

Adafruit Data Logger Shield
Created by Bill Earl

https://learn.adafruit.com/adafruit-data-logger-shield

Last updated on 2023-06-16 01:07:04 PM EDT

©Adafruit Industries Page 1 of 68

5

6

16

20

24

27

34

40

41

Table of Contents

Overview

• Features:

Installing the Headers

• Assembly with male headers

• Cut the headers to length:

• Position the headers:

• Position the shield:

• And solder!

• Assembly with Stacking Headers:

• Position the headers:

• And solder!

• Place the 2x3 female header on to the Arduino/Metro

Shield Overview

• SD Card

• Real Time Clock

• 3.3V Power Supply

• User LEDs

• Prototyping Area

• Breakout Pads

Wiring & Config

• Which version do I have?

• Older Shield Pinouts

• Rev B Shield Pinouts

• Rev C Shield Pinouts

Older Datalogger Shield Leonardo & Mega Library

• Using the SD Library with the Mega and Leonardo

• cardinfo

Using the Real Time Clock

• What is a Real Time Clock?

• Battery Backup

• Talking to the RTC

• First RTC test

• Setting the time

• Reading the time

Using the SD Card

• Formatting under Windows/Mac

• Get Card Info

Light and Temperature Logger

• Introduction

Build It!

• Items you'll need:

• The sensors

• Wiring it up

©Adafruit Industries Page 2 of 68

48

59

65

• Position the sensors

• Prepare some jumpers

• Install the Jumpers

• Make the connections

• Add more jumpers for the Sensors

• And also for the LEDs

• Solder and trim all connections

• Prepare the Battery Pack

Use It!

• Sensor test

• Logging sketch

• Plotting with a spreadsheet

• Using Gnuplot

• Portable logging

• Other plotters

• Fridge logging

• Conclusion!

Code Walkthrough

• Introduction

• Includes and Defines

• Objects and error()

• Setup

• Main loop

• Timestamping

• Log sensor data

Downloads

• Files

• Revision C Schematics & Fabrication Print

• Revision B Schematics

• Original Version Schematics

©Adafruit Industries Page 3 of 68

©Adafruit Industries Page 4 of 68

Overview

Here's a handy Arduino shield: we've had a lot of people looking for a dedicated and

well-designed data logging shield. We worked hard to engineer an inexpensive but

well-rounded design. This shield makes it easy to add a 'hard disk' with gigabytes of

storage to your Arduino!

Our latest version of this popular shield has all the features of the popular original,

and is "R3" compatible so you can use it with just about any Arduino or compatible.

You can be up and running with it in less than 15 minutes - saving data to files on any

FAT16 or FAT32 formatted SD card, to be read by any plotting, spreadsheet or

analysis program. This tutorial will also show you how to use two free software

programs to plot your data. The included RTC (Real Time Clock) can be used to

timestamp all your data with the current time, so that you know precisely what

happened when!

The data logger is a reliable, well-rounded and versatile design. It is easily expanded

or modified and come well supported with online documentation and libraries

Features:

SD card interface works with FAT16 or FAT32 formatted cards. Built in 3.3v level

shifter circuitry lets you read or write super fast and prevents damage to your

SD card

Real time clock (RTC) keeps the time going even when the Arduino is

unplugged. The coin cell battery backup lasts for years

•

•

©Adafruit Industries Page 5 of 68

Included libraries and example code for both SD and RTC mean you can get

going quickly

Prototyping area for soldering connectors, circuitry or sensors.

Two configurable indicator LEDs

Onboard 3.3v regulator is both a reliable reference voltage and also reliably

runs SD cards that require a lot of power to run

Uses the "R3 layout" I2C and ICSP/SPI ports so it is compatible with a wide

variety of Arduinos and Arduino-compatibles

With this new version you can use it with:

Arduino UNO or ATmega328 compatible - 4 analog channels at 10 bit resolution,

6 if RTC is not used

Arduino Leonardo or ATmega32u4 compatible - 12 analog channels at 10 bit

resolution

Arduino Mega or ATmega2560 compatible - 16 analog inputs (10-bit)

Arduino Zero or ATSAMD21 compatible - 6 analog inputs (12-bit)

Arduino Due compatible - 12 analog inputs (12-bit)

Of course you can log anything you like, including digital sensors that have Arduino

libraries, serial data, bit timings, and more!

Installing the Headers

The Adafruit Data Logger shield comes tested assembled with all components and SD

socket already on it, but you'll still need need to put headers on so you can plug it

into an Arduino

We don't pre-assemble the headers on because there's two options! You can either

use plain 0.1" male headers (included with the shield) or Arduino Shield Stacking

headers (http://adafru.it/85). Both options additionally require a 2x3 female header

soldered on.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 6 of 68

http://adafruit.com/products/85
http://adafruit.com/products/85

Assembly with male headers

Most people will be happy with assembling he shield with male headers. The nice

thing about using these is they don't add anything to the height of the project, and

they make a nice solid connection. However, you won't be able to stack another

shield on top. Trade offs!

©Adafruit Industries Page 7 of 68

Cut the headers to length:
Line the header strip up with the holes on

the edge of the shield and cut 4 sections

of header strip to fit.

Position the headers:
Insert the header sections - long pins

down - into the female headers on your

Arduino/Metro. Additionally insert the 2x3

female header into the corresponding pins

on the opposite side as the USB.

Position the shield:
Align the shield with the header pins and

press down.

©Adafruit Industries Page 8 of 68

https://learn.adafruit.com//assets/38633
https://learn.adafruit.com//assets/38633
https://learn.adafruit.com//assets/38634
https://learn.adafruit.com//assets/38634
https://learn.adafruit.com//assets/38635
https://learn.adafruit.com//assets/38635

And solder!
Solder each pin to assure good electrical

contact. For tips on soldering, refer to the

Adafruit Guide to Excellent Soldering ().

©Adafruit Industries Page 9 of 68

https://learn.adafruit.com//assets/38636
https://learn.adafruit.com//assets/38636
https://learn.adafruit.com//assets/38638
https://learn.adafruit.com//assets/38638
https://learn.adafruit.com//assets/38639
https://learn.adafruit.com//assets/38639
http://learn.adafruit.com/adafruit-guide-excellent-soldering/tools

Flip around and solder the other side as

well as the 2x3 header

©Adafruit Industries Page 10 of 68

https://learn.adafruit.com//assets/38640
https://learn.adafruit.com//assets/38640
https://learn.adafruit.com//assets/38641
https://learn.adafruit.com//assets/38641
https://learn.adafruit.com//assets/38642
https://learn.adafruit.com//assets/38642
https://learn.adafruit.com//assets/38643
https://learn.adafruit.com//assets/38643

Assembly with Stacking Headers:
Stacking headers give your data logger shield extra flexibility. You can combine it with

other shields such as the RGB/LCD Display shield (http://adafru.it/714) to make a

compact logging instrument complete with a user interface. You can also stack it with

one or more Proto-Shields (http://adafru.it/51) to add even more prototyping space for

interfacing to sensors.

Stacking headers are installed from the top of the board instead of the bottom, so the

procedure is a little different than for installing simple male headers.

Position the headers:

Insert the headers from the top of the shield, then flip the shield over and place it on

a flat surface. Straighten the headers so that they are vertical.

©Adafruit Industries Page 11 of 68

https://www.adafruit.com/products/714
http://www.adafruit.com/products/51

And solder!

