Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUITS

 μ PD789101, 789102, 789104, 789111, 789112, 789114

8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD789101, 789102, and 789104 are μ PD789104 Subseries products of the 78K/0S Series.

The μ PD789111, 789112, and 789114 are μ PD789114 Subseries products of the 78K/0S Series.

Besides an 8-bit CPU, these microcontrollers incorporate a variety of hardware such as I/O ports, timers, a serial interface, A/D converters, and interrupt control.

In addition, a flash memory version (μ PD78F9116) that can operate within the same power supply voltage range as the mask ROM version, and a range of development tools are also being developed.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD789104, 789114, 789124, 789134 Subseries User's Manual: U13045E 78K/0S Series User's Manual Instruction: U11047E

FEATURES

• On-chip multiplier: 8 bits × 8 bits = 16 bits

ROM and RAM sizes

Item Part Number	Program Memory (ROM)	Data Memory (Internal High-Speed RAM)	Package
μPD789101, 789111	2 Kbytes	256 bytes	30-pin plastic shrink SOP (300 mils)
μPD789102, 789112	4 Kbytes		(GS type, MC-5A4 type)
μPD789104, 789114	8 Kbytes		

- Minimum instruction execution time can be changed from high-speed (0.4 μ s) to low-speed (1.6 μ s) (@ 5.0-MHz operation with system clock)
- I/O ports: 20
- Serial interface: 1 channel: Switchable between 3-wire serial I/O and UART modes
- 8-bit resolution A/D converter: 4 channels (μPD789101, 789102, 789104)
- 10-bit resolution A/D converter: 4 channels (μPD789111, 789112, 789114)
 - Timers: 3 channels
 - 16-bit timer: 1 channel
 - 8-bit timer/event counter: 1 channel
 - · Watchdog timer: 1 channel
- Power supply voltage: VDD = 2.7 to 5.5 V

APPLICATIONS

Cleaners, washing machines, and refrigerators

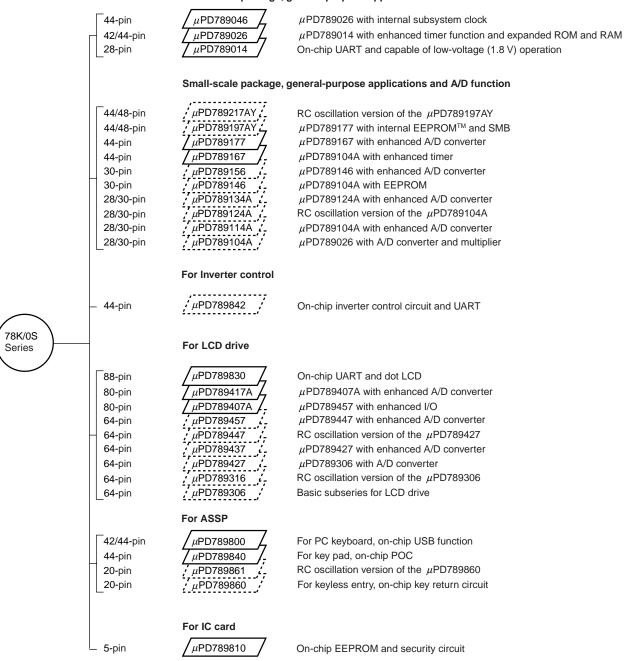
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

*

*** ORDERING INFORMATION**

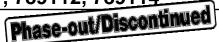
Part Number	Package
μPD789101GS-×××	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789101MC- ××× -5A4	30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)
μPD789102GS-×××	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789102MC-×××-5A4	30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)
μPD789104GS-×××	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789104MC-×××-5A4	30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)
μPD789111GS- × ××	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789111MC-×××-5A4	30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)
μPD789112GS- × ××	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789112MC- ××× -5A4	30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)
μPD789114GS- × ××	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789114MC-×××-5A4	30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)



78K/0S SERIES LINEUP

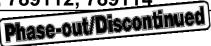
The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

Small-scale package, general-purpose applications



The major functional differences among the subseries are listed below.

	Function	ROM		Tin	ner		8-bit	10-bit	Serial Interface	I/O	V _{DD} MIN.	Remark
Subserie		Capacity	8-bit	1	Watch	WDT	A/D	A/D			Value	
Small-scale	μPD789046	16 K	1ch	1ch	1ch	1ch	_	_	1ch (UART: 1ch)	34	1.8 V	_
package, general-	μPD789026	4 K to 16 K			_				,			
purpose applications	μPD789014	2 K to 4 K	2 ch	-						22		
Small-scale package, general-	μPD789217AY	16 K to 24 K	3 ch	1 ch	1 ch	1 ch	-	8 ch	2ch UART: 1ch SMB: 1ch	31	1.8 V	RC oscillation version, on- chip EEPROM
purpose applications + A/D	μPD789197AY											On-chip EEPROM
converter	μPD789177								1 ch (UART: 1 ch)			_
	μPD789167						8 ch	_				
	μPD789156	8 K to	1 ch		_		_	4 ch		20		On-chip
	μPD789146	16 K					4 ch	-				EEPROM
	μPD789134A	2 K to 8 K					_	4 ch				RC oscillation
	μPD789124A						4 ch	-				version
	μPD789114A						_	4 ch				_
	μPD789104A						4 ch	_				
Inverter control	μPD789842	8 K to 16 K	3 ch	Note	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30	4.0 V	_
LCD	μPD789830	24 K	1 ch	1 ch	1 ch	1 ch	-	_	1 ch (UART: 1 ch)	30	2.7 V	_
drive	μPD789417A	12 K to	3 ch					7 ch		43	1.8 V	
	μPD789407A	24 K					7 ch	_		25		
	μPD789457	16 K to	2 ch				_	4 ch	2 ch (UART: 1 ch)			RC oscillation
	μPD789447	24 K					4 ch	_				version
	μPD789437						-	4 ch				_
	μPD789427						4 ch	_				
	μPD789316	8 K to 16 K					-			23		RC oscillation version
	μPD789306											-
ASSP	μPD789800	8 K	2 ch	1 ch	_	1 ch	-	_	2 ch (USB: 1 ch)	31	4.0 V	-
	μPD789840						4 ch		1 ch	29	2.8 V	
	μPD789861	4 K		-			-		_	14	1.8 V	RC oscillation version
	μPD789860											_
IC card	μPD789810	6 K	I	-	I	1 ch	I	I	-	1	2.7 V	On-chip EEPROM

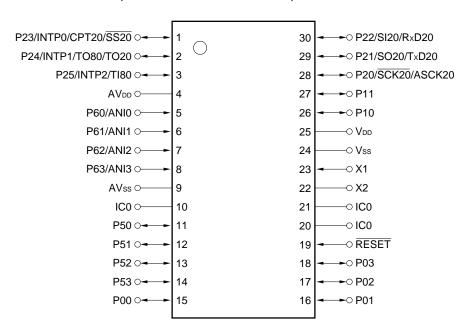

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTIONS

Item		μPD789101 μPD789111	μPD789102 μPD789112	μPD789104 μPD789114			
Internal memory	ROM	2 Kbytes	4 Kbytes	8 Kbytes			
	High-speed RAM	256 bytes	-	,			
Minimum instruction	execution time	0.4/1.6 μs (@ 5.0-MHz	operation with system clock)				
General-purpose reg	gisters	8 bits × 8 registers					
Instruction set		16-bit operations Bit manipulations (see	et, reset, and test)				
Multiplier		8 bits \times 8 bits = 16 bits					
I/O ports		_Total:	20				
		CMOS input: CMOS I/O: N-ch open-drain (12-V withstand voltage): 4					
A/D converters		 8-bit resolution × 4 channels (μPD789104 Subseries) 10-bit resolution × 4 channels (μPD789114 Subseries) 					
Serial interface		Switchable between 3-wire serial I/O and UART modes					
Timer		16-bit timer: 1 channel 8-bit timer/event counter: 1 channel Watchdog timer: 1 channel					
Timer output		1 output (16-bit/8-bit timer alternate function)					
Vectored interrupt Maskable		Internal: 6, External: 3					
sources	Non-maskable	Internal: 1					
Power supply voltage		V _{DD} = 2.7 to 5.5 V					
Operating ambient temperature		$T_A = -40 \text{ to } +85^{\circ}\text{C}$					
Package		30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm) 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)					

CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	7
2.	BLOCK DIAGRAM	8
3.	PIN FUNCTIONS	9
	3.1 Port Pins	9
	3.2 Non-Port Pins	10
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	11
4.	MEMORY SPACE	13
5.	PERIPHERAL HARDWARE FUNCTIONS	14
	5.1 Ports	14
	5.2 Clock Generator	14
	5.3 Timer	15
	5.4 A/D Converter	17
	5.5 Serial Interface 20	18
	5.6 Multiplier	19
6.	INTERRUPT FUNCTION	20
7.	STANDBY FUNCTION	22
8.	RESET FUNCTION	22
9.	INSTRUCTION SET OVERVIEW	23
	9.1 Conventions	23
	9.2 Operations	25
10.	ELECTRICAL SPECIFICATIONS	30
11.	CHARACTERISTICS CURVES (REFERENCE VALUES)	45
12.	PACKAGE DRAWING	48
13.	RECOMMENDED SOLDERING CONDITIONS	50
ΑP	PENDIX A DEVELOPMENT TOOLS	52
AΡ	PENDIX B RELATED DOCUMENTS	54

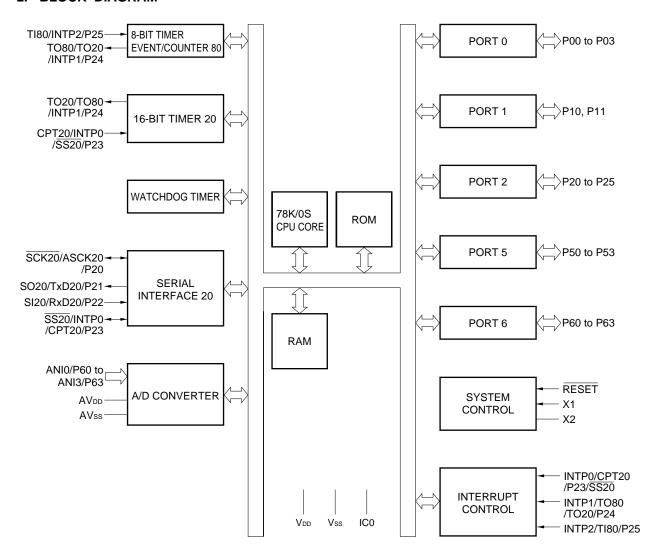

1. PIN CONFIGURATION (TOP VIEW)

• 30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)

 μ PD789101GS-xxx μ PD789102GS-xxx μ PD789111GS-xxx μ PD789111GS-xxx μ PD789114GS-xxx

• 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)

 μ PD789101MC-xxx-5A4 μ PD789102MC-xxx-5A4 μ PD789104MC-xxx-5A4 μ PD789111MC-xxx-5A4 μ PD789111MC-xxx-5A4 μ PD789112MC-xxx-5A4



- Cautions 1. Connect the IC0 (Internally Connected) pin directly to Vss.
 - 2. Connect the AVDD pin to VDD.
 - 3. Connect the AVss pin to Vss.

ANI0 to ANI3:	Analog Input	RESET:	Reset
ASCK20:	Asynchronous Serial Input	RxD20:	Receive Data
AV _{DD} :	Analog Power Supply	SCK20:	Serial Clock Input/Output
AVss:	Analog Ground	SI20:	Serial Data Input
CPT20:	Capture Trigger Input	SO20:	Serial Data Output
IC0:	Internally Connected	SS20:	Chip Select Input
INTP0 to INTP2:	Interrupt from Peripherals	TI80:	Timer Input
P00 to P03:	Port0	TO20, TO80:	Timer Output
P10, P11:	Port1	TxD20:	Transmit Data
P20 to P25:	Port2	V _{DD} :	Power Supply
P50 to P53:	Port5	Vss:	Ground
P60 to P63:	Port6	X1, X2:	Crystal 1, 2

2. BLOCK DIAGRAM

Remark The internal ROM capacity varies depending on the product.

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P03	I/O	Port 0 4-bit input/output port Input/output can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	-
P10, P11	I/O	Port 1 2-bit input/output port Input/output can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	_
P20	I/O	Port 2	Input	SCK20/ASCK20
P21		6-bit input/output port		SO20/TxD20
P22		Input/output can be specified in 1-bit units		SI20/RxD20
P23		When used as an input port, an on-chip pull-up resistor can be specified by means of software.		INTP0/CPT20 /SS20
P24				INTP1/TO80/TO20
P25				INTP2/TI80
P50 to P53	I/O	Port 5 4-bit N-ch open-drain input/output port Input/output can be specified in 1-bit units An on-chip pull-up resistor can be specified by the mask option.	Input	-
P60 to P63	Input	Port 6 4-bit input-only port	Input	ANI0 to ANI3

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge	Input	P23/CPT20/SS20
INTP1		(rising edge, falling edge, or both rising and falling edges) can		P24/TO80/TO20
INTP2		be specified		P25/TI80
SI20	Input	Serial interface serial data input	Input	P22/RxD20
SO20	Output	Serial interface serial data output	Input	P21/TxD20
SCK20	I/O	Serial interface serial clock input/output	Input	P20/ASCK20
ASCK20	Input	Serial clock input for asynchronous serial interface	Input	P20/SCK20
SS20	Input	Chip select input for serial interface	Input	P23/CPT20/INTP0
RxD20	Input	Serial data input for asynchronous serial interface	Input	P22/SI20
TxD20	Output	Serial data output for asynchronous serial interface	Input	P21/SO20
TI80	Input	External count clock input to 8-bit timer (TM80)	Input	P25/INTP2
TO80	Output	8-bit timer (TM80) output	Input	P24/INTP1/TO20
TO20	Output	16-bit timer (TM20) output	Input	P24/INTP1/TO80
CPT20	Input	Capture edge input	Input	P23/INTP0/SS20
ANI0 to ANI3	Input	A/D converter analog input	Input	P60 to P63
AV _{DD}	-	A/D converter analog power supply	_	_
AVss	-	A/D converter ground potential	-	_
X1	Input	Connecting crystal resonator for main system clock oscillation	-	-
X2	-		-	-
RESET	Input	System reset input	Input	_
VDD	-	Positive power supply	_	_
Vss	-	Ground potential	-	-
IC0	-	Internally connected. Connect directly to Vss.	_	_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

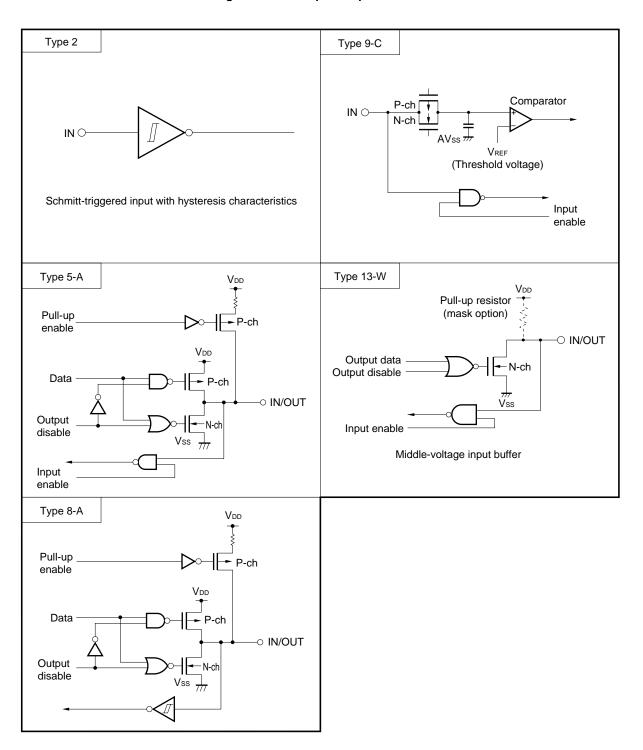

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin Input/Output Circuits

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P03	5-A	I/O	Input: Independently connect to VDD or Vss via a resistor.
P10, P11			Output: Leave open
P20/SCK20/ASCK20	8-A		
P21/SO20/TxD20			
P22/SI20/RxD20			
P23/INTP0/CPT20/SS20			
P24/INTP1/TO80/TO20			
P25/INTP2/TI80			
P50 to P53	13-W		Input: Independently connect to VDD via a resistor. Output: Leave open
P60/ANI0 to P63/ANI3	9-C	Input	Connect directly to V _{DD} or V _{SS} .
AV _{DD}	_	_	Connect to V _{DD} .
AVss			Connect to Vss.
RESET	2	Input	-
IC0	_	_	Connect directly to Vss.

Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

Figure 4-1 shows the memory map of the μ PD789101, 789102, 789104, 789111, 789112, and 789114.

FFFFH Special function registers 256×8 bits FF00H FEFFH Internal high-speed RAM 256×8 bits FE00H **FDFFH** Reserved Data memory space $n\;n\;n\;H$ nnnnH+1 n n n n HProgram area 0080H Program memory Internal ROMNote 007FH space CALLT table area 0040H 003FH Program area 0016H 0015H

Figure 4-1. Memory Map


Note The internal ROM capacity depends on the product. (See the following table).

