resistor

The following figure shows the connection of a resistive pressure sensor with an 80% calibration. This sensor is typically used for injection molding of plastics.

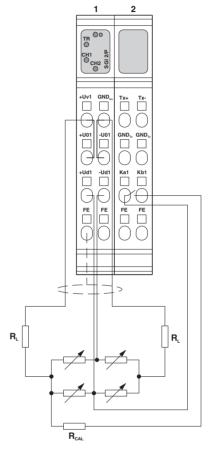



Figure 8 Connection of strain gauges in 4-wire technology with a shunt resistor

Key:

R<sub>L</sub>: Cable resistance

**Channel 1/channel 2:** Strain gauges can also be connected to the terminal in 4-wire technology.

In this case connect  $+U_V$  with  $+U_0$  and  $GND_{UV}$  with  $-U_0$ .

There is no temperature and long-term drift compensation for the connecting cable in 4-wire technology.

# 14 Display devices

A digital display from Siebert Industrieelektronik GmbH may be connected to the RS-485 interface of the terminal (see following table).

Siebert Industrieelektronik GmbH

Siebertstrasse, 66571 Eppelborn, Germany Postfach 1180, 66571 Eppelborn, Germany

Phone: +49 (0) 6806/980-0
Fax: +49 (0) 6806/980-999
Internet: www.siebert.de
E-mail: info@siebert.de



Please contact Siebert Industrieelektronik GmbH for further information or ordering types. Ordering types are, for example:

- Character height: 14 mm, 57 mm, 100 mm, 160 mm, or 250 mm
- Character color: Red, white, greenDisplay: Single or double-sided
- Dimension symbols (fixed on strips, specify when order-

ing):

F101 for g, F102 for kg, F103 for t

Degree of protection: IP40, IP54, IP65

- Assembly: Panel, wall and suspended mounting
- Operating voltage: 24 V DC, 230 V DC

. ..

| Feature                   | Digital display S102 for panel mounting               | Large size display S302 for indoor installation    | Large size display S302 for outdoor installation                                           |
|---------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|
| Order designation         | S102-W6/14/0R-000/0B-SL with<br>dimension symbol F102 | S302-F6/10/0R-100/0A-SL with dimension symbol F102 | S302-F6/10/0R-114/0A-SL with<br>dimension symbol F102 and<br>weather protection hood -1011 |
| Dimensions<br>(W x H x D) | 96 mm x 48 mm x 70 mm                                 | 870 mm x 245 mm x 145 mm                           | 870 mm x 245 mm x 145 mm                                                                   |
| Character height          | 14 mm                                                 | 100 mm                                             | 100 mm                                                                                     |
| Reading distance          |                                                       | Up to 40 m                                         | Up to 40 m                                                                                 |
| Character color           | Bright red LED display                                | Bright red LED display for indoors                 | Red "super bright" LED display for outdoors                                                |
| Display                   | 6 digits                                              | 6 digits, single-sided                             | 6 digits, single-sided                                                                     |
| Dimension symbol          | kg (F102)                                             | kg (F102)                                          | kg (F102)                                                                                  |
| Interface                 | Serial (RS-485)                                       | Serial (RS-485)                                    | Serial (RS-485)                                                                            |
| Degree of protection      | IP40                                                  | IP54                                               | IP54 with climate compensation, heating and weather protection hood                        |
| Assembly                  | Panel mounting                                        | Wall mounting, cable entry at bottom               | Wall mounting, cable entry at bottom                                                       |
| Operating voltage         | 24 V DC                                               | 230 V AC                                           | 230 V AC                                                                                   |
| Other                     |                                                       |                                                    | Steel sheet housing, double-layer painting                                                 |

### **Display dimensions**

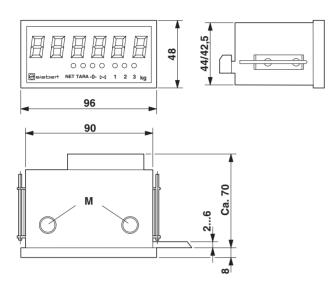



Figure 9 Dimensions of display S102 ... (dimensions in mm)

M: Menu button

Panel cutout 92 mm x 45 mm

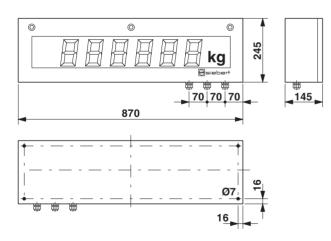



Figure 10 Dimensions of display S302 ... (dimensions in mm)

# Connector pin assignment of the displays



For the connector pin assignment of the displays, please refer to the documentation of the displays.

# Measured value representation on the display



Figure 11 Example of a display

LEDs on the display

| Designation | Meaning                                           |
|-------------|---------------------------------------------------|
| NET         | Net, LED lights up after a tare weight adjustment |
| TARA        | Not supported                                     |
| -0-         | Zero point reached                                |
| ><          | Standstill reached                                |
| 1           | Channel 1                                         |
| 2           | Channel 2                                         |
| 3           | Not supported                                     |

The display is updated every 500 ms.

# 15 Configuration

Terminal configuration is only required if at least one of the channels is to be operated outside the default values.

You can configure the terminal either using process data or using PCP and transmit the analog values accordingly.



For easy terminal configuration a function block can be downloaded at www.phoenixcontact.net/products

The configuration options differ for configuration using process data (PD) and configuration using PCP.

