Application Note

SM-UART-04L PM2.5 + PM10 Particulate Dust Sensor

Telaire SM-UART-04L Particulate Dust Sensor is designed for a wide range of air quality applications where fine particle dust needs to be measured. Applications include air quality meters and air purifiers for both residential and light industrial monitoring and control. The optical design leverages laser technology, which allows customers to achieve excellent performance with balanced reliability. SM-UART-04L is an ideal solution for industrial and consumer applications.

SM-UART-04L is a PM2.5 laser-based Particulate Dust Sensor that detects dust particle concentration in air by using an optical sensing method. A laser light emitting diode (laser LED) and a photo sensor are optically arranged in the device. The photo sensor detects the reflected laser LED light by dust particles in air. The dust sensor can detect small particles from large house dust by the pulse pattern of the signal output.

Features

- Laser-based optical sensing method
- High accuracy
- Fast response
- PM2.5 Output
- PM10 Calculated Output
- ROHS and REACH Compliant
- UART Series Digital Output
- Compact size
- Flexible mounting style
- Protected from EMC intrusion by metal case
- Wide detection range
- Average Time Before Recalibration: 40,000 hrs

Applications

- Indoor Air Quality Monitoring
- Air Cleaners and Purifiers
- Air Conditioners and HVAC
- Outdoor Dust Monitoring (with additional protection)

Amphenol Advanced Sensors

Block Diagram

Calibration

Calibration carried out with cigarette smoke per GB/T1880

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage	Vcc	0 to + 5.5	V
Operating Temperature	Topr	-10 to 50 ⁽¹⁾	°C
Storage Temperature	Tstg	-30 to 70	°C
Operating Humidity (1)	RHopr	0 to 95	%
Storage Humidity (1)	RHstg	0 to 95	%

1) Non-condensing

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit
Particle Size		D	0.3	2.5	10	um
Detection Range		D _{reg}	1	—	999	µg/m³
Resolution		R	—	1	—	µg /m³
Indication Error (2)	1 ~100 ug/m³		—	—	+/-10	µg /m³
Indication Error	100~999 ug/m³	D _{err}	—	—	+/-10	%
Warm-Up Time		t _{wup} ⁽²⁾	_	5	—	S
Response Time		t _{rsp} ⁽²⁾	—	1	—	S
Laser Life (Average	e Time Before Recalibration)	Т	_	40,000	_	hour
Supply Voltage		V _{cc}	4.8	5	5.2	V
Supply Voltage Rip	ple	V _{cc} Ripple	—	—	30	mV
Current Consumpti	on	I _{CC} ⁽²⁾	_	60	100	mA
Output (UART)				3.3V		·

1) Non-condensing 2) Testing at T=25°C, RH=40-60%

Connector

Sensor Connector: CJT A1276WVA-N-2x5P-H72

Equivalent Connector:

Harwin, Inc. M50-3000545; Amphenol FCI 20021311-00010T4LF

Pin #	Pin Name	Description	
1	5V	Input Supply Voltage	
2	5V	Input Supply Voltage	
3	GND	Ground	
4	GND	Ground	
5	RESET	Reset Pin @3.3V TTL, Low level reset	
6	NC	—	
7	RXD	UART Receiver @ 3.3V TTL	
8	NC	—	
9	TXD	UART Transceiver @ 3.3V TTL	
10	SET/SLEEP	Working Mode Pin @ 3.3V TTL Floating or high level for normal working condition. Low level for dormancy mode.	

Note: Current approx 5mA in standby mode.

Communication Protocol - UART

UART Serial Configuration				
Baud Rate	9600 bps			
Data Bits	8			
Parity	None			
Stop Bits	1			

Communication Protocol - Default Output UART Frame Format

Head 1	0x42			
Head 2	0x4D			
H_Length		$l = 2 \times 12 + 2$ (Data (CC))		
L_Length		$Lengtn = 2^{-1} 13 + 2 (Data+CS)$		
H_D1		DM1 U.D.1 * 256 . U.D.1 ug/m2 (Standard Smalle, Calculated Value		
L_D1		PNIT = $H_DT_256 + L_DT_ug/ms$ (Standard Smoke, Calculated Value		
H_D2		DM2.5 LL D2 * 256 LL D2 up (m2 (Standard Smalle Calibrated Value)		
L_D2		$PNIZ.3 = P_DZ = 230 + L_DZ = ug/113 (Standard Shloke, Calibrated Value)$		
H_D3		DM10 LL D2 * 256 LL D2 us/m2 (Standard Smalls, Calculated Value)		
L_D3		PNITU = H_DS 256 + L_DS ug/ms (Standard Smoke, Calculated Value)		
H_D4		Deserve		
L_D4		Reserve		
H_D5		Deserve		
L_D5		Reserve		
H_D6		Deserve		
L_D6		Reserve		
H_D7		Reserve		
L_D7		Reserve		
H_D8		Reserve		
L_D8		Reserve		
H_D9		Reserve		
L_D9		Reserve		
H_D10		Reserve		
L_D10		Reserve		
H_D11		Reserve		
L_D11		Reserve		
H_D12		Reserve		
L_D12		Reserve		
H_D13		Reserve		
		Error code 0b0ABCDEFG		
L_D13		$\begin{array}{l} A = X \; Reserve \\ B = X \; Reserve \\ C = 1 \; High \; temperature \; alarm \\ D = 1 \; Low \; temperature \; alarm \\ E = 1 \; Fan \; error \\ F = X \; Reserve \\ G = X \; Reserve \end{array}$		
H_CS				
L_CS		$CS = HEAD1 + HEAD2 + \dots + L_D13$		

* We recommend using PM values with standard smoke.