Part Number	Last Address of Internal ROM nnnnH
μPD789101, 789111	07FFH
μPD789102, 789112	0FFFH
μPD789104, 789114	1FFFH

0000H

Vector table area

 $0\ 0\ 0\ 0\ H$

5. PERIPHERAL HARDWARE FUNCTIONS

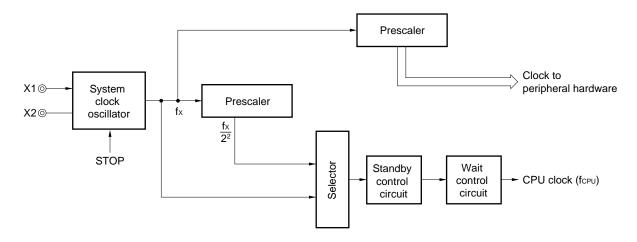
5.1 Ports

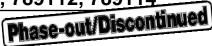
The following three types of I/O ports are available:

CMOS Input (port 6):	4
• CMOS input/output (ports 0 to 2):	12
• N-ch open-drain input/output (port 5):	4
Total:	20

Table 5-1. Port Functions

Port Name	Pin Name	Function
Port 0	P00 to P03	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 1	P10, P11	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 2	P20 to P25	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 5	P50 to P53	N-channel open-drain input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by the mask option.
Port 6	P60 to P63	Input-only port


5.2 Clock Generator

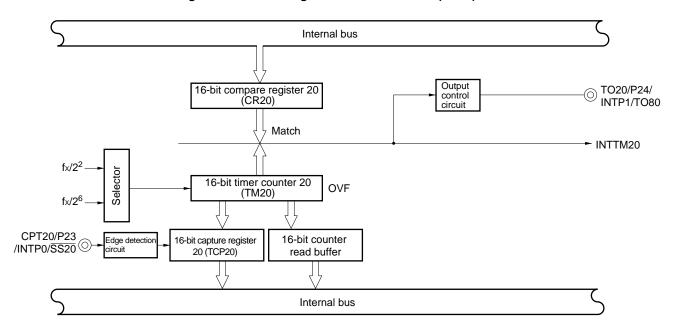

An on-chip system clock generator is provided.

The minimum instruction execution time can be changed.

• 0.4 μ s/1.6 μ s (@ 5.0-MHz operation with system clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer


Three on-chip timers are provided.

16-bit timer 20: 1 channel
8-bit timer/event counter 80: 1 channel
Watchdog timer: 1 channel

Table 5-2. Timer Operation

		16-Bit Timer 20	8-Bit Timer/Event Counter 80	Watchdog Timer
Operation mode	Interval timer	-	1 channel	1 channel
	External event counter	-	1 channel	
Function	Timer output	1 output	1 output	-
	PWM output	_	1 output	-
	Square wave output	_	1 output	-
	Capture	1 input	-	-
	Interrupt request	1	1	1

Figure 5-2. Block Diagram of 16-Bit Timer 20 (TM20)

. .

Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter 80 (TM80)

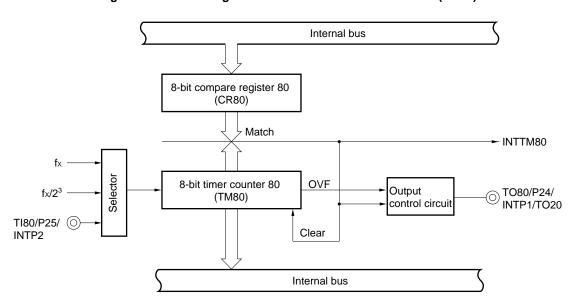
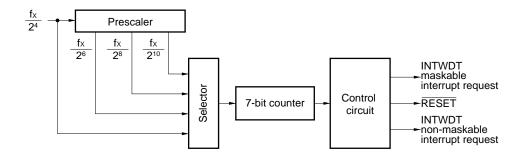
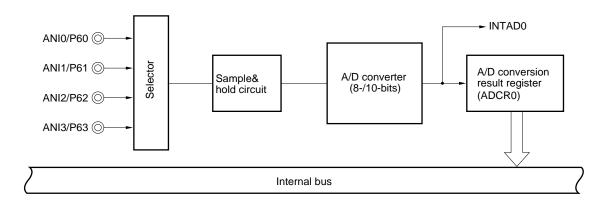



Figure 5-4. Watchdog Timer Block Diagram

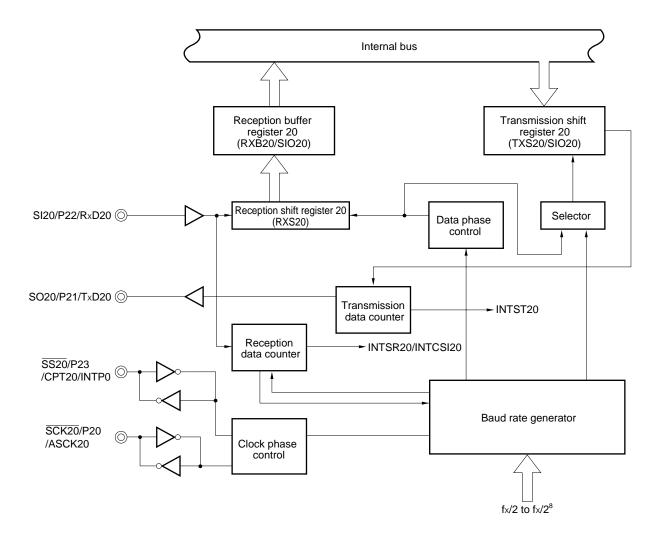

5.4 A/D Converter

The conversion resolution of the A/D converter differs depending on the product as shown below.

- 8-bit A/D converter \times 4 channels ... μ PD789101, 789102, 789104
- 10-bit A/D converter × 4 channels ... μPD789111, 789112, 789114

A/D conversion can be only started by software.

Figure 5-5. A/D Converter Block Diagram

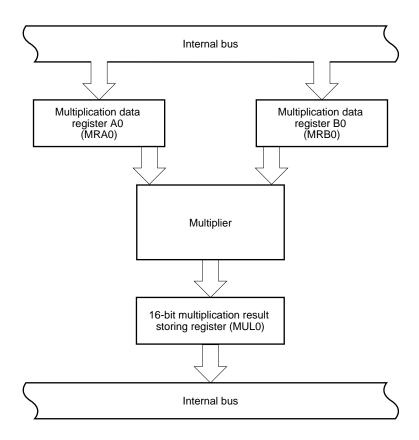

5.5 Serial Interface 20

A one-channel serial interface is incorporated.

Serial interface 20 has following three modes:

- Operation stop mode:
 Power consumption can be reduced.
 - Asynchronous serial interface (UART) mode: A dedicated baud rate generator is incorporated.
 - 3-wire serial I/O mode: A function to select the clock phase or data phase is incorporated.

Figure 5-6. Block Diagram of Serial Interface 20





5.6 Multiplier

The calculation of 8 bits \times 8 bits = 16 bits can be performed.

Figure 5-7. Multiplier Block Diagram

6. INTERRUPT FUNCTION

★ A total of 10 interrupt sources are provided, divided into the following two types.

Non-maskable interrupts: 1 sourceMaskable interrupts: 9 sources

Table 6-1. Interrupt Source List

	N		Interrupt Source		Vector	Basic
Interrupt Type	Priority ^{Note 1}	Name	Trigger	Internal/External	Table Address	Configuration Type ^{Note 2}
Non-maskable	-	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with the interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			H8000	
	3	INTP2			000AH	
	4	INTSR20	End of serial interface 20 UART reception	Internal	000CH	(B)
		INTCSI20	End of serial interface 20 3-wire SIO transfer reception			
	5	INTST20	End of serial interface 20 UART transmission		000EH	
	6	INTTM80	Generation of matching signal of 8-bit timer/event counter 80		0010H	
	7	INTTM20	Generation of matching signal of 16-bit timer 20		0012H	
	8	INTAD0	A/D conversion completion signal		0014H	

Notes 1. Priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 8 is the lowest order.

2. Basic configuration types (A), (B), and (C) correspond to (A), (B), and (C) in Figure 6-1.

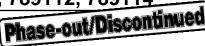
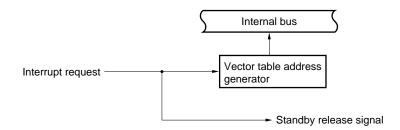
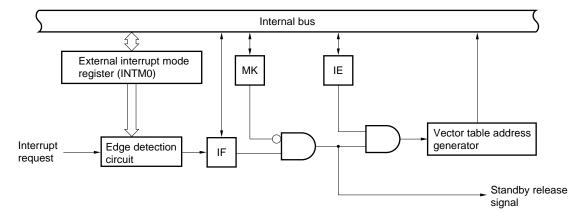



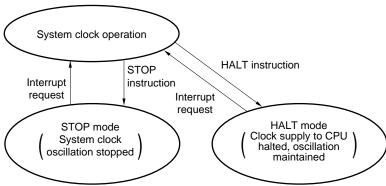

Figure 6-1. Basic Configuration of Interrupt Function


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

IF: Interrupt request flagIE: Interrupt enable flagMK: Interrupt mask flag


7. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

 HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.

• STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

Figure 7-1. Standby Function

8. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by watchdog timer runaway time detection

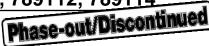
9. INSTRUCTION SET OVERVIEW

The instruction set for the μ PD789101, 789102, 789104, 789111, 789112, 789114 is listed later.

9.1 Conventions

9.1.1 Operand identifiers and description methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, \$, and [], are keywords and must be described as they are. Each symbol has the following meaning.


- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #,!, \$, or [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 9-1. Operand Identifiers and Description Methods

Identifier	Description Method
r rp sfr	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7), AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special function register symbol
saddr saddrp	FE20H to FF1FH immediate data or label FE20H to FF1FH immediate data or label (even address only)
addr16 addr5	0000H to FFFFH immediate data or label (Only even addresses for 16-bit data transfer instructions) 0040H to 007FH immediate data or label (even address only)
word byte bit	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label

9.1.2 Descriptions of the operation field

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair
DE: DE register pair
HL: HL register pair
PC: Program counter
SP: Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

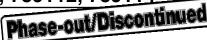
NMIS: Non-maskable interrupt servicing flag

(): Memory contents indicated by address or register contents in parentheses

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

∴ Logical product (AND)✓: Logical sum (OR)✓: Exclusive OR—: Inverted data

addr16: 16-bit immediate data or label


jdisp8: Signed 8-bit data (displacement value)

9.1.3 Description of the flag operation field

(Blank): Not affected 0: Cleared to 0 1: Set to 1

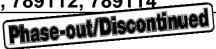
x: Set/cleared according to the resultR: Previously saved value is restored

9.2 Operations

Mnemonic	Operand		Byte	Clock	Operation	Flag
						Z AC CY
MOV	r, #byte		3	6	$r \leftarrow \text{byte}$	
	saddr , #byte		3	6	(addr) ← byte	
	sfr, #byte		3	6	sfr ← byte	
	A, r	Note 1	2	4	$A \leftarrow r$	
	r, A	Note 1	2	4	r ← A	
	A, saddr		2	4	$A \leftarrow (saddr)$	
	saddr, A		2	4	(saddr) ← A	
	A, sfr		2	4	A ← sfr	
	sfr, A		2	4	sfr ← A	
	A, !addr16		3	8	A ← (addr16)	
	!addr16, A		3	8	(addr16) ← A	
	PSW, #byte		3	6	PSW ← byte	× × ×
	A, PSW		2	4	$A \leftarrow PSW$	
	PSW, A		2	4	PSW ← A	× × ×
	A, [DE]		1	6	A ← (DE)	
	[DE], A		1	6	(DE) ← A	
	A, [HL]		1	6	$A \leftarrow (HL)$	
	[HL], A		1	6	(HL) ← A	
	A, [HL + byte]		2	6	A ← (HL + byte)	
	[HL + byte], A		2	6	(HL + byte) ← A	
XCH	A, X		1	4	$A \leftrightarrow X$	
	A, r	Note 2	2	6	A ↔ r	
	A, saddr		2	6	$A \leftrightarrow (saddr)$	
	A, sfr		2	6	$A \leftrightarrow (sfr)$	
	A, [DE]		1	8	$A \leftrightarrow (DE)$	
	A, [HL]		1	8	$A \leftrightarrow (HL)$	
	A, [HL + byte]		2	8	A ↔ (HL + byte)	
MOVW	rp, #word		3	6	$rp \leftarrow word$	
	AX, saddrp		2	6	$AX \leftarrow (saddrp)$	
	saddrp, AX		2	8	(saddrp) ← AX	
	AX, rp	Note 3	1	4	$AX \leftarrow rp$	
	rp, AX	Note 3	1	4	$rp \leftarrow AX$	
XCHW	AX, rp	Note 3	1	8	AX ↔rp	

Notes 1. Except r = A

2. Except r = A or X


3. Only when rp = BC, DE, HL

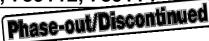
Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ADD	A, #byte	2	4	A, CY ← A + byte	x x x
	saddr, #byte	3	6	(saddr), CY \leftarrow (saddr) + byte	× × ×
	A, r	2	4	$A,CY \leftarrow A + r$	x x x
	A, saddr	2	4	A, CY ← A + (saddr)	× × ×
	A, !addr16	3	8	A, CY ← A + (addr16)	× × ×
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	× × ×
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte)	x x x
ADDC	A, #byte	2	4	$A, CY \leftarrow A + byte + CY$	× × ×
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) + byte + CY	× × ×
	A, r	2	4	$A, CY \leftarrow A + r + CY$	x x x
	A, saddr	2	4	A, CY ← A + (saddr) + CY	x x x
	A, !addr16	3	8	A, CY ← A + (addr16) + CY	x x x
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	x x x
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte) + CY	x x x
SUB	A, #byte	2	4	A, CY ← A – byte	x x x
	saddr, #byte	3	6	(saddr), $CY \leftarrow$ (saddr) – byte	x x x
	A, r	2	4	A, CY ← A − r	x x x
	A, saddr	2	4	$A, CY \leftarrow A - (saddr)$	x x x
	A, !addr16	3	8	A, CY ← A − (addr16)	x x x
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	x x x
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte)$	× × ×
SUBC	A, #byte	2	4	$A, CY \leftarrow A - byte - CY$	x x x
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	× × ×
	A, r	2	4	$A, CY \leftarrow A - r - CY$	x x x
	A, saddr	2	4	$A,CY \leftarrow A - (saddr) - CY$	× × ×
	A, !addr16	3	8	A, CY ← A − (addr16) − CY	x x x
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	× × ×
	A, [HL + byte]	2	6	$A, CY \leftarrow A - (HL + byte) - CY$	x x x
AND	A, #byte	2	4	$A \leftarrow A \wedge byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×
	A, r	2	4	$A \leftarrow A \wedge r$	×
	A, saddr	2	4	$A \leftarrow A \wedge (saddr)$	×
	A, !addr16	3	8	A ← A ∧ (addr16)	×
	A, [HL]	1	6	$A \leftarrow A \wedge (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \wedge (HL + byte)$	×



Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	(saddr) ← (saddr) ∨ byte	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	A ← A ∨ (HL + byte)	×
XOR	A, #byte	2	4	$A \leftarrow A \nabla$ byte	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×
	A, r	2	4	$A \leftarrow A \nabla r$	×
	A, saddr	2	4	$A \leftarrow A \forall (saddr)$	×
	A, !addr16	3	8	A ← A ▽ (addr16)	×
	A, [HL]	1	6	$A \leftarrow A \forall (HL)$	×
	A, [HL + byte]	2	6	A ← A ▽ (HL + byte)	×
CMP	A, #byte	2	4	A – byte	× × ×
	saddr, #byte	3	6	(saddr) – byte	× × ×
	A, r	2	4	A – r	× × ×
	A, saddr	2	4	A – (saddr)	× × ×
	A, !addr16	3	8	A – (addr16)	× × ×
	A, [HL]	1	6	A – (HL)	× × ×
	A, [HL + byte]	2	6	A – (HL + byte)	× × ×
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	× × ×
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	× × ×
CMPW	AX, #word	3	6	AX – word	× × ×
INC	r	2	4	r ← r + 1	× ×
	saddr	2	4	(saddr) ← (saddr) + 1	× ×
DEC	r	2	4	r ← r − 1	× ×
	saddr	2	4	(saddr) ← (saddr) − 1	× ×
INCW	rp	1	4	rp ← rp + 1	
DECW	rp	1	4	$rp \leftarrow rp - 1$	
ROR	A, 1	1	2	$(CY,A_7\leftarrow A_0,A_{m-1}\leftarrow A_m)\times 1$	×
ROL	A, 1	1	2	$(CY,A_0\leftarrow A_7,A_{m+1}\leftarrow A_m)\times 1$	×
RORC	A, 1	1	2	$(CY \leftarrow A_0,A_7 \leftarrow CY,A_{m-1} \leftarrow A_m) \times 1$	×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$	×

