
TMP006 Hookup Guide




CONTRIBUTORS: JORDANDEE

TMP006 Overview

The TMP006 is a temperature sensor that can detect the temperature of an

object without having to make direct contact with it. The sensor has a

thermopile which absorbs infrared energy from the object. The thermopile is

composed of several thermocouples in series which each produce a

voltage when heated. The total voltage is read and stored within the sensor

as a number in a register. This number can then be used to calculate the

object temperature.

The sensor can measure temperatures between -40°C and 125°C. It can be

powered with 3.3V or 5V or anything in between. It can be used with battery

powered applications as it is low power and has a typical idle (quiescent)

current of 240 µA. It sports a very tiny form factor. You can interface with

the chip using I C and can have up to eight of them on the same I C bus.2 2

Page 1 of 6

Suggested Reading

These boards aren�t too hard to use. If you�ve done anything with Arduino

before, you�ll be prepared to work with the TMP006. If you�re not exactly

sure what this �Arduino� thing is, or if you�re not familiar with the topics

below, consider reading these tutorials:

� What is an Arduino

� I C Communication

� How to Use a Breadboard

� How to Solder

� Light

Hardware Hookup

This temperature sensor is easy to hookup and only requires a minimum of

four connections. Two for power, VCC and GND, and two for I C

communication, SCL and SDA.

We�re going to use the Arduino Uno as an example of how to hook up and

talk to this sensor, however, feel free to choose any Arduino or a favorite

microcontroller of your choice.

Connections:

� VCC → 5V (or 3.3V)

� GND → GND

� SCL → A5 (or SCL for R3)

� SDA → A4 (or SDA for R3)

Here�s a Fritzing diagram showing the physical connections:

Multiple Sensors

2

2

Page 2 of 6

If you want to communicate with more than one sensor using the same

microcontroller�s I C lines, you will have to give them different addresses by

using the address pins, ADR0 and ADR1. By default, both pins are

grounded, and the sensor�s address is 0x40. Here is a table showing what

the address pins should be connected to to establish a different address.

Table of I C Addresses

ADR1ADR0I2C Address

GND GND 0x40

GND VCC 0x41

GND SDA 0x42

GND SCL 0x43

VCC GND 0x44

VCC VCC 0x45

VCC SDA 0x46

VCC SCL 0x47

As an example, if you wanted to use two sensors, you could leave one of

them as the default address 0x40 and connect the second sensor�s ADR0

pin to VCC to change its I2C address to 0x41. This will allow you to talk to

both sensors using just one microcontroller.

Data Ready?

The DRDY pin is unnecessary for most applications, however, if you really

need to know exactly when a sensor measurement is complete and ready

for reading, you can monitor this pin to see when it goes LOW. You can

then immediately acquire the temperature measurement data afterward.

Talking to the Sensor

Now that the hardware is set up, how do we actually receive temperature

data from the sensor? Well, we�ve got to do some coding. Luckily for you,

there isn�t much you have to modify if you want to get up and running

immediately, however we�ll explain the overall gist of how the code works in

this section.

Here is the download of the example code we�ll be using. You can also find

the most up-to-date code on GitHub. Feel free to dive right in and try to use

it or follow along for an overview.

In the beginning, we have two global variables. One stores the I C address

of the sensor, and the other stores how many times we�d like the sensor to

sample per temperature reading/calculation. Feel free to try the defaults

right away with the hardware setup described in the last section, no

changes necessary. Here they are:

2

2

2

Page 3 of 6

uint8_t sensor1 = 0x40; // I2C address of TMP006, can be 0x40­
0x47

uint16_t samples = TMP006_CFG_8SAMPLE; // # of samples per rea

ding, can be 1/2/4/8/16

If you�d like to use multiple sensors, you�ll need to declare another sensor

variable and give it the appropriate address. Feel free to change the sample

rate regardless. Just keep in mind, the more samples it takes, the longer

you have to wait for a reading. It�s about a 1 second wait per 4 samples.

Next, let�s examine the setup loop. Here we initialize serial output so we

can display our readings. We also call a configuration function for our

TMP006 sensor. It sets up some defaults for us to get going and also tells

the sensor how many samples per reading we want. If you�re using more

than one sensor, you�ll have to call this function for each one with the

appropriate I2C address.

void setup()

{

 Serial.begin(9600);

 Serial.println("TMP006 Example");

config_TMP006(sensor1, samples);

}

Within the loop function, we call two main functions. The first gives us the

temperature of the object in front of the sensor, and the second gives us the

temperature of the sensor itself. Both are then sent via serial to your

computer and can be viewed using the Serial Monitor. Again, you�ll need to

add duplicates of these functions if you�re talking to multiple temperature

sensors.

void loop()

{

float object_temp = readObjTempC(sensor1);

 Serial.print("Object Temperature: ");

 Serial.print(object_temp); Serial.println("*C");

float sensor_temp = readDieTempC(sensor1);

 Serial.print("Sensor Temperature: ");

 Serial.print(sensor_temp); Serial.println("*C");

delay(2000); // delay 1 second for every 4 samples per readi

ng

}

Page 4 of 6

Running this code with the default configuration and the basic hardware

hookup, you will see both the object and sensor temperatures displayed on

the serial monitor every two seconds.

Exploring the Gorier Details�

So you want to learn more about the details of what�s going on in the

background? Read on!

There are two tabs in this example that implement the I2C functionality,

I2C_16.h and I2C_functions.ino . These allow the reading and writing of

data to the sensor. Take some time to learn about I2C via our tutorial

mentioned in the beginning. Also learn some about Arduino�s Wire library,

as it is what�s used to make this communication possible. Of course it is

possible to write your own I2C communication from scratch, but the Wire

library makes it much easier.

When it comes to acquiring the object temperature, we must make some

calculations because the sensor only gives us the thermopile voltage and a

raw temperature reading of the actual sensor itself. The equations

necessary for calculating object temperature can be found in section 5.1 of

the user guide. The TMP006_functions.ino tab includes the various

implementations necessary to get temperature readings. The calculations

based on the user guide can be found there. Within TMP006.h , you�ll find

various constants for the calculations, configuration settings, and the

sensor�s register addresses.

Feel free to explore this code as much as you want, and don�t be afraid to

modify it to better suit your needs.

Going Further

Now it�s time for you to go out and explore the real world applications where

you can use this sensor to measure the temperatures of the various things

you find. You have also gained enough knowledge that will allow you to use

other types of sensors that utilize I2C communication more easily. See

what you can build, and feel free to show it to us or give us feedback

regarding this tutorial. Enjoy!

Resources

� Example Code

� TMP006 Datasheet

� TMP006 User Guide

� Breakout Board Schematic

� Breakout Board Eagle Files

Page 5 of 6

Other I C Projects and Products

Both of these tutorials have I C communication. They can also both be

used in conjunction with this sensor to act as a display for the temperature.

� Serial 7-Segement Display Hook-Up Guide

� OpenSegment Hook-Up Guide

2

2

Page 6 of 6

2/12/2015https://learn.sparkfun.com/tutorials/tmp006-hookup-guide?_ga=1.71398933.725293211.1423760740