The following configurations are possible:

| Configuration                                        | Short designation            | Default                 | PD | PCP |
|------------------------------------------------------|------------------------------|-------------------------|----|-----|
| Selection of mean-value generation                   | Mean-value                   | 16-sample<br>mean-value | Х  | X   |
| Conversion time of the A/D converter                 | Conversion time              | 100 ms                  | Х  | X   |
| Nominal characteristic value of the connected sensor | Nominal characteristic value | ±2 mV/V                 | Х  | Х   |
| Nominal load of the connected sensor                 | Nominal load                 | 0                       | -  | X   |
| Adjustment value of the connected sensor             | Adjustment value             | 0                       | -  | Х   |

#### 16 Process data

The terminal occupies three process data words and one PCP word.

Order of the process data words:

| OUT0<br>(control word) | OUT1 | OUT2 |
|------------------------|------|------|
| IN0<br>(status word)   | IN1  | IN2  |

# 17 OUT process data words

Three OUT process data words are available.

The terminal is configured using the OUT process data words. Where:

- Output word OUT0 contains the command
- Output word OUT1 contains the parameters for channel 1
- Output word OUT2 contains the parameters for channel 2

Configuration errors are indicated in the status word. The configuration settings are stored in a volatile memory.

If you change the configuration, the message "Measured value invalid" appears (diagnostic code 8004<sub>hex</sub>), until new measured values are available.

#### 17.1 Output word OUT0 (control word)

|                 | OUT0         |   |   |   |   |   |   |   |   |
|-----------------|--------------|---|---|---|---|---|---|---|---|
| Bit             | 15 8         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Assign-<br>ment | Command code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Bit 15 to bit 8 (command code):

| Bit 15 8 | OUT0 [hex] | Command function                                                                                              |
|----------|------------|---------------------------------------------------------------------------------------------------------------|
| 0000000  | 0000       | Reading measured values                                                                                       |
| 0001000C | 1x00       | Read configuration in IN1<br>channel-by-channel.<br>C = Channel number;<br>0 = Channel 1, 1 = Chan-<br>nel 2) |
| 00110000 | 3000       | Read minimum value;<br>IN1: Minimum value chan-<br>nel 1<br>IN2: Minimum value channel<br>2                   |
| 00110001 | 3100       | Read maximum value;<br>IN1: Maximum value channel<br>1,<br>IN2: Maximum value channel<br>2                    |
| 00110010 | 3200       | Delete minimum and maximum value of channel 1                                                                 |
| 00110011 | 3300       | Delete minimum and maximum value of channel 2                                                                 |
| 00111100 | 3C00       | Read firmware version and module ID in IN1.                                                                   |
| 01000000 | 4000       | Configure device; configuration for channel 1 in OUT1 and for channel 2 in OUT2                               |



During the transient response (e.g., following a configuration command), the fluctuating measured values may exceed the minimum and maximum values. Therefore, at the start of acquisition delete the minimum and maximum values using command  $3200_{hex}$  and/or  $3300_{hex}$ . The minimum value is set to the largest positive number ( $7FF_{hex} = 32767_{dec}$ ) when deleting. The maximum value is set to the largest negative number ( $8000_{hex} = -32768_{dec}$ ).

# 17.2 Output words OUT1 and OUT2 (parameter words)

For command  $4000_{\rm hex}$  the parameters must be specified in OUT1 and OUT2. This parameter word is only evaluated for this command.

|                 |    | OUT1 and OUT2 |    |    |    |    |     |   |   |   |   |   |   |   |   |
|-----------------|----|---------------|----|----|----|----|-----|---|---|---|---|---|---|---|---|
| Bit             | 15 | 14            | 13 | 12 | 11 | 10 | 9 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Assign-<br>ment | 0  | 0             | 0  | 0  | 0  | 0  | M   | 0 | 0 | 0 | W |   | 1 | 1 |   |

#### Where:

| M | Mean-value                   | Selects mean-value generation. After every conversion, the measured value is saved in a mean-value memory via which the mean-value is generated. The memory size can be selected with the mean-value option. E.g., for a 16-sample mean-value, the mean-value is generated using the last 16 measured values. |
|---|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| W | Conversion time              | Conversion time of the analog/digital converter                                                                                                                                                                                                                                                               |
| N | Nominal characteristic value | Selects the measuring range                                                                                                                                                                                                                                                                                   |



Set all unused bits to 0.



If invalid parameters are specified in the parameter word, the command will not be executed. The command is acknowledged in the input words with the set error bit.

#### **Parameters for configuration**

The values displayed in bold are pre-settings. Bits 10 to 9:

| Code |     | M: Mean-value        |
|------|-----|----------------------|
| dec  | bin |                      |
| 0    | 00  | 16-sample mean-value |
| 1    | 01  | No mean-value        |
| 2    | 10  | 4-sample mean-value  |
| 3    | 11  | 32-sample mean-value |

#### Bit 4:

| Code |     | C: Conversion time of the analog-dig- |  |  |  |  |  |  |
|------|-----|---------------------------------------|--|--|--|--|--|--|
| dec  | bin | ital converter                        |  |  |  |  |  |  |
| 0    | 0   | 100 ms                                |  |  |  |  |  |  |
| 1    | 1   | 12.5 ms                               |  |  |  |  |  |  |

#### Bit 3 to bit 0:

| Code  |      | N: Nominal specific value |
|-------|------|---------------------------|
| dec   | bin  |                           |
| 0     | 0000 | ±1 mV/V                   |
| 1     | 0001 | ±2 mV/V                   |
| 2     | 0010 | ±3 mV/V                   |
| 3     | 0011 | ±3.33 mV/V                |
| 4     | 0100 | ±4 mV/V                   |
| 5     | 0101 | ±5 mV/V                   |
| Other |      | Invalid                   |

#### Step response and limit frequencies

The following table specifies the time for the step response and the limit frequency depending on the settings for conversion time and mean-value.