Mnemonic	Operand	Byte	Clock	Operation	Flag		
					Z	AC CY	
SET1	saddr. bit	3	6	(saddr. bit) ← 1			
	sfr. bit	3	6	sfr. bit ← 1			
	A. bit	2	4	A. bit ← 1			
	PSW. bit	3	6	PSW. bit ← 1	×	× ×	
	[HL]. bit	2	10	(HL) . bit ← 1			
CLR1	saddr. bit	3	6	(saddr. bit) ← 0			
	sfr. bit	3	6	sfr. bit ← 0			
	A. bit	2	4	A. bit ← 0			
	PSW. bit	3	6	PSW. bit ← 0	×	× ×	
	[HL]. bit	2	10	(HL) . bit \leftarrow 0			
SET1	CY	1	2	CY ← 1		1	
CLR1	CY	1	2	CY ← 0		0	
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$		×	
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC+3)H, (SP-2) \leftarrow (PC+3)L,$ $PC \leftarrow addr16, SP \leftarrow SP-2$			
CALLT	[addr5]	1	8	$(SP-1) \leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L},$ $PC_{H} \leftarrow (00000000, addr5+1),$ $PC_{L} \leftarrow (00000000, addr5),$ $SP \leftarrow SP-2$			
RET		1	6	$PC_H \leftarrow (SP + 1), PC_L \leftarrow (SP),$ $SP \leftarrow SP + 2$			
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1),PCL \leftarrow (SP),\\ & PSW \leftarrow (SP+2),SP \leftarrow SP+3,\\ & NMIS \leftarrow 0 \end{aligned}$	R	R R	
PUSH	PSW	1	2	(SP − 1) ← PSW, SP ← SP − 1			
	rp	1	4	$(SP-1) \leftarrow \text{грн, } (SP-2) \leftarrow \text{грL,}$ $SP \leftarrow SP-2$			
POP	PSW	1	4	$PSW \leftarrow (SP),SP \leftarrow SP + 1$	R	R R	
	гр	1	6	$rpH \leftarrow (SP + 1), rpL \leftarrow (SP),$ $SP \leftarrow SP + 2$			
MOVW	SP, AX	2	8	$SP \leftarrow AX$			
	AX, SP	2	6	$AX \leftarrow SP$			
BR	!addr16	3	6	PC ← addr16			
	\$addr16	2	6	PC ← PC + 2 + jdisp8			
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$			

Mnemonic	Operand	Byte	Clock	Operation	Flag
					Z AC CY
ВС	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1	
BNC	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$	
BZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$	
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	
ВТ	saddr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if (saddr. bit) = 1	
	sfr. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if sfr. bit = 1	
	A. bit , \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A. bit} = 1$	
	PSW. bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 1	
BF	saddr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 0	
	sfr. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if sfr. bit = 0	
	A. bit, \$addr16	3	8	$PC \leftarrow PC + 3 + jdisp8 \text{ if A. bit} = 0$	
	PSW. bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW. bit} = 0$	
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0	
	C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8 \text{ if } C \neq 0$	
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if(saddr) \neq 0	
NOP		1	2	No Operation	
El		3	6	IE ← 1(Enable Interrupt)	
DI		3	6	IE ← 0(Disable Interrupt)	
HALT		1	2	Set HALT Mode	
STOP		1	2	Set STOP Mode	


10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

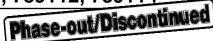
Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	VDD, AVDD	V _{DD} = AV _{DD}		-0.3 to +6.5	V
Input voltage	Vıı	Pins other tha	in P50 to P53	-0.3 to V _{DD} + 0.3	V
	Vı2	P50 to P53	With N-ch open drain	-0.3 to +13	V
		With an on-chip pull-up resistor		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Output current, high	Іон	Per pin		-10	mA
		Total for all pi	ns	-30	mA
Output current, low	lol	Per pin		30	mA
		Total for all pins		160	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

★ System Clock Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = 2.7 \text{ to } 5.5 \text{ V})$

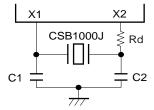

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	IC0 X1 X2	Oscillation frequency (fx) ^{Note 1}	V _{DD} = oscillation voltage range	1.0		5.0	MHz
	C1= C2=	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	ICO X1 X2	Oscillation frequency (fx) ^{Note 1}		1.0		5.0	MHz
resonator	+10++	Oscillation stabilization	V _{DD} = 4.5 to 5.5 V			10	ms
	C1= C2=	time ^{Note 2}	VDD = 2.7 to 5.5 V			30	
External clock	X1 X2	X1 input frequency (fx) ^{Note 1}		1.0		5.0	MHz
	OPEN	X1 input high-/low-level width (txH, txL)		85		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC characteristics for instruction execution time.

2. Time required to stabilize oscillation after a reset or STOP mode release. Use the resonator that stabilizes oscillation during the oscillation wait time.

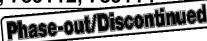
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.



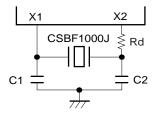
* Recommended Oscillator Constant

Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$) (1/4)

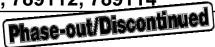

Manufacturer	Part Number	Frequency (MHz)		mended Constant F)		n Voltage e (VDD)	Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg.	CSB1000J ^{Note}	1.00	100	100	2.7	5.5	$Rd = 2.2 \text{ k}\Omega$
Co., Ltd. (Lead pin	CSA2.00MG	2.00	30	30			
type)	CST2.00MG		ı	ı			On-chip capacitor
	CSA4.00MG	4.00	30	30			
	CST4.00MGW		ı	ı			On-chip capacitor
	CSA4.00MGU		30	30			
	CST4.00MGWU		ı	ı			On-chip capacitor
	CSA4.19MG	4.19	30	30			
	CST4.19MG		ı	ı			On-chip capacitor
	CSA4.19MGU		30	30			
	CST4.19MGU		ı	ı			On-chip capacitor
	CSA4.91MG	4.91	30	30			
	CST4.91MGW		I	Ī			On-chip capacitor
	CSA4.91MGU		30	30			
	CST4.91MGWU		1	1			On-chip capacitor
	CSA5.00MG	5.00	30	30			
	CST5.00MGW		1	ı			On-chip capacitor
	CSA5.00MGU		30	30			
	CST5.00MGWU		_	_			On-chip capacitor

Note When using the CSB1000J (1.0 MHz) of Murata Mfg. Co., Ltd. as a ceramic resonator, a limited resistor (Rd = $2.2 \text{ k}\Omega$) is required (see the figure below). The resistor is not required when a recommended resonator other than the CSB1000J is used.

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.


Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$) (2/4)


Manufacturer	Part Number	Frequency (MHz)		mended Constant F)	Oscillation Voltage Range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
Murata Mfg.	CSBF1000J ^{Note}	1.00	100	100	2.7	5.5	$Rd = 2.2 \text{ k}\Omega$
Co., Ltd. (SMD type)	CSAC2.00MGC	2.00	30	30			
(SIVID type)	CSTC2.00MG		I	ı			On-chip capacitor
	CSAC4.00MGC	4.00	30	30			
	CSAC4.00MGCU						
	CSTCC4.00MG		1	-			On-chip capacitor
	CSTCC4.00MGU						
	CSAC4.19MGC	4.19	30	30			
	CSAC4.19MGCU						
	CSTCC4.19MG		_	-			On-chip capacitor
	CSTCC4.19MGU						
	CSAC4.91MGC	4.91	30	30			
	CSAC4.91MGCU						
	CSTCC4.91MG		_	-			On-chip capacitor
	CSTCC4.91MGU						
	CSAC5.00MGC	5.00	30	30			
	CSAC5.00MGCU						
	CSTCC5.00MG		_	_			On-chip capacitor
	CSTCC5.00MGU						

Note When using the CSBF1000J (1.0 MHz) of Murata Mfg. Co., Ltd. as a ceramic resonator, a limited resistor (Rd = $2.2~k\Omega$) is required (see the figure below). The resistor is not required when a recommended resonator other than the CSBF1000J is used.

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$) (3/4)

Manufacturer	Part Number	Frequency (MHz)	Circuit (mended Constant F)	Oscillation Voltage Range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
Kyocera Corporation (Lead pin type)	KBR-1000F	1.00	100	100	2.7	5.5	
	KBR-2.0MS	2.00	68	68			
	KBR-4.0MKC	4.00	-	_			On-chip capacitor
	KBR-4.0MKD						
	KBR-4.0MKS						
	KBR-4.0MSA		33	33			
	KBR-4.0MSB						
	KBR-4.19MKC	4.19	-	_			On-chip capacitor
	KBR-4.19MKD						
	KBR-4.19MKS						
	KBR-4.19MSA		33	33			
	KBR-4.19MSB						
	KBR-4.91MKC	4.91	_	_			On-chip capacitor
	KBR-4.91MKD						
	KBR-4.91MKS						
	KBR-4.91MSA		33	33			
	KBR-4.91MSB						
	KBR-5.0MKC	5.00	-	_			On-chip capacitor
	KBR-5.0MKD						
	KBR-5.0MKS						
	KBR-5.0MSA		33	33			
	KBR-5.0MSB						
Kyocera Corporation (SMD type)	KBR-1000Y	1.00	100	100	2.7	5.5	
	PBRC4.00A	4.00	33	33			
	PBRC4.00B		-	-			On-chip capacitor
	PBRC4.19A	4.19	33	33			
	PBRC4.19B		-	-			On-chip capacitor
	PBRC4.91A	4.91	33	33			
	PBRC4.91B		-	_			On-chip capacitor
	PBRC5.00A	5.00	33	33			
	PBRC5.00B		ı	_			On-chip capacitor

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit.

For details, please contact directly the manufacturer of the resonator you will use.