Solder each pin for a solid electrical

connection.

Tip: Solder one pin from each header

section. If any of them are crooked, simply

re-heat the one solder joint and straighten

it by hand. Once all headers are straight,

continue soldering the rest of the pins.

Be sure to insert the headers from the TOP of the shield so that they can be

soldered from the BOTTOM.

©Adafruit Industries Page 12 of 68

https://learn.adafruit.com//assets/38648
https://learn.adafruit.com//assets/38648
https://learn.adafruit.com//assets/38649
https://learn.adafruit.com//assets/38649

Flip and solder the other side

©Adafruit Industries Page 13 of 68

https://learn.adafruit.com//assets/38650
https://learn.adafruit.com//assets/38650
https://learn.adafruit.com//assets/38652
https://learn.adafruit.com//assets/38652
https://learn.adafruit.com//assets/38653
https://learn.adafruit.com//assets/38653
https://learn.adafruit.com//assets/38654
https://learn.adafruit.com//assets/38654

Place the 2x3 female header
on to the Arduino/Metro

©Adafruit Industries Page 14 of 68

https://learn.adafruit.com//assets/38655
https://learn.adafruit.com//assets/38655
https://learn.adafruit.com//assets/38656
https://learn.adafruit.com//assets/38656

Place the board on the Metro and solder

the 2x3 header

©Adafruit Industries Page 15 of 68

https://learn.adafruit.com//assets/38657
https://learn.adafruit.com//assets/38657
https://learn.adafruit.com//assets/38658
https://learn.adafruit.com//assets/38658
https://learn.adafruit.com//assets/38659
https://learn.adafruit.com//assets/38659
https://learn.adafruit.com//assets/38660
https://learn.adafruit.com//assets/38660

Shield Overview

The datalogger shield has a few things to make it an excellent way to track data.

Here's a rough map of th shield:

Our latest version adds power rails for 5V, 3.3V and Ground:

©Adafruit Industries Page 16 of 68

SD Card

The big SD card holder can fit any SD/MMC storage up to 32G and and small as 32MB

(Anything formatted FAT16 or FAT32) If you have a MicroSD card, there are low cost

adapters which will let you fit these in. SD cards are tougher to lose than MicroSD,

and there's plenty of space for a full size holder.

Simply Push to insert, or Pull to remove the card from this slot

The SD Activity LED is connected to the clock pin, it will blink when data goes over

SPI, which can help you detect when its ok to remove or insert the SD card or power

down the Arduino.

The Level Shifter moves all signals from 3.3 or 5V down to 3.3V so you can use this

shield with any Arduino safely and not damage cards. Cheaper shields use resistors

to level shift, but this doesn't work well at high speed or at all voltage levels!

Real Time Clock

This is the time-keeping device. It includes the 8-pin chip, the rectangular 32KHz

crystal and a battery holder

The battery holder must contain a battery in order for the RTC to keep track of time

when power is removed from the Arduino! Use any CR1220 compatible coin cell

©Adafruit Industries Page 17 of 68

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380

3.3V Power Supply

An on-board 3.3V LDO (low drop-out type) regulator keeps the shield's 3V parts

running smoothly. Some old Arduinos did not have a full 3.3V regulator and writing to

an SD card could cause the Arduino to reboot. To maintain compatibility we just keep

it there. There's also a green PWR (Power) good LED to the right

User LEDs

We have two user-configuratble LEDs. Connect a wire from any Arduino pin to L1 or L

2 marked pads and pull high to turn on LED1 or LED2

The reset button to the right of the LEDs, will reset the entire Arduino, handy for when

you want to restart the board

Prototyping Area

The big middle section is filled with 0.1" grid prototyping holes so you can customize

your shield with sensors or other circuitry.

The top two and bottom two rows of proto holes are power rails.

©Adafruit Industries Page 18 of 68

https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380

Breakout Pads

We also have some extra breakouts shown above, around the breakout board area.

To the right of the SD card holder:

CD - this is the card detect pad on the SD card. When this is connected to

ground, an SD card is inserted. It is open-drain, use a pullup (either physical

resistor or enabled in software)

•

©Adafruit Industries Page 19 of 68

WP - this is the Write Protect pad on the SD card, you can use this to detect if

the write-protect tab is on the card by checking this pin. It is open-drain, use a

pullup (either physical resistor or enabled in software)

SQ - this is the optional Squarewave output from the RTC. You have to send the

command to turn this on but its a way of optionally getting a precision

squarewave. We use it primarily for testing. The output is open drain so a pullup

(either physical resistor or enabled in software)

3V - this is the 3V out of the regulator. Its a good quality 3.3V reference which

you may want to power sensors. Up to 50mA is available

Near Digital #10

CS - this is the Chip Select pin for the SD card. If you need to cut the trace to pin

10 because it is conflicting, this pad can be soldered to any digital pin and the

software re-uploaded

Near Digital #3 and #4

L2 and L1 - these are optional user-LEDs. Connect to any digital pin, pull high to

turn on the corresponding LED. The LEDs already have 470 ohm resistors in

series.

Wiring & Config

As of revision B of the Datalogger shield, we've moved away from using digital pins

10, 11, 12, 13 for SPI and A4, A5 for I2C. We now use the 2x3 ICSP header, which

means that you don't need special customized I2C or SPI libraries to use with Mega or

Leonardo or Zero (or any other future type) of Arduino!

•

•

•

•

•

©Adafruit Industries Page 20 of 68

Which version do I have?

This is the older Datalogger shield. In

particular, note that the prototyping area is

completely full of 0.1" spaced holes

This is the "R3 compatible" Datalogger.

Note that it has a smaller prototyping area

and that there is a 2x3 SPI header spot on

the right

Older Shield Pinouts

On the older shields, the pinout was fixed to be:

Digital #13 - SPI clock•

©Adafruit Industries Page 21 of 68

https://learn.adafruit.com//assets/35513
https://learn.adafruit.com//assets/35513
https://learn.adafruit.com//assets/35514
https://learn.adafruit.com//assets/35514
https://learn.adafruit.com//assets/35515
https://learn.adafruit.com//assets/35515

Digital #12 - SPI MISO

Digital #11 - SPI MOSI

Digital #10 - SD Card chip select (can cut a trace to re-assign)

SDA connected to A4

SCL connected to A5

The RTC (DS1307) I2C logic level was fixed to 5V

Rev B Shield Pinouts

ICSP SCK - SPI clock

ICSP MISO - SPI MISO

ICSP MOSI - SPI MOSI

Digital #10 - SD Card chip select (can cut a trace to re-assign)

SDA not connected to A4

SCL not connected to A5

The RTC (PCF8523) logic level can be 3V or 5V

On an UNO, note that Digital #13 is the same as ICSP SCK, #12 is ICSP MISO, #11 is

ICSP MOSI, SDA is tied to A4 and SCL is A5. However, that is only true on the UNO!

Other Arduino's have different connections. Since the shield no longer makes the

assumption it's on an UNO, it is the most cross-compatible shield.

On the bottom of the Rev B shield, you can see that if you have an older Arduino

where there is no ICSP 2x3 header, and no SDA/SCL pins, you can short the solder

jumpers closed.