| Conversion time | Mean-<br>value | Step response<br>from 0% to 100%<br>(typical) | Limit frequency (typical) |
|-----------------|----------------|-----------------------------------------------|---------------------------|
| 100 ms          | 32-sample      | 3.4 s                                         | 0.15 Hz                   |
| 100 ms          | 16-sam-<br>ple | 1.8 s                                         | 0.3 Hz                    |
| 100 ms          | 4-sample       | 600 ms                                        | 1 Hz                      |
| 100 ms          | None           | 200 ms                                        | 2.5 Hz                    |
| 12.5 ms         | 32-sample      | 425 ms                                        | 1 Hz                      |
| 12.5 ms         | 16-sample      | 225 ms                                        | 2.5 Hz                    |
| 12.5 ms         | 4-sample       | 75 ms                                         | 10 Hz                     |
| 12.5 ms         | None           | 25 ms                                         | 20 Hz                     |

### 18 Process data input words IN

#### 18.1 Input word IN0 (status word)

Input word IN0 performs the task of a status word.

|                 | IN0 |      |   |   |   |   |   |   |   |   |
|-----------------|-----|------|---|---|---|---|---|---|---|---|
| Bit             | 15  | 14 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Assign-<br>ment | EB  | SP   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### **EB: Error Bit**

EB = 0 No error has occurred.

EB = 1 An error has occurred.

The error bit indicates whether a command could be executed without errors or not.

For the command code 4000hex (configure device), a set error bit indicates an invalid configuration. Possible reasons:

- At least one of reserved bits is set.
- An invalid value was specified for the nominal characteristic value.

For the command code  $0000_{hex}$  (read measured values), the error bit indicates a group error message. When the error bit is set, there is an error message on one or both channels.

#### Mirrored command code:

A command code mirrored from the control word. Here, the MSB is suppressed.

#### 18.2 Input words IN1 and IN2

The measured values, configuration or firmware version are transmitted to the controller board or the PC via process data input words IN1 an IN2 according to the configuration.

For control word  $3\text{C00}_{\text{hex}}$ , IN1 provides the firmware version and the module ID.

The module ID for the terminal is  $3_{hex}$ .

#### **Example: Firmware version 1.23**

|                       |    | IN1 |    |    |   |   |   |   |          |   |   |   |    |  |  |
|-----------------------|----|-----|----|----|---|---|---|---|----------|---|---|---|----|--|--|
| Bit                   | 15 | 14  | 11 | 10 | 9 | 8 | 7 | 6 | 5        | 4 | 3 | 2 | 10 |  |  |
| Assign-<br>ment (hex) | 1  |     |    |    | 2 |   |   |   |          | 3 | 3 |   | 3  |  |  |
| Meaning               |    |     |    |    |   |   |   |   | Ло<br>le | - |   |   |    |  |  |

#### Measured values

The measured values are available in IB IL format.

The measured value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

| 15 | 14 | 13           | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|--------------|----|----|----|---|---|---|---|---|---|---|---|---|---|
| SB |    | Analog value |    |    |    |   |   |   |   |   |   |   |   |   |   |

Bit 15: Most significant bit (MSB)
Bit 0: Least significant bit (LSB)

SB Sign bit

The IB IL format supports extended diagnostics. Values  $> 8000_{hex}$  and  $< 8100_{hex}$  indicate an error.

The following diagnostic codes are possible:

| Code (hex) | Error                                                    |
|------------|----------------------------------------------------------|
| 8001       | Measuring range exceeded (overrange)                     |
| 8002       | Open circuit                                             |
| 8004       | Measured value invalid/no valid measured value available |
| 8020       | Faulty supply voltage                                    |
| 8040       | Device faulty                                            |
| 8080       | Below measuring range (underrange)                       |

An open circuit is detected according to the following table:

| Faulty sensor cable | Open-circuit message in diagnostics |
|---------------------|-------------------------------------|
| +U <sub>V</sub>     | No                                  |
| GND <sub>Uv</sub>   | Yes                                 |
| +U <sub>0</sub>     | Yes                                 |
| -U <sub>0</sub>     | Yes                                 |
| +U <sub>d</sub>     | Yes                                 |
| -U <sub>d</sub>     | Yes                                 |



Please observe the notes regarding open circuit message under "Local diagnostic indicators"

Typical measured values:

| Detuning in % of nominal value [%] | Input word [hex] | Input word [dec] |
|------------------------------------|------------------|------------------|
| > 130.048                          | 8001             | Overrange        |
| +130.048                           | 7F00             | 32512            |
| +100.000                           | 61A8             | 25000            |
| +1.000                             | 00FA             | 250              |
| +0.004                             | 0001             | 1                |
| 0.0                                | 0000             | 0                |
| -0.004                             | FFFF             | -1               |
| -100.000                           | 9E58             | -25000           |
| -130.048                           | 8100             | -32512           |
| <-130.048                          | 8080             | Underrange       |
| -                                  | 8002             | Open circuit     |

To calculate the detuning as a percentage for other measured values, please use the following formula:

Detuning = Process data value \* 0.004 or Detuning = Process data value/250

#### **Example:**

Nominal characteristic value  $\pm 2 \text{ mV/V}$ Process data value  $\pm 10000_{\text{dec}}$ 

Detuning = 10000/250 = 40% 40% of 2 mV/V = 0.8 mV/V

#### 19 PCP communication

#### 19.1 General information



For information on PCP communication, please refer to the PCP user manuals (see Ordering data).



The programs IBS CMD (for standard controller boards) and PC WorX (for Controllers (ILC), Field Controllers (FC) and Remote Field Controllers (RFC)) are available for the configuration and parameterization of your INTERBUS system.

For additional information, please refer to the documentation of the software used.

By default upon delivery, the terminal is configured according to the default settings (under configuration). The terminal can be configured using process data or PCP to suit your application

In PCP mode, the terminal is configured with the "Config Table" object.