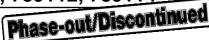
Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$) (4/4)

Manufacturer	Part Number	Frequency (MHz)	Circuit C	mended Constant F)	Oscillation Voltage Range (VDD)		Remarks
			C1	C2	MIN.	MAX.	
TDK	CCR4.0MC3	4.00	1	ı	2.7	5.5	On-chip capacitor
	FCR4.0M5		33	33			
	FCR4.0MC5		-	-			On-chip capacitor
	CCR4.19MC3	4.19					
	FCR4.19M5		33	33			
	FCR4.19MC5		_	_			On-chip capacitor
	CCR4.91MC3	4.91					
	CCR5.0MC3	5.00					
	FCR5.0MC5						

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit.

For details, please contact directly the manufacturer of the resonator you will use.

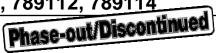


\star DC Characteristics (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V) (1/2)

Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin					-1	mA
		Total for all pins				-15	mA	
Output current, low	loL	Per pin					10	mA
		Total for all pins					80	mA
Input voltage, high	V _{IH1}	Pins other than described below		below	0.7V _{DD}		V _{DD}	V
	V _{IH2}	P50 to P53, V _{DD}	With N	l-ch open drain	0.7V _{DD}		12	V
		= 3.5 to 5.5 V	With o	n-chip pull-up resistor	0.7V _{DD}		V _{DD}	V
	VIH3	RESET, P20 to P	25, P40	to P45	0.8V _{DD}		V _{DD}	V
	V _{IH4}	X1, X2		V _{DD} = 2.7 to 5.5 V	V _{DD} - 0.1		V _{DD}	V
				V _{DD} = 4.5 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
Input voltage, low	V _{IL1}	Pins other than de	escribed	below	0		0.3V _{DD}	V
	V _{IL2}	P50 to P53, V _{DD} = 3.5 to 5.5 V			0		0.3V _{DD}	V
	V _{IL3}	RESET, P20 to P25, P40 to P45			0		0.2V _{DD}	V
	V _{IL4}	X1, X2		V _{DD} = 2.7 to 5.5 V	0		0.1	V
				V _{DD} = 4.5 to 5.5 V	0		0.4	V
Output voltage, high	V _{OH1}	V _{DD} = 4.5 to 5.5 V	′, Іон = –	-1 mA	V _{DD} - 1.0			V
	V _{OH2}	$VDD = 2.7 \text{ to } 5.5 \text{ V}, IDH = -100 \ \mu\text{A}$			VDD - 0.5			V
Output voltage, low	V _{OL1}	Pins other than P50 to P53		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ $I_{OL} = 10 \text{ mA}$			1.0	V
				$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ $I_{OL} = 400 \ \mu\text{A}$			0.5	V
	V _{OL2}	P50 to P53		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$ $I_{OL} = 10 \text{ mA}$			1.0	٧
				$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ $I_{OL} = 1.6 \text{ mA}$			0.4	٧
Input leakage current, high	Ішн1	Pins other than X or P50 to P53	1, X2,	VIN = VDD			3	μΑ
	ILIH2	X1, X2					20	μΑ
	Ішнз	P50 to P53 (N-ch drain)	open	V _{IN} = 12 V			20	μΑ
Input leakage current,	ILIL1	Pins other than X or P50 to P53	1, X2,	VIN = 0 V			-3	μΑ
	ILIL2	X1, X2					-20	μΑ
	Ішз	P50 to P53 (N-ch drain)	open				-3 ^{Note}	μΑ

Note When pull-up resistors are not connected to P50 to P53 (specified by the mask option) and when port 5 is in input mode, a low-level input leakage current of $-30~\mu\text{A}$ (MAX.) flows only for 1 cycle time after a read instruction has been executed to port 5.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

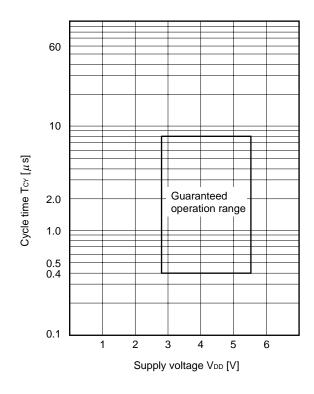

\star DC Characteristics (T_A = -40 to +85°C, V_{DD} = 2.7 to 5.5 V) (2/2)

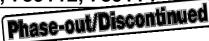
Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vоит = 0 V			-3	μΑ	
Software pull-up resistor	R ₁	$V_{IN} = 0 V$, for pins other than P50 to P53		50	100	200	kΩ
Mask option pull-up resistor	R ₂	V _{IN} = 0 V, P50 to P53		10	30	60	kΩ
Power supply	IDD1 Note 1	5.0-MHz crystal	VDD = 5.0 V±10% ^{Note 3}		1.8	3.2	mA
current ^{Note 1}		oscillation operating mode (C1 = C2 = 22pF)	V _{DD} = 3.0 V±10% ^{Note 4}		0.45	0.9	mA
	IDD2 ^{Note 1}	5.0-MHz crystal	V _{DD} = 5.0 V±10% ^{Note 3}		0.8	1.6	mA
		oscillation HALT mode (C1 = C2 = 22pF)	V _{DD} = 3.0 V±10% ^{Note 4}		0.3	0.6	mA
	IDD3 ^{Note 1}	STOP mode	V _{DD} = 5.0 V±10%		0.1	10	μΑ
			V _{DD} = 3.0 V±10%		0.05	5.0	μΑ
	IDD4 ^{Note 2}	5.0-MHz crystal	V _{DD} = 5.0 V±10%		3.0	5.5	mA
		oscillation A/D operating mode (C1 = C2 = 22pF)	V _{DD} = 3.0 V±10%		1.65	3.2	mA

Notes 1. The current flowing to the ports (including the current flowing through an on-chip pull-up resistor) and AV_{DD} current are not included.

- 2. The current flowing to the ports (including the current flowing through an on-chip pull-up resistor) is not included.
- 3. High-speed mode operation (when processor clock control register (PCC) is set to 00H.)
- 4. Low-speed mode operation (when PCC is set to 02H).

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.




AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсч		0.4		8	μs
TI80 input high-/low-level width	tтін, tті∟		0.1			μs
TI80 input frequency	fτι		0		4	MHz
Interrupt input high- /low-level width	tinth, tintl	INTP0 to INTP2	10			μs
RESET low-level width	trsl		10			μs

Tcy vs Vdd (at 5.0 MHz operation with system clock)

(2) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

(i) 3-wire serial I/O mode (SCK20...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcy1		800			ns
SCK20 high-/low-	tkH1,		tксү1/2 — 50			ns
SI20 setup time (to SCK20↑)	tsıĸı		150			ns
SI20 hold time (from SCK20↑)	tksıı		400			ns
SO20 output delay time from SCK20↓	tkso1	$R = 1 \text{ k } \Omega,$ $C = 100 \text{ pF}^{\text{Note}}$	0		250	ns

Note R and C are the load resistance and load capacitance of the SO output line.

(ii) 3-wire serial I/O mode (SCK20...External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcy2		900			ns
SCK20 high-/low-level width	tkH2,		400			ns
SI20 setup time (to SCK20↑)	tsık2		100			ns
SI20 hold time (from SCK20↑)	tksi2		400			ns
SO20 output delay time from SCK20↓	t KSO2	$R = 1 k\Omega,$ $C = 100 pF^{Note}$	0		300	ns
SO20 setup time (for SS20↓ when SS20 is used)	tkas2				120	ns
SO20 disable time (for SS20↑ when SS20 is used)	tkDS2				240	ns

Note R and C are the load resistance and load capacitance of the SO output line.