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 22 of 68

If you are using the shield with a 3.3V logic Arduino, you may want to change the Vio

jumper. This is what the 10K pullups for I2C are pulled up to. Honestly, the pullups are

very weak so if you forget, it's not a big deal. But if you can, cut the small trace

between the center pad and 5V and solder the other side so that Vio is connected to

3V

Rev C Shield Pinouts

These are the same as the Rev B with the exception of the Vio jumper.

Vio connected to IOREF

•

©Adafruit Industries Page 23 of 68

Vio jumper unconnected

The IOREF pin should come from the Arduino main board being used.

If the Arduino main board does not have an IOREF pin, or if the pin is not connected

to the shield, then the Vio jumper must be set. Do so by adding a solder blob

between the center pad and either the 3V or 5V pad to match the voltage level of the

Arduino board.

Older Datalogger Shield Leonardo & Mega
Library

•

If IOREF pin is available on Arduino board, be sure to connect it to the shield.

This is ONLY required if you have the older Datalogger shield which does not

have the SPI port connection.

This is ONLY required if you are using a Leonardo or Mega with the older

Datalogger shield!

©Adafruit Industries Page 24 of 68

If your shield looks like the above, and has the 2x3 pin header on the right, skip this

page!

If your shield does not have the 2x3 pin header section and you are using a Mega or

Leonardo (e.g. not UNO-compatible) then you can keep reading!

If you are using an Leonardo or Mega with the older datalogging shield, you will have

to replace the existing SD card library to add 'SD card on any pin' support. If you have

an Uno/Duemilanove/Diecimila, this is not required. If you have a rev B shield, this is

also not required!

First, find the "core libraries" folder - if you are using Windows or Linux, it will be in the

folder that contains the Arduino executable, look for a libraries folder. Inside you will

see an SD folder (inside that will be SD.cpp SD.h etc)

Outside the libraries folder, make a new folder called SDbackup. Then drag the SDfol

der into SDbackup, this will 'hide' the old SD library without deleting it. Note that

©Adafruit Industries Page 25 of 68

SDBackup must be outside of the libraries folder in order to effectively 'hide' the SD

library.

Now we'll grab the new SD library, visit https://github.com/adafruit/SD () and click theZ

IP download button, or click the button below

Download the SD Library Zip

Uncompress and rename the uncompressed folder SD. Check that the SD folder

contains SD.cpp and SD.h

Place the SD library folder your sketchbook libraries folder. You may need to create

the libraries subfolder if its your first library. For more details on how to install

libraries, check out our ultra-detailed tutorial at ()http://learn.adafruit.com/adafruit-all-

about-arduino-libraries-install-use ()

Using the SD Library with the Mega and Leonardo

Because the Mega and Leonardo do not have the same hardware SPI pinout, you

need to specify which pins you will be using for SPI communication with the card. For

the data logger shield, these will be pins 10, 11, 12 and 13. Find the location in your

sketch where SD.begin() is called (like this):

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect)) {

and change it to add these pin numbers as follows:

 // see if the card is present and can be initialized:
 if (!SD.begin(10, 11, 12, 13)) {

©Adafruit Industries Page 26 of 68

https://github.com/adafruit/SD
https://github.com/adafruit/SD/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

cardinfo

The cardinfo sketch uses a lower level library to talk directly to the card, so it calls

card.init() instead of SD.begin().

 // we'll use the initialization code from the utility libraries
 // since we're just testing if the card is working!
 while (!card.init(SPI_HALF_SPEED, chipSelect)) {

When calling card.init(), you must change the call to specify the SPI pins, as follows:

 // we'll use the initialization code from the utility libraries
 // since we're just testing if the card is working!
 while (!card.init(SPI_HALF_SPEED, 10, 11, 12, 13)) {

Using the Real Time Clock

What is a Real Time Clock?

When logging data, it's often really really useful to have timestamps! That way you

can take data one minute apart (by checking the clock) or noting at what time of day

the data was logged.

The Arduino does have a built-in timekeeper called millis() and theres also timers built

into the chip that can keep track of longer time periods like minutes or days. So why

would you want to have a separate RTC chip? Well, the biggest reason is that millis()

only keeps track of time since the Arduino was last powered - that means that when

the power is turned on, the millisecond timer is set back to 0. The Arduino doesnt

know its 'Tuesday' or 'March 8th' all it can tell is 'Its been 14,000 milliseconds since I

was last turned on'.

OK so what if you wanted to set the time on the Arduino? You'd have to program in

the date and time and you could have it count from that point on. But if it lost power,

you'd have to reset the time. Much like very cheap alarm clocks: every time they lose

power they blink 12:00

While this sort of basic timekeeping is OK for some projects, a data-logger will need

to have consistent timekeeping that doesnt reset when the Arduino battery dies or is

reprogrammed. Thus, we include a separate RTC! The RTC chip is a specialized chip

that just keeps track of time. It can count leap-years and knows how many days are in

a month, but it doesn't take care of Daylight Savings Time (because it changes from

place to place)

©Adafruit Industries Page 27 of 68

This image shows a computer motherboard with a Real Time Clock called the DS1387

(). Theres a lithium battery in there which is why it's so big.

The RTC we'll be using is the PCF8523 () or the DS1307 ().

If you have an Adafruit Datalogger Shield rev B, you will be using the PCF8523 - this

RTC is newer and better than the DS1307. Look on your shield to see if you see PCF8

523 written above the chip.

If you have an older Datalogger shield, you will be using the DS1307 - there's no text

so you'll just need to remember that if it doesn't say PCF8523 it's the DS1307

Battery Backup

As long as it has a coin cell to run it, the RTC will merrily tick along for a long time,

even when the Arduino loses power, or is reprogrammed.

Use any CR1220 3V lithium metal coin cell battery:

©Adafruit Industries Page 28 of 68

http://www.maxim-ic.com/app-notes/index.mvp/id/503
http://www.nxp.com/products/interface-and-connectivity/interface-and-system-management/i2c-bus-portfolio/i2c-real-time-clocks-rtc/real-time-clock-rtc-and-calendar:PCF8523
https://www.maximintegrated.com/en/products/digital/real-time-clocks/DS1307.html
https://www.maximintegrated.com/en/products/digital/real-time-clocks/DS1307.html

CR1220 12mm Diameter - 3V Lithium Coin

Cell Battery

These are the highest quality & capacity

batteries, the same as shipped with the

iCufflinks, iNecklace, Datalogging and

GPS Shields, GPS HAT, etc. One battery

per order...

https://www.adafruit.com/product/380

Talking to the RTC

The RTC is an i2c device, which means it uses 2 wires to to communicate. These two

wires are used to set the time and retrieve it. On the Arduino UNO, these pins are

also wired to the Analog 4 and 5 pins. This is a bit annoying since of course we want

to have up to 6 analog inputs to read data and now we've lost two.

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library, which is

available on GitHub (). You can install this library via the Arduino Library Manager.

Open up the Arduino Library Manager:

You MUST have a coin cell installed for the RTC to work, if there is no coin cell, it

will act strangely and possibly hang the Arduino when you try to use it, so

ALWAYS make SURE there's a battery installed, even if it's a dead battery.