#### 19.2 Object dictionary for PCP communication

| Index               | Data type                | Α | L | Meaning                                      | Object name              | Rights |
|---------------------|--------------------------|---|---|----------------------------------------------|--------------------------|--------|
| 0080 <sub>hex</sub> | Record                   | 2 | 8 | Terminal configuration                       | Config Table             | rd/wr  |
| 0081 <sub>hex</sub> | Unsigned 16              | 2 | 2 | Analog values of the channels                | Analog Values            | rd     |
| 0082 <sub>hex</sub> | Record                   | 2 | 6 | Measured values in the extended float format | Measured Value Float     | rd     |
| 0083 <sub>hex</sub> | Record                   | 2 | 6 | Display value in the extended float format   | Display Value Float      | rd     |
| 0091 <sub>hex</sub> | Unsigned 8               | 2 | 1 | Dynamic control of tare weight adjustment    | Control Dynamic          | wr     |
| 0092 <sub>hex</sub> | Unsigned 8               | 2 | 1 | Static control of path adjust-<br>ment       | Control Static           | wr     |
| 0093 <sub>hex</sub> | Unsigned 8               | 2 | 1 | Status of the Inline terminal                | Status                   | rd     |
| 0097 <sub>hex</sub> | Var of Visible<br>String | 1 |   | Display string of channel 1                  | Display String Channel 1 | rd     |
| 0098 <sub>hex</sub> | Var of Visible<br>String | 1 |   | Display string of channel 2                  | Display String Channel 2 | rd     |
| 009A <sub>hex</sub> | Unsigned 8               | 2 | 1 | Reset to default settings                    | Default Setting          | wr     |
| 0018 <sub>hex</sub> | Record                   | 6 |   | Diagnostics                                  | Diag State               | rd     |

A Number of elements rd Read access permitted L Length of an element in bytes wr Write access permitted

# 20 PCP object description

#### 20.1 "Config Table" object

Configure the terminal using this object.

#### **Object description:**

| Object    | Config Table                                                                             |                        |                  |  |  |
|-----------|------------------------------------------------------------------------------------------|------------------------|------------------|--|--|
| Access    | Read, wi                                                                                 | Read, write            |                  |  |  |
| Data type | Array of                                                                                 | Records                | 2 x 8 bytes      |  |  |
|           | Record =                                                                                 | = 4 x Unsigned 16      |                  |  |  |
| Index     | 0080 <sub>hex</sub>                                                                      |                        |                  |  |  |
| Subindex  | 00 <sub>hex</sub>                                                                        | Write all elements     | 3                |  |  |
|           | 01 <sub>hex</sub> Configuration of on Nominal load (Management value) Reserved           |                        | AX) of channel 1 |  |  |
|           | 02 <sub>hex</sub> Configuration of a<br>Nominal load (Ma<br>Adjustment value<br>Reserved |                        | AX) of channel 2 |  |  |
| Length    | 10 <sub>hex</sub> Subindex 00 <sub>hex</sub>                                             |                        |                  |  |  |
| (bytes)   | 08 <sub>hex</sub> Subindex 01 <sub>hex</sub> to 02 <sub>hex</sub>                        |                        |                  |  |  |
| Data      | Terminal                                                                                 | Terminal configuration |                  |  |  |

#### Element value range

The "Configuration channel x" elements have the following structure:

|                 |    | OUT1 and OUT2                        |   |   |   |   |  |   |   |   |   |   |  |   |  |  |
|-----------------|----|--------------------------------------|---|---|---|---|--|---|---|---|---|---|--|---|--|--|
| Bit             | 15 | 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |   |   |   |   |  |   |   |   |   |   |  |   |  |  |
| Assign-<br>ment | 0  | 0                                    | 0 | 0 | 0 | М |  | 0 | 0 | 0 | 0 | W |  | N |  |  |

#### Where:

M Mean-value
W Conversion time

N Nominal characteristic value

Value range: See "Parameters for configuration"
Default value: See "Parameters for configuration"

#### Nominal load (MAX) element:

Value range: 0 ... 65535<sub>dec</sub>

Default value: 0

#### Adjustment value element:

Value range: 0 ... 32767<sub>dec</sub>

Default value: 0

#### Please note for the "Nominal load (MAX)" element:

If MAX = 0, no value is output on the display of the channel. MAX dimensions the maximum value of the display and the display format.

| Nominal load (MAX) | Display format |
|--------------------|----------------|
| 1 9                | 1.2345         |
| 10 99              | 12.345         |
| 100 999            | 123.45         |
| 1000 9999          | 1234.5         |
| 10000 65535        | 12345          |

MAX corresponds to a detuning of 100%. The use of MAX provides for the maximum value of a sensor to be input.

Example: Sensor with 1 mV/V and MAX = 50 kg. Configuration of the terminal with MAX =  $50_{\text{dec}}$ . Then the display corresponds directly to the measured weight in kg.

| Jumper differ-<br>ence | Process data value           | Display |
|------------------------|------------------------------|---------|
| 0.5 mV/V               | 12500 <sub>dec</sub> -> 50%  | 25.000  |
| 1.0 mV/V               | 25000 <sub>dec</sub> -> 100% | 50.000  |

If an invalid configuration is specified, a negative confirmation is generated with error message  $08_{\text{hex}}$ ,  $00_{\text{hex}}$  or xx30<sub>hex</sub>. The low byte of the Additional\_Error\_Code is  $30_{\text{hex}}$  (value is out of range), the high byte contains the number of the affected element.

Example: Config Table is completely written with data (subindex 00) and the entry for channel 2 is invalid. In this case, the Additional\_Error\_Code is equal to  $0230_{hex}$ .