Response Mode - Command Frame

Head 1	Head 2	CMD	D1	D2	CRC1	CRC2
0x42	0x4D	CMD	DATAH	DATAL	LRCH	LRCL

CMD	DATAH	DATAL	Description	Response
0xE2	Х	Х	Get reading	Same format as above table
0xE1 X	V	0x00 – Ask-answer mode	Output	0x42 0x4D 0x00 0x04 0xE1 0x00 0x01 0x74
	^	0x01 – Direct output mode	mode switch	0x42 0x4D 0x00 0x04 0xE1 0x01 0x01 0x75
0xE4	v	0x00 – Standby mode	Standby	
	^	0x01 – Working mode	control	0,42 0,40 0,00 0,04 0,24 0,00 0,01 0,77

Dimensions

Reliability

1	Drop	Drop it unintentionally from 100 cm height down to the hard wooden board three times at random direction		
2	High Temp. Storage	Leave in the atmosphere 70°C for 96 hours		
3	Low Temp. Storage	Leave in the atmosphere -30°C for 72 hours		
4	High Temp. Operation	Operate it in the atmosphere of 50°C for 96 hours		
5	Low Temp. Operation	Operate it in the atmosphere of -10°C for 72 hours		
6	Temperature Cycle	Repeat 30 times in the following cycle Key T temperature, "C t time, min * Operating mode 3.2 (see ISO 16750-1) 0 One cycle.		
7	Operating Volt. Range	VCC = 4.8V/5.0V/5.2V. Verify Indication Error within SPEC (0~1000µg/m ³)		
8	Slow Decrease & Increase of Supply Voltage	Decrease the supply voltage from the minimum supply voltage 4.8V to 0V, then increase it from 0V to 5.2V, applying a change rate in equal steps of not more than 200 mV/min. Test dust concentration is $250 \pm 50 \mu g/m^3$		
9	Short Circuit Protection	Connect all pins to the pins next to them for a duration of 60s with power supplied and all other pins remain open. Class C satisfied		
10	Reliability - Operating	TA=25°C, RH=30~70%, VCC=5V Continuously operate 720h. Verify Indication Error within SPEC (0~1000µg/m ³)		
11	Reliability – ON/OFF	10s ON/10s OFF, operate for 72h. Verify Indication Error within SPEC (0~1000µg/m ³)		
12	Salt Spray	According to GB/T 2423.17-93, spray 5% NaCl solution in salt mist box at 35°C for 24 hours, then clean with water after test		

Characteristics Test

The sensor uses a particle counter as a reference instrument (TSI 8530 or compatible equipment). Cigarette particles were used as reference particles. Refer to Figure 2 for the output curve.

Figure 2 : Sensor Data Consistency

- Test Chamber: 3m³
- Test System: H/W and S/W -Developed by Amphenol Advanced Sensors, fan, air purifier system, cigarette lighter
- Instrument: Standard sensor, TSI8530
- Particle: Cigarette smoke (Hong Tashan), particle size approx 1µm
- Temp Control: 25 ±5°, Humidity: 30-70% RH
 - Power: 5.0 ±0.02 Volt
- Environmental Conditions:
 - Environment light under 400 lux (Ref: office 300~400 lux)
 - No high voltage or electrical source
 - Do not touch during testing
 - No unintentional contamination source

Packing Specifications

Length (L)	Width (W)	Height (H)	Inner Qty	Total Qty	Weight		
418.2mm	295mm	210mm	5 layer	200 pcs	5kg max		
		H	L				

Application Notes

Grounding

The metal case is internally connected to GND. Do not strip the metal case.

Maintenance

The product is designed to be maintenance free.

Do not attempt to disassemble the device. There are no user-serviceable parts in the module. Disassembly will invalidate warranty.

Electromagnetic (EM) Noise

Excessive electromagnetic (EM) noise may degrade sensor performance. Shield sensor from EM noise in application.

Vibration

Excessive vibration may degrade sensor's performance. Please keep sensor far from vibration in application.

Ambient Light

Excessive ambient light may degrade sensor performance. Keep sensor far from intense direct light.

SM-UART-04L Particulate Dust Sensor Mounting Orientation

Please take sensor mounting orientation into consideration to avoid the influence of adhered dust. It is recommended that the sensor be installed vertically, as shown below:

In addition, please avoid any adhesive particles (fur, oil, etc). If particles adhere to optical part, malfunction may occur.

Ordering Information

Part No.	Description
SM-UART-04L	Laser dust sens
CTDS-302178-P14A	Connector PCB

Note: CTDS-302178-P14A is an eccessory. Refer to Appendix A.

Appendix A: CTDS-302178-P14A Connector PCB Drawing

Note: CTDS-302178-P14A does not include wiring harness.

www.telaire.com www.amphenol-sensors.com

© 2020 Amphenol Corporation. All Rights Reserved. Specifications are subject to change without notice. Other company names and product names used in this document are the registered trademarks or trademarks of their respective owners.