©Adafruit Industries Page 29 of 68

https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://www.adafruit.com/product/380
https://github.com/adafruit/RTClib
https://github.com/adafruit/RTClib

Search for the RTCLib library and install it

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

First RTC test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC

once a second. We'll also show what happens if you remove the battery and replace it

since that causes the RTC to halt. So to start, remove the battery from the holder

while the Arduino is not powered or plugged into USB. Wait 3 seconds and then

replace the battery. This resets the RTC chip. Now load up the matching sketch for

your RTC

For the Adafruit Datalogger shield rev B open up Examples->RTClib->pcf8523

For the older Adafruit Dataloggers, use Examples->RTClib->ds1307

Upload it to your Arduino with the datalogger shield on!

•

•

©Adafruit Industries Page 30 of 68

Now open up the Serial Console and make sure the baud rate is set correctly at

57600 baud you should see the following:

Whenever the RTC chip loses all power (including the backup battery) it will reset to

an earlier date and report the time as 0:0:0 or similar. The DS1307 won't even count

seconds (it's stopped).Whenever you set the time, this will kickstart the clock ticking.

So, basically, the upshot here is that you should never ever remove the battery once

you've set the time. You shouldn't have to and the battery holder is very snug so

unless the board is crushed, the battery won't 'fall out'

If you're having problems make sure you are running the right example! PCF8523

and DS1307 RTC chips are not identical so they have separate examples!

©Adafruit Industries Page 31 of 68

Setting the time

With the same sketch loaded, uncomment the line that starts with RTC.adjust like so:

 if (! rtc.initialized()) {
 Serial.println("RTC is NOT running!");
 // following line sets the RTC to the date & time this sketch was compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

This line is very cute, what it does is take the Date and Time according the computer

you're using (right when you compile the code) and uses that to program the RTC. If

your computer time is not set right you should fix that first. Then you must press the U

pload button to compile and then immediately upload. If you compile and then upload

later, the clock will be off by that amount of time.

Then open up the Serial monitor window to show that the time has been set

From now on, you won't have to ever set the time again: the battery will last 5 or more

years

©Adafruit Industries Page 32 of 68

Reading the time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Let's look

at the sketch again to see how this is done

void loop () {
 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);
 Serial.print('/');
 Serial.print(now.month(), DEC);
 Serial.print('/');
 Serial.print(now.day(), DEC);
 Serial.print(" (");
 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);
 Serial.print(") ");
 Serial.print(now.hour(), DEC);
 Serial.print(':');
 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();

There's pretty much only one way to get the time using the RTClib, which is to call no

w(), a function that returns a DateTime object that describes the year, month, day,

hour, minute and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and

RTC.hour() to get the current year and hour. However, there's one problem where if

you happen to ask for the minute right at 3:14:59 just before the next minute rolls

over, and then the second right after the minute rolls over (so at 3:15:00) you'll see the

time as 3:14:00 which is a minute off. If you did it the other way around you could get

3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurance - particularly if you're querying

the time pretty often - we take a 'snapshot' of the time from the RTC all at once and

then we can pull it apart into day() or second() as seen above. It's a tiny bit more effort

but we think its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which

counts the number of seconds (not counting leapseconds) since midnight, January 1st

1970

 Serial.print(" since 2000 = ");
 Serial.print(now.unixtime());
 Serial.print("s = ");
 Serial.print(now.unixtime() / 86400L);
 Serial.println("d");

©Adafruit Industries Page 33 of 68

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since

then as well. This might be useful when you want to keep track of how much time has

passed since the last query, making some math a lot easier (like checking if it's been

5 minutes later, just see if unixtime() has increased by 300, you dont have to worry

about hour changes)

Using the SD Card

The other half of the data logger shield is the SD card. The SD card is how we store

long term data. While the Arduino chip has a permanent EEPROM storage, its only a

couple hundred bytes - tiny compared to a 2 gig SD card. SD cards are so cheap and

easy to get, its an obvious choice for long term storage so we use them for the shield.

The shield kit doesn't come with an SD card but we carry one in the shop that is

guaranteed to work (). Pretty much any SD card should work but be aware that some

cheap cards are 'fakes' and can cause headaches.

4GB Blank SD/MicroSD Memory Card

Add mega-storage in a jiffy using this

4 GB micro-SD card. It comes with a SD

adapter so you can use it with any of our

shields or adapters! Preformatted to FAT

so it works out of...

https://www.adafruit.com/product/102

©Adafruit Industries Page 34 of 68

http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=102
https://www.adafruit.com/product/102
https://www.adafruit.com/product/102

You'll also need a way to read and write from the SD card. Sometimes you can use

your camera and MP3 player - when its plugged in you will be able to see it as a disk.

Or you may need an SD card reader (http://adafru.it/939). The shield doesnt have the

ability to display the SD card as a 'hard disk' like some MP3 players or games, the

Arduino does not have the hardware for that, so you will need an external reader!

USB MicroSD Card Reader/Writer -

microSD / microSDHC / microSDXC

This is the cutest little microSD card

reader/writer - but don't be fooled by its

adorableness! It's wicked fast and

supports up to 64 GB SDXC cards! Simply

slide the card into...

https://www.adafruit.com/product/939

Formatting under Windows/Mac

If you bought an SD card, chances are it's already pre-formatted with a FAT filesystem.

However you may have problems with how the factory formats the card, or if it's an

old card it needs to be reformatted. The Arduino SD library we use supports both FAT

16 and FAT32 filesystems. If you have a very small SD card, say 8-32 Megabytes you

might find it is formatted FAT12 which isnt supported. You'll have to reformat these

card. Either way, its always good idea to format the card before using, even if its new!

Note that formatting will erase the card so save anything you want first

The official SD formatter is available from https://www.sdcard.org/downloads/

formatter_4/ ()

Download it and run it on your computer, there's also a manual linked from that page

for use

Download the official SD Formatter

software for Windows

We strongly recommend you use the official SD card formatter utility - written by

the SD association it solves many problems that come with bad formatting!

©Adafruit Industries Page 35 of 68

http://www.adafruit.com/products/939
https://www.adafruit.com/product/939
https://www.adafruit.com/product/939
https://www.adafruit.com/product/939
https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/

Get Card Info

The Arduino SD Card library has a built in example that will help you test the shield

and your connections

If you have an older Datalogging shield without the SPI header connection

and you are using a Leonardo, Mega or anything other than an UNO, you'll

need to install a special version of the SD library ()

Open the file CardInfo example sketch in the SD library:

This sketch will not write any data to the card, just tell you if it managed to recognize

it, and some information about it. This can be very useful when trying to figure out

whether an SD card is supported. Before trying out a new card, please try out this

sketch!

Go to the beginning of the sketch and make sure that the chipSelect line is correct,

for the datalogger shield we 're using digital pin 10 so change it to 10!

©Adafruit Industries Page 36 of 68

file:///home/adafruit-data-logger-shield/for-the-mega-and-leonardo
file:///home/adafruit-data-logger-shield/for-the-mega-and-leonardo

If you have the pre-rev B version of the Datalogger Shield, and you are using a Mega

or Leonardo check here for now to adjust the pin setup ()

OK, now insert the SD card into the Arduino and upload the sketch

©Adafruit Industries Page 37 of 68

file:///home/adafruit-data-logger-shield/for-the-mega-and-leonardo#using-the-sd-library-with-the-mega-and-leonardo
file:///home/adafruit-data-logger-shield/for-the-mega-and-leonardo#using-the-sd-library-with-the-mega-and-leonardo

Open up the Serial Monitor and type in a character into the text box (& hit send) when

prompted. You'll probably get something like the following:

Its mostly gibberish, but its useful to see the Volume type is FAT16 part as well as the

size of the card (about 2 GB which is what it should be) etc.