#### Please note for the "Adjustment value" element:

The value is specified as a percentage of MAX. An LSB corresponds to 0.004%.

Example:

Sensor with 50 kg nominal load (MAX).

It should be adjusted to 25 kg.

Then the adjustment value corresponds to 50% of MAX.

Determine the adjustment value as follows:

50% / 0.004% = 12500.

Therefore configure the adjustment value with 12500<sub>dec</sub>.

#### 20.2 "Analog Values" object

The elements of this object contain the analog values of the channels in IB IL format.

#### **Object description:**

| Object    | Analog Values                 |                                  |                         |  |  |  |
|-----------|-------------------------------|----------------------------------|-------------------------|--|--|--|
| Access    | Read                          |                                  |                         |  |  |  |
| Data type | Array of Unsig                | Array of Unsigned 16 2 x 2 bytes |                         |  |  |  |
| Index     | 0081 <sub>hex</sub>           |                                  |                         |  |  |  |
| Subindex  | 00 <sub>hex</sub>             | Read all eleme                   | ents                    |  |  |  |
|           | 01 <sub>hex</sub>             | Analog value                     | of channel 1            |  |  |  |
|           | 02 <sub>hex</sub>             | Analog value                     | of channel 2            |  |  |  |
| Length    | 04 <sub>hex</sub>             | Subindex 00 <sub>he</sub>        | ex                      |  |  |  |
| (bytes)   | 02 <sub>hex</sub>             | Subindex 01 <sub>he</sub>        | ex to 02 <sub>hex</sub> |  |  |  |
| Data      | Analog values of the channels |                                  |                         |  |  |  |

# 20.3 Extended Float Format for objects 0082<sub>hex</sub> and 0083<sub>hex</sub>

The Extended Float Format is a specially defined format. It consists of the measured value in the float format, a status and a unit code. The construct is defined as a Record.

Status is necessary because the float format defines no patterns providing information on the status of the numerical value.

Status corresponds to the LSB of the Inline diagnostic codes (e.g. overrange: Status = 01, Inline diagnostic code =  $8001_{\text{hex}}$ ). If Status = 0, the measured value is valid.

Record structure:

| Element | Data type  | Length in bytes | Meaning                                    |
|---------|------------|-----------------|--------------------------------------------|
| 1       | Float      | 4               | Value in the float format acc. to IEEE 754 |
| 2       | Unsigned 8 | 1               | Status                                     |
| 3       | Unsigned 8 | 1               | Unit code                                  |

"Units Code" combines the ASCII characters of the "Config Table" in an 8-bit code.

| Code                    | Unit           |  |
|-------------------------|----------------|--|
| 57 (39 <sub>hex</sub> ) | Percentage (%) |  |
| 61 (3D <sub>hex</sub> ) | Kilograms (kg) |  |

Structure of the float format according to IEEE 754 in the bit representation:

| VEEE EEEE | EMM                                           | MMMM MI | MMMM MMMM | MMMM MMMM |  |  |
|-----------|-----------------------------------------------|---------|-----------|-----------|--|--|
|           |                                               |         |           |           |  |  |
| SB        | 1 sign bit, 0: positive, 1: negative          |         |           |           |  |  |
| E         | 8 bits exponent with offset 7F <sub>hex</sub> |         |           |           |  |  |
| M         | 23 bits mantissa                              |         |           |           |  |  |

Some example values for conversion from floating point to hexadecimal representation:

| Floating point | Hexadecimal representation |
|----------------|----------------------------|
| 1.0            | 3F 80 00 00                |
| 10.0           | 41 20 00 00                |
| 1.03965528     | 3F 85 13 6D                |
| - 1.0          | BF 80 00 00                |

#### 20.4 "Measured Value Float" object

The elements of this object contain the measured values in the highest accuracy of the terminal.

### Object description:

| Object    | Measured Value Float         |                                    |                         |  |
|-----------|------------------------------|------------------------------------|-------------------------|--|
| Access    | Read                         |                                    |                         |  |
| Data type | Array of Records 2 x 6 bytes |                                    |                         |  |
| Index     | 0082 <sub>hex</sub>          |                                    |                         |  |
| Subindex  | 00 <sub>hex</sub>            | Read all eleme                     | ents                    |  |
|           | 01 <sub>hex</sub>            | ue of channel 1                    |                         |  |
|           | 02 <sub>hex</sub>            | Measured value of channel (Record) |                         |  |
| Length    | 0C <sub>hex</sub>            | Subindex 00 <sub>he</sub>          | ex                      |  |
| (bytes)   | 06 <sub>hex</sub>            | Subindex 01 <sub>he</sub>          | ex to 02 <sub>hex</sub> |  |
| Data      | Measured value               | ues in the exten                   | ded float for-          |  |

#### 20.5 "Display Value Float" object

The elements of this object contain the display values of the channels in the highest accuracy of the terminal.

### Object description:

| Object    | Display Value Float                                               |                                     |             |  |
|-----------|-------------------------------------------------------------------|-------------------------------------|-------------|--|
| Access    | Read                                                              |                                     |             |  |
| Data type | Array of Recor                                                    | rds                                 | 2 x 6 bytes |  |
| Index     | 0083 <sub>hex</sub>                                               |                                     |             |  |
| Subindex  | 00 <sub>hex</sub>                                                 | Read all eleme                      | ents        |  |
|           | 01 <sub>hex</sub>                                                 | Display value of channel 1 (Record) |             |  |
|           | 02 <sub>hex</sub>                                                 | Display value of channel 2 (Record) |             |  |
| Length    | 0C <sub>hex</sub>                                                 | Subindex 00 <sub>he</sub>           | ex          |  |
| (bytes)   | 06 <sub>hex</sub> Subindex 01 <sub>hex</sub> to 02 <sub>hex</sub> |                                     |             |  |
| Data      | Display values of the channels in the extended float format       |                                     |             |  |

### 20.6 "Control Dynamic" object

The elements of this object are used for the tare weight adjustment.