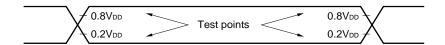
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					78125	bps

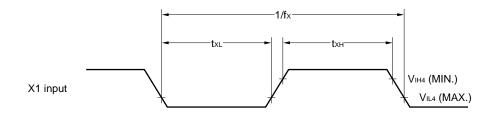
Data Sheet U12815EJ2V1DS00

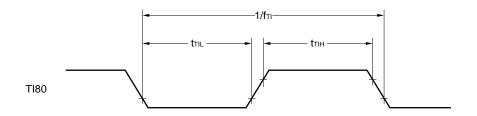
39

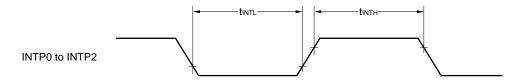
(iv) UART mode (external clock input)

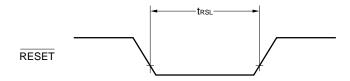

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK20 cycle time	tксүз		900			ns
ASCK20 high-/low- level width	tкнз, tкLз		400			ns
Transfer rate					39063	bps
ASCK20 rise/fall time	tr,				1	μs

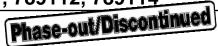
40



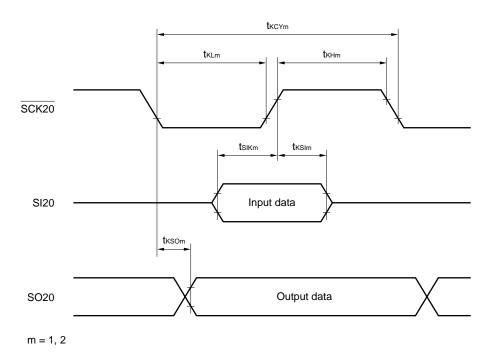

AC Timing Test Points (excluding X1 input)

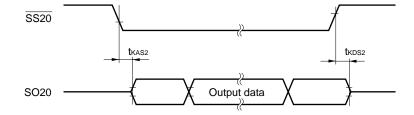

Clock Timing


TI Timing

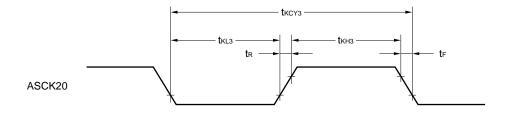


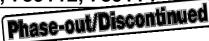
Interrupt Input Timing


RESET Input Timing



Serial Transfer Timing


3-wire serial I/O mode:


★ 3-wire serial I/O mode (when SS20 is used):

UART mode (external clock input):

★ 8-Bit A/D Converter Characteristics (µPD789101, 789102, 789104)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, AV_{DD} = V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, AV_{SS} = V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ^{Note}				±0.4	±0.6	%FSR
Conversion time	tconv		14		100	μs
Analog input voltage	VIAN		0		AV _{DD}	V

Note Excludes quantization error $(\pm 0.2\%)$.

Remark FSR: Full-scale range

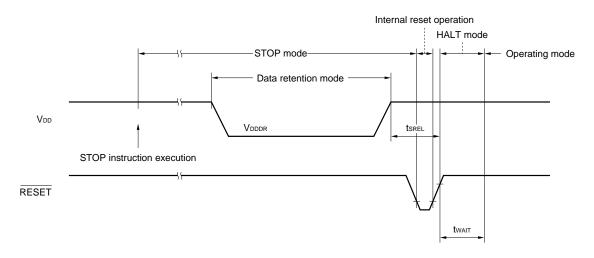
★ 10-Bit A/D Converter Characteristics (μPD789111, 789112, 789114)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, AV_{DD} = V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, AV_{SS} = V_{SS} = 0 \text{ V})$

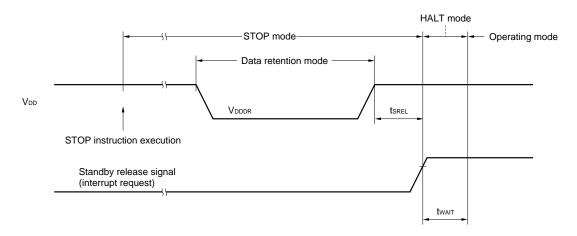
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error ^{Note}		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
		2.7 V ≤ V _{DD} < 4.5 V		±0.4	±0.6	%FSR
Conversion time	tconv		14		100	μs
Zero-scale error ^{Note}		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±0.4	%FSR
		2.7 V ≤ V _{DD} < 4.5 V			±0.6	%FSR
Full-scale error ^{Note}		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±0.4	%FSR
		2.7 V ≤ V _{DD} < 4.5 V			±0.6	%FSR
Non-integral linearity	INL	4.5 V ≤ V _{DD} ≤ 5.5 V			±2.5	LSB
error ^{Note}		2.7 V ≤ V _{DD} < 4.5 V			±4.5	LSB
Non-differential	DNL	4.5 V ≤ VDD ≤ 5.5 V			±1.5	LSB
linearity error ^{Note}		2.7 V ≤ V _{DD} < 4.5 V			±2.0	LSB
Analog input voltage	VIAN		0		AVDD	V

Note Excludes quantization error (±0.05%).

Remark FSR: Full-scale range

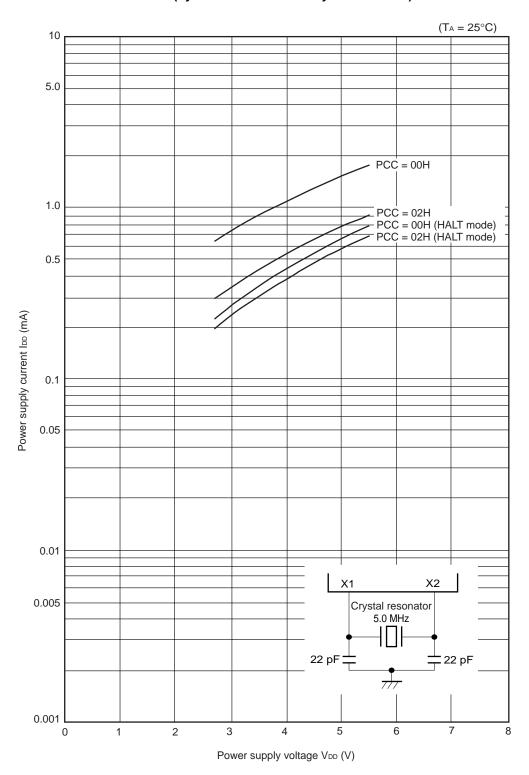

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

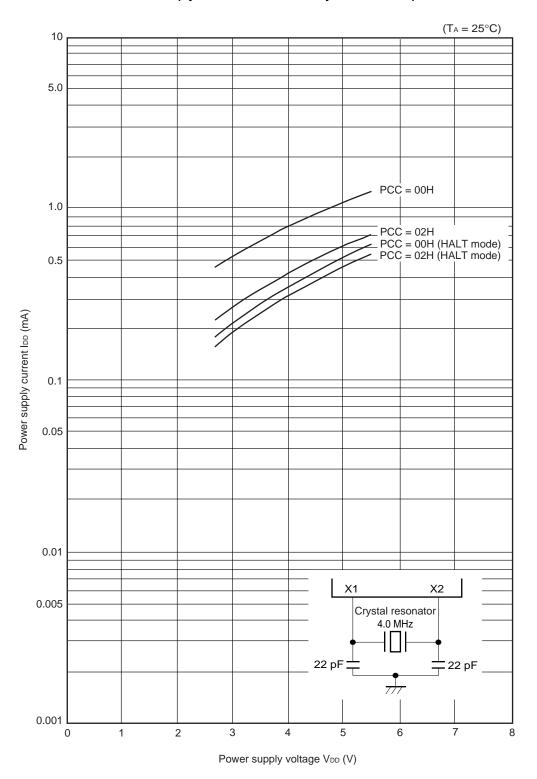
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Release signal set time	tsrel		0			μs
Oscillation	twait	Release by RESET		2 ¹⁵ /fx		ms
stabilization wait time ^{Note 1}		Release by interrupt request		Note 2		ms

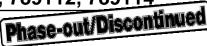

- **Notes 1.** The oscillation stabilization wait time is the period during which the CPU operation is stopped to avoid unstable operation at the beginning of oscillation.
 - **2.** Selection of $2^{12}/fx$, $2^{15}/fx$, or $2^{17}/fx$ is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register.

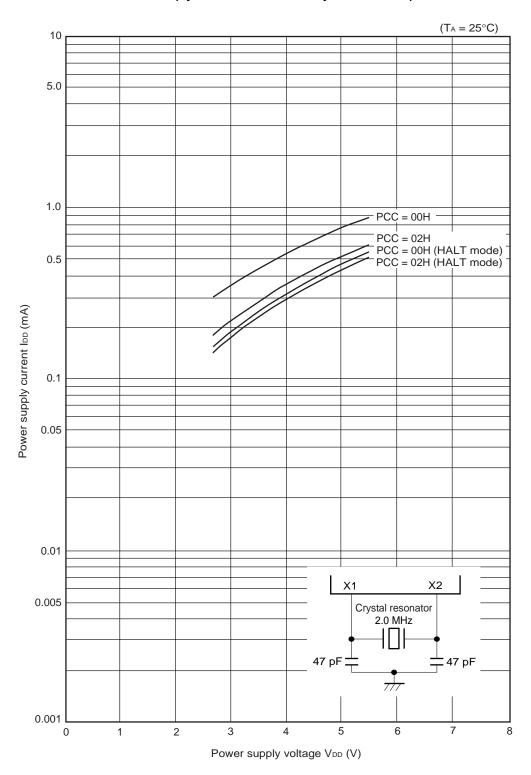

Remark fx: System clock oscillation frequency

Data Retention Timing (STOP mode release by RESET)

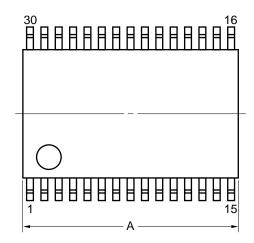

Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)

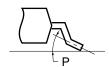

★11. CHARACTERISTICS CURVES (REFERENCE VALUES)