If you have a bad card, which seems to happen more with ripoff version of good

brands, you might see:

©Adafruit Industries Page 38 of 68

The card mostly responded, but the data is all bad. Note that the Product ID is "N/A"

and there is no Manufacturer ID or OEM ID. This card returned some SD errors. Its

basically a bad scene, I only keep this card around to use as an example of a bad

card! If you get something like this (where there is a response but its corrupted) you

should toss the card

Finally, try taking out the SD card and running the sketch again, you'll get the

following,

©Adafruit Industries Page 39 of 68

It couldn't even initialize the SD card. This can also happen if there's a soldering error

or if the card is really damaged

If you're having SD card problems, we suggest using the SD formatter mentioned

above first to make sure the card is clean and ready to use!

Light and Temperature Logger

Introduction

OK now that we have introduced both the RTC and the SD card and verified that

they're working, we can move onto logging!

We'll use a pretty good & detailed demonstration to show off the capabilities of this

most awesome data logging shield: We'll log both temperature and relative light

levels to determine:

How much does the temperature in a fridge vary as the compressor turns on

and off?

Does keeping the door open cause a big temperature drop? How long does it

take for it to cool down?

Does the light inside really turn off when the door is closed?

1.

2.

3.

©Adafruit Industries Page 40 of 68

Build It!

Items you'll need:

Arduino (of course!) a Atmega328 type is best (http://adafru.it/50)- we always

recommend going with an official 'classic' Arduino such as the Uno.

Adafruit data logger shield (http://adafru.it/1141) - assembled

SD card formatted for FAT (http://adafru.it/102) and tested using our example

sketch ()

CdS photocell (http://adafru.it/161) and a matching 10K pulldown resistor

Temperature sensor with analog out, such as TMP36 (http://adafru.it/165)

Battery pack such as a 6-AA 'brick' and a 2.1mm DC jack. (http://adafru.it/248)

or you can use a 9V clip for a power supply (http://adafru.it/80) but a 9V

powered logger will last only a couple hours so we suggest 6xAA's

Some 22 AWG wire (), soldering iron, solder (), etc.

You can get most everything in that list in a discounted pack in the Adafruit shop! (http

://adafru.it/249)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 41 of 68

https://www.adafruit.com/products/50
http://adafruit.com/products/1141
https://www.adafruit.com/products/102
http://learn.adafruit.com/adafruit-data-logger-shield
http://learn.adafruit.com/adafruit-data-logger-shield
https://www.adafruit.com/products/161
https://www.adafruit.com/products/165
https://www.adafruit.com/products/248
https://www.adafruit.com/products/80
http://www.adafruit.com/category/82_145
https://www.adafruit.com/categories/84
https://www.adafruit.com/products/249

The sensors

We'll use two basic sensors to log data, a CdS photocell to track light (http://adafru.it/

161) (this will tell us when the door has been opened) and a semiconductor temperatur

e sensor to log the ambient fridge temperature. (http://adafru.it/165)

We have two great tutorials for these sensors on our site, if you haven't used them

before or need some refreshment, please read them now!

Photocell tutorial

TMP36 tutorial

We will wire the sensors as shown in the diagram below.

Note that we connect ARef, the power pin of the temp sensor, and the light sensor to

3.3V not to 5.0V - we do this because the 5V line is very noisy and the 3.3V regulator

is better filtered. In the actual board we used the 3.3V line from the datalogger's

regulator, see the images below - in theory its the same as the one off of the Arduino

but we trust ours more.

©Adafruit Industries Page 42 of 68

https://www.adafruit.com/products/161
https://www.adafruit.com/products/165
https://www.adafruit.com/products/165
https://learn.adafruit.com/photocells/
https://learn.adafruit.com/tmp36-temperature-sensor

Wiring it up
The prototyping area on the board is a simple array of holes with soldering pads. The

steps below show how we built this circuit and illustrate some some basic circuit

prototyping techniques. For clarity, we will use the same color wire as shown in the

circuit diagram above:

©Adafruit Industries Page 43 of 68

Position the sensors
The sensors could go anywhere on the

prototyping area, but we chose this

arrangement to simplify connections

between the components later on.

Prepare some jumpers
Measure a piece of wire (red) long enough

to reach from the 3v breakout hole to 1/2"

past the temperature sensor. Strip about

3/4" from one end, and about 1/4" from the

other.

Measure another one (yellow) long enough

to reach from the AREF pin to the hole

between the two sensors. Strip 1/2" from

one end and 1/4" from the other.

Install the Jumpers
Place the jumpers as shown, with the long

stripped ends nearest the sensors.

Since there are no signal traces between

the holes in the prototyping area, we will

use the long stripped ends to join the legs

of the components on the board.

Make the connections
Solder the first jumper (red) to the 3v hole.

Bend the stripped end of the wire so it

rests next to the legs of the light sensor,

the temperature sensor and the end of the

AREF jumper.

Fold the sensor legs and AREF jumper

legs over the 3v jumper and solder to

make the connection.

©Adafruit Industries Page 44 of 68

https://learn.adafruit.com//assets/7044
https://learn.adafruit.com//assets/7044
https://learn.adafruit.com//assets/7046
https://learn.adafruit.com//assets/7046
https://learn.adafruit.com//assets/7048
https://learn.adafruit.com//assets/7048
https://learn.adafruit.com//assets/7049
https://learn.adafruit.com//assets/7049

Add more jumpers for the
Sensors
From Analog Pin 0 to the hole near the

light sensor and resistor. (white)

From GND to the hole next to the other

end of the resistor (black)

From the Analog pin 1 to the hole next to

the center pin of the temperature sensor

(green)

And also for the LEDs
From L1 to Digital Pin 2 (yellow)

From L2 to Digital Pin 3 (yellow)

©Adafruit Industries Page 45 of 68

https://learn.adafruit.com//assets/7051
https://learn.adafruit.com//assets/7051
https://learn.adafruit.com//assets/7052
https://learn.adafruit.com//assets/7052
https://learn.adafruit.com//assets/7053
https://learn.adafruit.com//assets/7053

Solder and trim all
connections
Using the same technique of folding the

component legs over the jumper - make all

connections as shown in the wiring

diagram.

Make sure that all connections are

soldered. Also solder wires and

component legs to the board where they

pass through the holes.

©Adafruit Industries Page 46 of 68

https://learn.adafruit.com//assets/7054
https://learn.adafruit.com//assets/7054
https://learn.adafruit.com//assets/7056
https://learn.adafruit.com//assets/7056

Prepare the Battery Pack
Place the black plastic ferrule from the

connector over the battery pack wires.

Solder the red wire from the battery pack

to the center pin

Solder the the black wire to the outer

barrel.

Crimp to hold the wires securely

Screw the black plastic ferrule on to cover

the solder joints.

Now your Light Temp Logger is wired and ready for testing!

©Adafruit Industries Page 47 of 68

https://learn.adafruit.com//assets/7058
https://learn.adafruit.com//assets/7058
https://learn.adafruit.com//assets/7059
https://learn.adafruit.com//assets/7059
https://learn.adafruit.com//assets/7060
https://learn.adafruit.com//assets/7060

Use It!