### Object description:

| Object    | Control Dyr         | Control Dynamic                                                     |      |  |  |
|-----------|---------------------|---------------------------------------------------------------------|------|--|--|
| Access    | Write               | Write                                                               |      |  |  |
| Data type | Array of Un         | Array of Unsigned 8 2 x 1 byte                                      |      |  |  |
| Index     | 0091 <sub>hex</sub> | 0091 <sub>hex</sub>                                                 |      |  |  |
| Subindex  | 00 <sub>hex</sub>   | Write all elem                                                      | ents |  |  |
|           | 01 <sub>hex</sub>   | 01 <sub>hex</sub> Channel 1                                         |      |  |  |
|           | 02 <sub>hex</sub>   |                                                                     |      |  |  |
| Length    | 02 <sub>hex</sub>   | Subindex 00 <sub>h</sub>                                            | nex  |  |  |
| (bytes)   | 01 <sub>hex</sub>   | 01 <sub>hex</sub> Subindex 01 <sub>hex</sub> to 02 <sub>hex</sub>   |      |  |  |
| Data      |                     | Control of tare weight adjustment; See below for the bit assignment |      |  |  |
|           | See below i         | or the bit assigni                                                  | Heni |  |  |

"Control Dynamic" for each channel

| Bit             | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    |
|-----------------|---|---|---|---|---|---|---|------|
| Assign-<br>ment | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Tare |

#### Value range:

| Tare | 0 | No action                     |
|------|---|-------------------------------|
|      | 1 | Make a tare weight adjustment |

The tare value is not stored in the EEPROM. After power up, the value = 0.

#### 20.7 "Control Static" object

#### **Object description:**

| Object    | Control Static                       | Control Static                 |                         |  |  |
|-----------|--------------------------------------|--------------------------------|-------------------------|--|--|
| Access    | Write                                | Write                          |                         |  |  |
| Data type | Array of Unsig                       | Array of Unsigned 8 2 x 1 byte |                         |  |  |
| Index     | 0092 <sub>hex</sub>                  | 0092 <sub>hex</sub>            |                         |  |  |
| Subindex  | 00 <sub>hex</sub> Write all elements |                                |                         |  |  |
|           | 01 <sub>hex</sub>                    | Channel 1                      |                         |  |  |
|           | 02 <sub>hex</sub>                    | Channel 2                      |                         |  |  |
| Length    | 02 <sub>hex</sub>                    | Subindex 00 <sub>he</sub>      | эх                      |  |  |
| (bytes)   | 01 <sub>hex</sub>                    | Subindex 01 <sub>he</sub>      | ex to 02 <sub>hex</sub> |  |  |
| Data      | Static control                       | of path adjustm                | ent                     |  |  |

#### "Control Static" for each channel

| Bit        | 7 | 6 | 5 | 4 | 3                              | 2 | 1 | 0 |
|------------|---|---|---|---|--------------------------------|---|---|---|
| Assignment | 0 | 0 | 0 | 0 | K <sub>a</sub> -K <sub>b</sub> | J | Ν | 0 |

#### Where:

N/O contact Ka-Kb K<sub>a</sub>-K<sub>b</sub> Adjustment Ν Zero point

#### Value range:

| K <sub>a</sub> -K <sub>b</sub> | 0 | Open N/O contact K <sub>a</sub> -K <sub>b</sub>  |
|--------------------------------|---|--------------------------------------------------|
|                                | 1 | Close N/O contact K <sub>a</sub> -K <sub>b</sub> |
| Adjustment                     | 0 | No action                                        |
|                                | 1 | Adjusting                                        |
| Zero point                     | 0 | No action                                        |
|                                | 1 | Determine zero point                             |



Do not carry out the actions "Adjustment" and "Determine zero point" at the same time.

The "Adjustment" and "Determine zero point" actions are used for the path adjustment. The values are stored in a nonvolatile way in the EEPROM.

When there is an adjustment to be done and an adjustment value has not yet been determined with "Config Table", a negative Write Confirmation with the error message 08, 00,  $0021_{\text{hex}}$  is generated. This message means that the service cannot be executed at present.

#### 20.8 "Status" object

The elements of this object are used for the path adjustment. The elements of this object contain the status of the status LEDs of the display as well as information about the default of the adjustment values.

#### **Object description:**

| Object    | Status              | Status                                                                                                 |            |  |  |  |
|-----------|---------------------|--------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Access    | Read                | Read                                                                                                   |            |  |  |  |
| Data type | Array of U          | nsigned 8                                                                                              | 2 x 1 byte |  |  |  |
| Index     | 0093 <sub>hex</sub> | 0093 <sub>hex</sub>                                                                                    |            |  |  |  |
| Subindex  | 00 <sub>hex</sub>   | 00 <sub>hex</sub> Read all elements                                                                    |            |  |  |  |
|           | 01 <sub>hex</sub>   | Channel 1                                                                                              | Channel 1  |  |  |  |
|           | 02 <sub>hex</sub>   |                                                                                                        |            |  |  |  |
| Length    | 02 <sub>hex</sub>   |                                                                                                        |            |  |  |  |
| (bytes)   | 01 <sub>hex</sub>   |                                                                                                        |            |  |  |  |
| Data      | about the           | Status of the display LEDs and information about the default setting; see below for the bit assignment |            |  |  |  |

#### "Status" of each channel

| Bit             | 7 | 6 | 5 | 4   | 3 | 2   | 1   | 0  |
|-----------------|---|---|---|-----|---|-----|-----|----|
| Assign-<br>ment | 0 | 0 | 0 | Def | 0 | NET | -0- | >< |

#### Value range:

| Def (Default) | 0 | The adjustment values of the path adjustment correspond to the default setting.        |
|---------------|---|----------------------------------------------------------------------------------------|
|               | 1 | The adjustment values of the path adjustment do not correspond to the default setting. |
| NET, -0-, ><  | 0 | LED OFF                                                                                |
|               | 1 | LED ON                                                                                 |



The bits NET, -0- and >< are only maintained when the display is active, i.e. the nominal load is unequal 0.