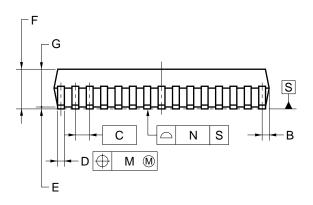

IDD VS VDD (System clock: 5.0-MHz crystal resonator)

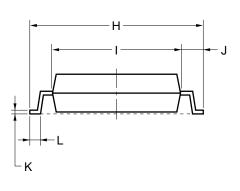


IDD VS VDD (System clock: 4.0-MHz crystal resonator)


IDD vs VDD (System clock: 2.0-MHz crystal resonator)

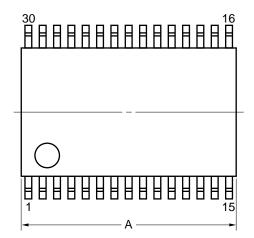


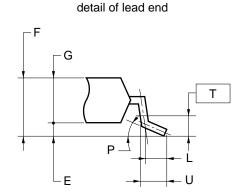

12. PACKAGE DRAWING

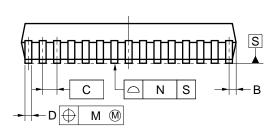

30 PIN PLASTIC SHRINK SOP (300 mil)

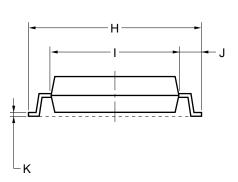
detail of lead end

NOTES


- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
A	9.85±0.26	0.388±0.011
В	0.51 MAX.	0.020 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	$0.32^{+0.08}_{-0.07}$	$0.013^{+0.003}_{-0.004}$
E	0.125±0.075	0.005±0.003
F	2.0 MAX.	0.079 MAX.
G	1.7±0.1	0.067±0.004
Н	8.1±0.2	0.319±0.008
ı	6.1±0.2	0.240±0.008
J	1.0±0.2	$0.039^{+0.009}_{-0.008}$
K	0.17 ^{+0.08} _{-0.07}	$0.007^{+0.003}_{-0.004}$
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$
М	0.10	0.004
N	0.10	0.004
Р	3°+7°	3°+7°


P30GS-65-300B-2



30 PIN PLASTIC SSOP (300 mil)

NOTE

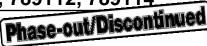
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15
	S30MC-65-5A4-1

13. RECOMMENDED SOLDERING CONDITIONS

The μ PD789101, 789102, 789104, 789111, 789112, and 789114 should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device**Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative.


Table 13-1. Surface Mounting Type Soldering Conditions (1/2)

μPD789101GS-xxx:	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789102GS-xxx:	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μ PD789104GS-xxx:	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789111GS-xxx:	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μ PD789112GS-xxx:	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)
μPD789114GS-xxx:	30-pin plastic shrink SOP (300 mils, resin thickness 1.7 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher), Count: twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	IR35-207-2
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher), Count: twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	VP15-207-2
Wave soldering	Solder bath temperature: 260°C Max., Time: 10 sec. Max., Count: once, Preheating temperature: 120°C Max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	WS60-207-1
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

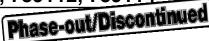


Table 13-1. Surface Mounting Type Soldering Conditions (2/2)

 μ PD789101MC-xxx-5A4: 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm) μ PD789102MC-xxx-5A4: 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm) μ PD789104MC-xxx-5A4: 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm) μ PD789111MC-xxx-5A4: 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm) μ PD789112MC-xxx-5A4: 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm) μ PD789114MC-xxx-5A4: 30-pin plastic shrink SOP (300 mils, resin thickness 1.2 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 sec. Max. (at 210°C or higher), Count: three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 sec. Max. (at 200°C or higher), Count: three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C Max., Time: 10 sec. Max., Count: once, Preheating temperature: 120°C Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C Max., Time: 3 sec. Max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

* APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD789101, μ PD789102, μ PD789104, μ PD789111, μ PD789112, and μ PD789114.

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789136 ^{Notes 1, 2, 3}	Device file for μ PD789104, 789114 Subseries

Flash Memory Writing Tools

Flashpro III	Dedicated flash programmer for on-chip flash memory
(Model number: FL-PR3 ^{Note 4} ,	
PG-FP3)	
FA-30GS ^{Note 4}	Flash memory writing adapter
FA30MC ^{Notes 4, 5}	

Debugging Tools (1/2)

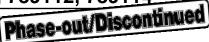
IE-78K0S-NS In-circuit emulator	In-circuit emulator serves to debug hardware and software when developing application systems using a 78K/0S Series product. It supports the ID78K0S-NS integrated debugger. Used in combination with an AC adapter, emulation probe, and interface adapter connecting to the host machine.	
IE-70000-MC-PS-B AC adapter	Adapter used to supply power from a power outlet of 100 V AC to 240 V AC.	
IE-70000-98-IF-C Interface adapter	Adapter when PC-9800 series PC (except notebook type) is used as the IE-78K0S-NS host machine (C bus supported).	
IE-70000-CD-IF-A PC card interface	PC card and interface cable when notebook PC is used as the IE-78K0S-NS host machine (PCMCIA socket supported).	
IE-70000-PC-IF-C Interface adapter	Adapter when using an IBM PC/AT™ or compatible as the IE-78K0S-NS host machine.	
IE-70000-PCI-IF Interface adapter	Adapter when using PC that includes a PCI bus as the IE-78K0S-NS host machine.	
IE-789136-NS-EM1 Emulation board	Board for emulation of the peripheral hardware peculiar to a device. Used in combination with an in-circuit emulator.	
NP-36GS ^{Note 4}	Board used to connect the in-circuit emulator to the target system. For a 30-pin plastic shrink SOP (GS, MC-5A4 type), used in combination with NGS-30.	
NGS-30 ^{Note 4} Conversion socket	Conversion socket used to connect the NP-36GS to the target system board designed to mount a 30-pin plastic shrink SOP (GS, MC-5A4 type).	

Notes 1. PC-9800 series (MS-DOS™ + Windows™) based

- 2. IBM PC/AT or compatibles (Japanese/English Windows) based
- **3.** HP9000 series 700[™] (HP-UX[™]), SPARCstation[™] (SunOS[™], Solaris[™]), or NEWS[™] (NEWS-OS[™]) based.
- **4.** Products made by Naito Densei Machida Mfg. Co., Ltd. (Phone: +81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.
- 5. Under development

Remark RA78K0S, CC78K0S, and SM78K0S are used in combination with the DF789136.

Debugging Tools (2/2)


SM78K0S ^{Notes 1, 2}	System simulator common to 78K/0S Series	
ID78K0S-NS ^{Notes 1, 2}	Integrated debugger common to 78K/0S Series	
DF789136 ^{Notes 1, 2}	Device file for μPD789104, 789114 Subseries	

Real-time OS

MX78K0S ^{Notes 1, 2}	OS for 78K/0S Series
Wir Ci Co C	30 101 701 400 Contac

Notes 1. PC-9800 series (MS-DOS + Windows) based.

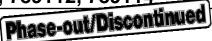
2. IBM PC/AT or compatibles (Japanese/English Windows) based.

* APPENDIX B RELATED DOCUMENTS

Documents Related to Devices

Dogwyr art Nama	Document No.	
Document Name	Japanese	English
μPD789101, 789102, 789104, 789111, 789112, 789114 Data Sheet	U12815J	This manual
μPD78F9116 Data Sheet	U13037J	U13037E
μPD789104, 789114, 789124, 789134 Subseries User's Manual	U13045J	U13045E
78K/0S Series User's Manual Instruction	U11047J	U11047E

Documents Related to Development Tools (User's Manuals)


Document Name		Document No.	
		Japanese	English
RA78K0S Assembler Package	Operation	U11622J	U11622E
	Assembly Language	U11599J	U11599E
	Structured Assembly Language	U11623J	U11623E
CC78K0S C Compiler	Operation	U11816J	U11816E
	Language	U11817J	U11817E
SM78K0S System Simulator Windows Based	Reference	U11489J	U11489E
SM78K Series System Simulator	External Parts User Open Interface Specifications	U10092J	U10092E
ID78K0S-NS Integrated Debugger Windows Based	Reference	U12901J	U12901E
IE-78K0S-NS In-circuit Emulator		U13549J	U13549E
IE-789136-NS-EM1 Emulation Board		To be prepared	To be prepared

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		Japanese	English
78K/0S Series OS MX78K0S Fundamental		U12938J	U12938E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Other Related Documents

Document Name	Document No.	
	Japanese	English
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Microcomputer-Related Products by Third Party	U11416J	_

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

μPD789101, 789102, 789104, 789111, 789112, 789114


Phase-out/Discontinued

NEC

[MEMO]

Phase-out/Discontinued

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM is a trademark of NEC Corporation.

MS-DOS and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of SONY Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8