Sensor test

We'll now test the sensors, using this sketch which is a bit of a mashup of the two

examples in our tutorials ()

#include <SPI.h>
#include <SD.h>

/* Sensor test sketch
 for more information see http://www.ladyada.net/make/logshield/lighttemp.html
 */

#define aref_voltage 3.3 // we tie 3.3V to ARef and measure it with a
multimeter!

int photocellPin = 0; // the cell and 10K pulldown are connected to a0
int photocellReading; // the analog reading from the analog resistor divider

//TMP36 Pin Variables
int tempPin = 1; //the analog pin the TMP36's Vout (sense) pin is connected
to
 //the resolution is 10 mV / degree centigrade with a
 //500 mV offset to allow for negative temperatures
int tempReading; // the analog reading from the sensor

void setup(void) {
 // We'll send debugging information via the Serial monitor
 Serial.begin(9600);

 // If you want to set the aref to something other than 5v
 analogReference(EXTERNAL);
}

void loop(void) {
 photocellReading = analogRead(photocellPin);

©Adafruit Industries Page 48 of 68

http://www.ladyada.net/learn/sensors/index.html

 Serial.print("Light reading = ");
 Serial.print(photocellReading); // the raw analog reading

 // We'll have a few threshholds, qualitatively determined
 if (photocellReading < 10) {
 Serial.println(" - Dark");
 } else if (photocellReading < 200) {
 Serial.println(" - Dim");
 } else if (photocellReading < 500) {
 Serial.println(" - Light");
 } else if (photocellReading < 800) {
 Serial.println(" - Bright");
 } else {
 Serial.println(" - Very bright");
 }

 tempReading = analogRead(tempPin);

 Serial.print("Temp reading = ");
 Serial.print(tempReading); // the raw analog reading

 // converting that reading to voltage, which is based off the reference voltage
 float voltage = tempReading * aref_voltage / 1024;

 // print out the voltage
 Serial.print(" - ");
 Serial.print(voltage); Serial.println(" volts");

 // now print out the temperature
 float temperatureC = (voltage - 0.5) * 100 ; //converting from 10 mv per degree
wit 500 mV offset
 //to degrees ((volatge - 500mV)
times 100)
 Serial.print(temperatureC); Serial.println(" degrees C");

 // now convert to Fahrenheight
 float temperatureF = (temperatureC * 9 / 5) + 32;
 Serial.print(temperatureF); Serial.println(" degrees F");

 delay(1000);
}

OK upload this sketch and check the Serial monitor again

©Adafruit Industries Page 49 of 68

In my workroom, I got about 24 degrees C and a 'light measurement' of about 400 -

remember that while the temperature sensor gives an 'absolute' reading in C or F, the

light sensor is not precise and can only really give rough readings.

Once you've verified that the sensors are wired up correctly & running its time to get

to the logging!

Logging sketch

Download the light and temperature logging sketch from GitHub (). Insert the SD card.

Look at the top of the sketch for this section and uncomment whichever line is

relevant. Check the RTC page for details if you're not sure which one you have. ()

/************** if you have a DS1307 uncomment this line **************/

//RTC_DS1307 RTC; // define the Real Time Clock object

/************** if you have a PCF8523 uncomment this line **************/

//RTC_PCF8523 RTC; // define the Real Time Clock object

/**/

Upload the sketch to your Arduino. We'll now test it out while still 'tethered' to the

computer

©Adafruit Industries Page 50 of 68

https://github.com/adafruit/Light-and-Temp-logger
file:///home/adafruit-data-logger-shield/using-the-real-time-clock

While the Arduno is still connected, blinking and powered, place your hand over the

photocell for a few seconds, then shine a flashlight on it. You should also squeeze the

temp sensor with your fingers to heat it up

Plotting with a spreadsheet

When you're ready to check out the data, unplug the Arduino and put the SD card into

your computer's card reader. You'll see a at least one and perhaps a couple files, one

for each time the logger ended up running

We'll open the most recent one. If you want to use the same logfile used in the

graphing demos, click here to download it ().

The quickest way to look at the data is using something like OpenOffice or Excel,

where you can open the .csv file and have it imported directly into the spreadsheet

©Adafruit Industries Page 51 of 68

http://learn.adafruit.com/system/assets/assets/000/010/287/original/LOGTEST.CSV
http://learn.adafruit.com/system/assets/assets/000/010/287/original/LOGTEST.CSV

You can then perform some graphing by selecting the columns of data

Clicking the Chart button and using Lines (we think they are the best for such graphs)

©Adafruit Industries Page 52 of 68

Setting the First Column as label

Which will generate this graph

You can see pretty clearly how I shaded the sensor and then shone a flashlight on it.

You can make the graph display both with different axes (since the change in

temperature is a different set of units. Select the temp line (red), right-click and

choose Format Data Series. In the Options tab, Align data series to Secondary Y-axis.

©Adafruit Industries Page 53 of 68

Or you can make another graph with only the temp data

Now you can see clearly how I warmed up the sensor by holding it between my

fingers

Using Gnuplot

Gnuplot is an free (but not open source?), ultra-powerful plotting program. Its also a

real pain to use! But if you can't afford a professional math/plotting package such as

Mathematica or Matlab, Gnuplot can do a lot!

We're not good enough to provide a full tutorial on gnuplot, here are a few links we

found handy. Google will definitely help you find even more tutorials and links.

Mucking about is the best teacher, too!

http://www.cs.hmc.edu/~vrable/gnuplot/using-gnuplot.html ()

http://www.duke.edu/~hpgavin/gnuplot.html ()

•

•

©Adafruit Industries Page 54 of 68

http://www.cs.hmc.edu/~vrable/gnuplot/using-gnuplot.html
http://www.duke.edu/~hpgavin/gnuplot.html

http://www.ibm.com/developerworks/library/l-gnuplot/ ()

We found the following commands executed in order will generate a nice graph of

this data, be sure to put LOGTEST.CSV in the same directory as wgnuplot.exe (or if

you know how to reference directories, you can put it elsewhere)

set xlabel "Time" # set the lower X-axis label to 'time'

set xtics rotate by -270 # have the time-marks on their side

set ylabel "Light level (qualitative)" # set the left Y-axis label

set ytics nomirror # tics only on left side

set y2label "Temperature in Fahrenheit" # set the right Y-axis label
set y2tics border # put tics no right side

set key box top left # legend box
set key box linestyle 0

set xdata time # the x-axis is time
set format x "%H:%M:%S" # display as time
set timefmt "%s" # but read in as 'unix timestamp'

plot "LOGTEST.CSV" using 2:4 with lines title "Light levels"
replot "LOGTEST.CSV" using 2:5 axes x1y2 with lines title "Temperature (F)"

•

©Adafruit Industries Page 55 of 68

http://www.ibm.com/developerworks/library/l-gnuplot/

Which makes this:

Note the cool double-sided y-axis scales! You can zoom in on stuff pretty easily too.

Other plotters

Our friend John also suggests Live-Graph as a free plotting program () () - we haven't

tried it but its worth looking at if you need to do a lot of plotting!

Portable logging

Of course, having a datalogger thats chained to a desktop computer isn't that handy.

We can make a portable logger with the addition of a battery pack. The cheapest way

to get a good amount of power is to use 6 AA batteries. I made one here with

©Adafruit Industries Page 56 of 68

http://www.live-graph.org/
http://www.live-graph.org/

rechargables and a 6xAA battery holder (http://adafru.it/248). It ran the Arduino

logging once a second for 18.5 hours. If you use alkalines you could easily get 24

hours or more.