PHOENIX CONTACT 25 7647\_en\_04

### 20.9 "Display String Channel 1" object

The elements of this object contain the data flow of channel 1 that is sent to the display.  $\,$ 

### **Object description:**

| Object         | Display String Channel 1 |                                    |                  |  |
|----------------|--------------------------|------------------------------------|------------------|--|
| Access         | Read                     |                                    |                  |  |
| Data type      | Var of Visible           | Var of Visible String 1 string     |                  |  |
| Index          | 0097 <sub>hex</sub>      |                                    |                  |  |
| Subindex       | 00 <sub>hex</sub>        | (Only access to all data possible) |                  |  |
| Length (bytes) | 00 <sub>hex</sub>        | Amount of data buffer              | a present in the |  |
|                | :                        | :                                  |                  |  |
|                | xx <sub>hex</sub>        | Maximum leng                       | th of the object |  |
| Data           | Display value mat        | of channel 1 in                    | the ASCII for-   |  |

The length of the read service depends on the number of characters to be transmitted.

The six digits of the display are represented as ASCII characters, from  $30_{\rm hex}$  (digit 0) to  $39_{\rm hex}$  (digit 9).

The decimal point is displayed with 2C<sub>hex</sub>.

The LEDs are controlled with \$S sequences.

| Sequenc<br>e | Character [hex] | LED                  |
|--------------|-----------------|----------------------|
| \$S1         | 24 53 31        | 1                    |
| \$S2         | 24 53 32        | 2                    |
| \$S3         | 24 53 33        | 3 (not supported)    |
| \$S4         | 24 53 34        | NET                  |
| \$S5         | 24 53 35        | TARA (not supported) |
| \$S6         | 24 53 36        | -0-                  |
| \$S7         | 24 53 37        | ><                   |

#### Example:

The value 32.645 is shown on the display, the rest LED and the 1 LED are on.

This is shown by the following string:

| hex     | 20 | 33 | 32 | 2C | 36 | 34 | 35 | 24 | 53 | 37 | 24 | 53    | 31 |
|---------|----|----|----|----|----|----|----|----|----|----|----|-------|----|
| ASCII   |    | 3  | 2  |    | 6  | 4  | 5  | \$ | S  | 7  | \$ | S     | 1  |
| Display |    | 3  | 2  |    | 6  | 4  | 5  |    | >< |    |    | LED 1 |    |

The leading 0 is not shown on the display.

#### 20.10 "Display String Channel 2" object

The elements of this object contain the data flow of channel 2 The adjustment values of the path adjustment are set individthat is sent to the display.

### **Object description:**

| Object         | Display String Channel 2                              |                                |                  |  |  |
|----------------|-------------------------------------------------------|--------------------------------|------------------|--|--|
| Access         | Read                                                  |                                |                  |  |  |
| Data type      | Var of Visible                                        | Var of Visible String 1 string |                  |  |  |
| Index          | 0098 <sub>hex</sub>                                   | 0098 <sub>hex</sub>            |                  |  |  |
| Subindex       | 00 <sub>hex</sub> (Only access to all data possible)  |                                |                  |  |  |
| Length (bytes) | 00 <sub>hex</sub> Amount of data present in th buffer |                                |                  |  |  |
|                | :                                                     | :                              |                  |  |  |
|                | xx <sub>hex</sub>                                     | Maximum leng                   | th of the object |  |  |
| Data           | Display value of channel 2 in the ASCII format        |                                |                  |  |  |

For a description, see "Display String Channel 1" object.

#### 20.11 "Default Setting" object

ually or all together to the default setting with this object.

#### Object description:

| Object    | Default Se          | Default Setting                                                   |  |  |  |
|-----------|---------------------|-------------------------------------------------------------------|--|--|--|
| Access    | Write               | Write                                                             |  |  |  |
| Data type | Array of U          | Array of Unsigned 8 2 x 1 byte                                    |  |  |  |
| Index     | 009A <sub>hex</sub> | 009A <sub>hex</sub>                                               |  |  |  |
| Subindex  | 00 <sub>hex</sub>   | 00 <sub>hex</sub> Write all elements                              |  |  |  |
|           | 01 <sub>hex</sub>   | 01 <sub>hex</sub> Channel 1                                       |  |  |  |
|           | 02 <sub>hex</sub>   | 02 <sub>hex</sub> Channel 2                                       |  |  |  |
| Length    | 02 <sub>hex</sub>   |                                                                   |  |  |  |
| (bytes)   | 01 <sub>hex</sub>   | 01 <sub>hex</sub> Subindex 01 <sub>hex</sub> to 02 <sub>hex</sub> |  |  |  |
| Data      | Reset to c          | Reset to default settings                                         |  |  |  |

#### Default setting

| Bit             | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----------------|---|---|---|---|---|---|---|---|
| Assign-<br>ment | 0 | 1 | 0 | 0 | 0 | J | N | Т |

#### Where:

J Adjustment Ν Zero point Т Tare

#### Value range:

| Adjustment | 0 | No action                                                 |
|------------|---|-----------------------------------------------------------|
|            | 1 | Set adjustment to default value (1.0) and store in EEPROM |
| Zero point | 0 | No action                                                 |
|            | 1 | Set zero point to default value (0.0) and store in EEPROM |
| Tare       | 0 | No action                                                 |
|            | 1 | Set tare to the default value (0.0)                       |

The value 4 (0100<sub>bin</sub>) in the high nibble should prevent that general values such as  $00_{hex}$  or FF<sub>hex</sub> execute a reset to default values.