Fridge logging

With my portable logger ready, its time to do some Fridge Loggin'! Both were placed

in the fridge, in the center of the middle shelf.

I placed it in around 10PM and then removed it around noon the next day. If you don't

have a fridge handy, you can grab the data from this zip file and use that ().

Here is the logged data:

©Adafruit Industries Page 57 of 68

http://www.adafruit.com/products/248
http://learn.adafruit.com/system/assets/assets/000/010/288/original/fridgelogdata.zip
http://learn.adafruit.com/system/assets/assets/000/010/288/original/fridgelogdata.zip

You can see in the middle and end the temp and light levels are very high because

the logger was outside the fridge. The green line is the temperature so you can see

the temperature slowly rising and then the compressor kicking in every half hour or

so. The red lines indicate when the door was opened. This night was a more

insominac one than normal!

Zooming into the plot at about 12:40AM, we can see how the temperature climbs

whenever the door is open, even in a few seconds it can climb 4 degrees very

quickly!

©Adafruit Industries Page 58 of 68

Conclusion!

OK that was a detailed project but its a good one to test your datalogging abilities,

especially since its harder to fix bugs in the field. In general, we suggest trying other

sensors and testing them at home if possible. Its also a good idea to log more data

than you need, and use a software program to filter anything you dont need. For

example, we dont use the VCC log but if you're having strange sensor behavior, it

may give you clues if your battery life is affecting it.

Code Walkthrough

Introduction

This is a walkthrough of the Light and Temperature Logging sketch. Its long and

detailed so we put it here for your perusal. We strongly suggest reading through it,

the code is very versatile and our text descriptions should make it clear why

everything is there!

Download the complete file here ():

Includes and Defines

#include "SD.h"
#include <Wire.h>
#include "RTClib.h"

©Adafruit Industries Page 59 of 68

https://github.com/adafruit/Light-and-Temp-logger

OK this is the top of the file, where we include the three libraries we'll use: the SD

library to talk to the card, the Wire library that helps the Arduino with i2c and the RTCli

b for chatting with the real time clock

// A simple data logger for the Arduino analog pins
#define LOG_INTERVAL 1000 // mills between entries
#define ECHO_TO_SERIAL 1 // echo data to serial port
#define WAIT_TO_START 0 // Wait for serial input in setup()

// the digital pins that connect to the LEDs
#define redLEDpin 3
#define greenLEDpin 4

// The analog pins that connect to the sensors
#define photocellPin 0 // analog 0
#define tempPin 1 // analog 1

Next are all the "defines" - the constants and tweakables.

LOG_INTERVAL is how many milliseconds between sensor readings. 1000 is 1

second which is not a bad starting point

ECHO_TO_SERIA L determines whether to send the stuff thats being written to

the card also out to the Serial monitor. This makes the logger a little more

sluggish and you may want the serial monitor for other stuff. On the other hand,

its hella useful. We'll set this to 1 to keep it on. Setting it to 0 will turn it off

WAIT_TO_START means that you have to send a character to the Arduino's

Serial port to kick start the logging. If you have this on you basically can't have it

run away from the computer so we'll keep it off (set to 0) for now. If you want to

turn it on, set this to 1

The other defines are easier to understand, as they are just pin defines

redLEDpin is whatever you connected to the Red LED on the logger shield

greenLEDpin is whatever you connected to the Green LED on the logger

shield

photocellPin is the analog input that the CdS cell is wired to

tempPin is the analog input that the TMP36 is wired to

Objects and error()

RTC_DS1307 RTC; // define the Real Time Clock object

// for the data logging shield, we use digital pin 10 for the SD cs line
const int chipSelect = 10;

// the logging file

•

•

•

•

•

•

•

©Adafruit Industries Page 60 of 68

File logfile;

void error(char *str)
{
 Serial.print("error: ");
 Serial.println(str);

 // red LED indicates error
 digitalWrite(redLEDpin, HIGH);

 while(1);
}

Next up we've got all the objects for the RTC, and the SD card chip select pin. For all

our shields we use pin 10 for SD card chip select lines

Next is the error() function, which is just a shortcut for us, we use it when

something Really Bad happened, like we couldn't write to the SD card or open it. It

prints out the error to the Serial Monitor, turns on the red error LED, and then sits in a

while(1); loop forever, also known as a halt

Setup

void setup(void)
{
 Serial.begin(9600);
 Serial.println();

#if WAIT_TO_START
 Serial.println("Type any character to start");
 while (!Serial.available());
#endif //WAIT_TO_START

K now we are onto the code. We begin by initializing the Serial port at 9600 baud. If

we set WAIT_TO_START to anything but 0, the Arduino will wait until the user types

something in. Otherwise it goes ahead to the next part

 // initialize the SD card
 Serial.print("Initializing SD card...");
 // make sure that the default chip select pin is set to
 // output, even if you don't use it:
 pinMode(10, OUTPUT);

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect)) {
 Serial.println("Card failed, or not present");
 // don't do anything more:
 return;
 }
 Serial.println("card initialized.");

 // create a new file
 char filename[] = "LOGGER00.CSV";
 for (uint8_t i = 0; i < 100; i++) {
 filename[6] = i/10 + '0';
 filename[7] = i%10 + '0';

©Adafruit Industries Page 61 of 68

 if (! SD.exists(filename)) {
 // only open a new file if it doesn't exist
 logfile = SD.open(filename, FILE_WRITE);
 break; // leave the loop!
 }
 }

 if (! logfile) {
 error("couldnt create file");
 }

 Serial.print("Logging to: ");
 Serial.println(filename);

Now the code starts to talk to the SD card, it tries to initialize the card and find a

FAT16/FAT32 partition.

Next it will try to make a logfile. We do a little tricky thing here, we basically want the

files to be called something like LOGGERnn.csv where nn is a number. By starting out

trying to create LOGGER00.CSV and incrementing every time when the file already

exists, until we get to LOGGER99.csv, we basically make a new file every time the

Arduino starts up

To create a file, we use some Unix style command flags which you can see in the log

file.open() procedure. FILE_WRITE means to create the file and write data to it.

Assuming we managed to create a file successfully, we print out the name to the

Serial port.

 Wire.begin();
 if (!RTC.begin()) {
 logfile.println("RTC failed");
#if ECHO_TO_SERIAL
 Serial.println("RTC failed");
#endif //ECHO_TO_SERIAL
 }

 logfile.println("millis,time,light,temp");
#if ECHO_TO_SERIAL
 Serial.println("millis,time,light,temp");
#if ECHO_TO_SERIAL// attempt to write out the header to the file
 if (logfile.writeError || !logfile.sync()) {
 error("write header");
 }

 pinMode(redLEDpin, OUTPUT);
 pinMode(greenLEDpin, OUTPUT);

 // If you want to set the aref to something other than 5v
 //analogReference(EXTERNAL);
}

OK we're wrapping up here. Now we kick off the RTC by initializing the Wire library

and poking the RTC to see if its alive.

©Adafruit Industries Page 62 of 68

Then we print the header. The header is the first line of the file and helps your

spreadsheet or math program identify whats coming up next. The data is in CSV

(comma separated value) format so the header is too: "millis,time,light,temp" the first

item millis is milliseconds since the Arduino started, time is the time and date from the

RTC, light is the data from the CdS cell and temp is the temperature read.

You'll notice that right after each call to logfile.print() we have #if ECHO_TO_SERIAL

and a matching Serial.print() call followed by a #if ECHO_TO_SERIAL this is that

debugging output we mentioned earlier. The logfile.print() call is what writes data to

our file on the SD card, it works pretty much the same as the Serial version. If you set

ECHO_TO_SERIAL to be 0 up top, you won't see the written data printed to the Serial

terminal.

Finally, we set the two LED pins to be outputs so we can use them to communicate

with the user. There is a commented-out line where we set the analog reference

voltage. This code assumes that you will be using the 'default' reference which is the

VCC voltage for the chip - on a classic Arduino this is 5.0V. You can get better

precision sometimes by lowering the reference. However we're going to keep this

simple for now! Later on, you may want to experiment with it.

Main loop

Now we're onto the loop, the loop basically does the following over and over:

Wait until its time for the next reading (say once a second - depends on what we

defined)

Ask for the current time and date froom the RTC

Log the time and date to the SD card

Read the photocell and temperature sensor

Log those readings to the SD card

Sync data to the card if its time

Timestamping

Lets look at the first section:

void loop(void)
{
 DateTime now;

 // delay for the amount of time we want between readings
 delay((LOG_INTERVAL -1) - (millis() % LOG_INTERVAL));

1.

2.

3.

4.

5.

6.

©Adafruit Industries Page 63 of 68

 digitalWrite(greenLEDpin, HIGH);

 // log milliseconds since starting
 uint32_t m = millis();
 logfile.print(m); // milliseconds since start
 logfile.print(", ");
#if ECHO_TO_SERIAL
 Serial.print(m); // milliseconds since start
 Serial.print(", ");
#endif

 // fetch the time
 now = RTC.now();
 // log time
 logfile.print(now.get()); // seconds since 2000
 logfile.print(", ");
 logfile.print(now.year(), DEC);
 logfile.print("/");
 logfile.print(now.month(), DEC);
 logfile.print("/");
 logfile.print(now.day(), DEC);
 logfile.print(" ");
 logfile.print(now.hour(), DEC);
 logfile.print(":");
 logfile.print(now.minute(), DEC);
 logfile.print(":");
 logfile.print(now.second(), DEC);
#if ECHO_TO_SERIAL
 Serial.print(now.get()); // seconds since 2000
 Serial.print(", ");
 Serial.print(now.year(), DEC);
 Serial.print("/");
 Serial.print(now.month(), DEC);
 Serial.print("/");
 Serial.print(now.day(), DEC);
 Serial.print(" ");
 Serial.print(now.hour(), DEC);
 Serial.print(":");
 Serial.print(now.minute(), DEC);
 Serial.print(":");
 Serial.print(now.second(), DEC);
#endif //ECHO_TO_SERIAL

The first important thing is the delay() call, this is what makes the Arduino wait around

until its time to take another reading. If you recall we #defined the delay between

readings to be 1000 millseconds (1 second). By having more delay between readings

we can use less power and not fill the card as fast. Its basically a tradeoff how often

you want to read data but for basic long term logging, taking data every second or so

will result in plenty of data!

Then we turn the green LED on, this is useful to tell us that yes we're reading/writing

data now.

Next we call millis() to get the 'time since arduino turned on' and log that to the card. It

can be handy to have - especially if you end up not using the RTC.

Then the familiar RTC.now() call to get a snapshot of the time. Once we have that, we

write a timestamp (seconods since 2000) as well as the date in YY/MM/DD HH:MM:SS

©Adafruit Industries Page 64 of 68

time format which can easily be recognized by a spreadsheet. We have both because

the nice thing about a timestamp is that its going to montonically increase and the

nice thing about printed out date is its human readable

Log sensor data

Next is the sensor logging code

int photocellReading = analogRead(photocellPin);
 delay(10);
 int tempReading = analogRead(tempPin);

 // converting that reading to voltage, for 3.3v arduino use 3.3
 float voltage = (tempReading * 5.0) / 1024.0;
 float temperatureC = (voltage - 0.5) * 100.0 ;
 float temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;

 logfile.print(", ");
 logfile.print(photocellReading);
 logfile.print(", ");
 logfile.println(temperatureF);
#if ECHO_TO_SERIAL
 Serial.print(", ");
 Serial.print(photocellReading);
 Serial.print(", ");
 Serial.println(temperatureF);
#endif //ECHO_TO_SERIAL

 digitalWrite(greenLEDpin, LOW);
}

This code is pretty straight forward, the processing code is snagged from our earlier

tutorial. Then we just print() it to the card with a comma seperating the two

We finish up by turning the green LED off

Downloads

Files

EagleCAD PCB files on GitHub ()

Fritzing object in Adafruit Fritzing library ()

•

•

©Adafruit Industries Page 65 of 68

https://github.com/adafruit/Data-Logger-shield
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Datalogger%20Shield%20v1.fzpz

Revision C Schematics & Fabrication Print

Revision B Schematics

click to enlarge

©Adafruit Industries Page 66 of 68

Original Version Schematics

Click to enlarge

©Adafruit Industries Page 67 of 68

©Adafruit Industries Page 68 of 68

	Adafruit Data Logger Shield
	Table of Contents
	Overview
	Installing the Headers
	Shield Overview
	Wiring & Config
	Older Datalogger Shield Leonardo & Mega Library
	Using the Real Time Clock
	Using the SD Card
	Light and Temperature Logger
	Build It!
	Use It!
	Code Walkthrough
	Downloads

	Overview
	Features:

	Installing the Headers
	Assembly with male headers
	Cut the headers to length:
	Position the headers:
	Position the shield:
	And solder!

	Assembly with Stacking Headers:
	Position the headers:
	And solder!
	Place the 2x3 female header on to the Arduino/Metro

	Shield Overview
	SD Card
	Real Time Clock
	3.3V Power Supply
	User LEDs
	Prototyping Area
	Breakout Pads
	Wiring & Config
	Which version do I have?
	Older Shield Pinouts
	Rev B Shield Pinouts
	Rev C Shield Pinouts
	Older Datalogger Shield Leonardo & Mega Library
	Using the SD Library with the Mega and Leonardo
	cardinfo

	Using the Real Time Clock
	What is a Real Time Clock?

	Battery Backup
	Talking to the RTC
	First RTC test
	Setting the time
	Reading the time
	Using the SD Card
	Formatting under Windows/Mac

	Get Card Info
	Light and Temperature Logger
	Introduction
	Build It!
	Items you'll need:

	The sensors
	Wiring it up
	Position the sensors
	Prepare some jumpers
	Install the Jumpers
	Make the connections
	Add more jumpers for the Sensors
	And also for the LEDs
	Solder and trim all connections
	Prepare the Battery Pack

	Use It!
	Sensor test
	Logging sketch
	Plotting with a spreadsheet
	Using Gnuplot
	Other plotters

	Portable logging
	Fridge logging
	Conclusion!

	Code Walkthrough
	Introduction
	Includes and Defines
	Objects and error()

	Setup
	Main loop
	Timestamping
	Log sensor data

	Downloads
	Files
	Revision C Schematics & Fabrication Print
	Revision B Schematics
	Original Version Schematics