If the upper nibble is unequal 4 or the reserved bit 3 is set, a negative Write Confirmation with the error message 08,00, A020<sub>hex</sub> is generated. This message means that the service cannot be executed at present.

PHOENIX CONTACT 27 7647\_en\_04

#### 20.12 "Diag State" object

The elements of this object are used for a structured message of an error.

#### Object description:

| Object    | Diag State                                                                                                                             |                                    |                |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--|--|--|
| Access    | Read                                                                                                                                   |                                    |                |  |  |  |
| Data type | Record 6                                                                                                                               |                                    |                |  |  |  |
| Index     | 0018 <sub>hex</sub>                                                                                                                    | 0018 <sub>hex</sub>                |                |  |  |  |
| Subindex  | 00 <sub>hex</sub>                                                                                                                      | Read all eleme                     | nents          |  |  |  |
|           | 01 <sub>hex</sub>                                                                                                                      | Error Number                       | Unsigned 16    |  |  |  |
|           | 02 <sub>hex</sub>                                                                                                                      | Priority                           | Unsigned 8     |  |  |  |
|           | 03 <sub>hex</sub>                                                                                                                      | Channel                            | Unsigned 8     |  |  |  |
|           | 04 <sub>hex</sub>                                                                                                                      | Error code                         | Unsigned 16    |  |  |  |
|           | 05 <sub>hex</sub>                                                                                                                      | More infor-<br>mation fol-<br>lows | Unsigned 8     |  |  |  |
|           | 06 <sub>hex</sub>                                                                                                                      | Text (10 characters)               | Visible String |  |  |  |
| Length    | 11 <sub>hex</sub>                                                                                                                      | Subindex 00 <sub>he</sub>          | ex             |  |  |  |
| (bytes)   | 02 <sub>hex</sub>                                                                                                                      | Subindex 01 <sub>hex</sub>         |                |  |  |  |
|           | 01 <sub>hex</sub>                                                                                                                      | Subindex 02 <sub>he</sub>          | ex             |  |  |  |
|           | 01 <sub>hex</sub> Subindex 03 <sub>hex</sub> 02 <sub>hex</sub> Subindex 04 <sub>hex</sub> 01 <sub>hex</sub> Subindex 05 <sub>hex</sub> |                                    | ex             |  |  |  |
|           |                                                                                                                                        |                                    | nex            |  |  |  |
|           |                                                                                                                                        |                                    | ex             |  |  |  |
|           | 0A <sub>hex</sub>                                                                                                                      | Subindex 06 <sub>hex</sub>         |                |  |  |  |
| Data      | Diagnostic status                                                                                                                      |                                    |                |  |  |  |

#### Value range:

| Error Number                       | 0 65535 <sub>dec</sub>           |                                        |  |
|------------------------------------|----------------------------------|----------------------------------------|--|
| Priority                           | Error code = 0000 <sub>hex</sub> | Prio: 00 <sub>hex</sub>                |  |
|                                    | Other                            | Prio: 02 <sub>hex</sub>                |  |
| Channel                            | Error code = 0000 <sub>hex</sub> | Channel: 00 <sub>hex</sub>             |  |
|                                    | Other                            | 01 <sub>hex</sub> or 02 <sub>hex</sub> |  |
| Error code                         | 0000 <sub>hex</sub>              | OK                                     |  |
|                                    | 8910 <sub>hex</sub>              | Overrange                              |  |
|                                    | 8920 <sub>hex</sub>              | Underrange                             |  |
|                                    | 7710 <sub>hex</sub>              | Line break                             |  |
|                                    | 5160 <sub>hex</sub>              | Power fail                             |  |
|                                    | 5010 <sub>hex</sub>              | Hardware fault                         |  |
| More infor-<br>mation fol-<br>lows | 00 <sub>hex</sub>                |                                        |  |
| Text (10 char-                     | Error code = 0000 <sub>hex</sub> | Text: Status OK                        |  |
| acters)                            | Other                            | Error-specific                         |  |

# 21 PCP mode error messages

The terminal error messages have the parameters Error\_Class = 8 (device-specific error) and Error\_Code = 0 (no communication error).

The exact error cause is indicated with the Additional Code. The low byte of the Additional Code specifies the error cause. The high byte of the Additional Code (xx) contains the number of the affected element. If several elements are affected, the highest number is given.

The following Additional Codes can occur on this terminal:

 $\begin{array}{ll} xx20_{hex} & \text{Service cannot be executed at present.} \\ xx21_{hex} & \text{Service cannot be executed at present.} \\ xx30_{hex} & \text{Value out of range or reserved bits used} \\ 0000_{hex} & \text{Hardware fault} \end{array}$ 



For information on PCP communication, please refer to the PCP user manuals (see Ordering data).

# 22 Startup and measuring jumper detuning

To start the terminal, proceed as follows:

- Install the terminal within the Inline station.
   To do so, proceed as described in the package slip.
   vor.
- Connect the strain gauge in 6 or 4-wire technology (see "Connection examples").
- Connect the voltage to the Inline station.
   This power up configures the terminal with the default values.
- If you do not wish to operate the terminal with the default values, configure the terminal via process data or PCP.
- Jumper detuning can now be measured.



If a sensor is connected after power up, the corresponding channel must be configured. After the configuration the channel is ready for operation.