Surface Mount, Separate Excitation Step-down Switching Mode

■Features

- Surface-mount 16 pin package
- Output current: 3.0A
- High efficiency: 91% (at VIN = 10V, Io = 1A, Vo = 5V)
- Capable of downsizing a choke-coil due to IC's high switching frequency (125kHz). (Compared with conventional Sanken devices)
- The output-voltage-variable type can vary its output voltage from 1V to 14V because of its low reference voltage (Vref) of 1V.
- Wide Input Voltage Range (8 to 50V)
- Output ON/OFF available
- Built-in overcurrent and thermal protection circuits

■Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
DC Input Voltage	Vin	53	V
Power Dissipation	P _D *1, *2	2.4	W
Junction Temperature	Tj	+125	°C
Storage Temperature	Tstg	-40 to +125	°C
Thermal Resistance (junction to case)	θj-c*2	18	°C/W
Thermal Resistance (junction to ambient air)	θ_{j-a}^{*2}	50	°C/W

^{*1:} Limited due to thermal protection.

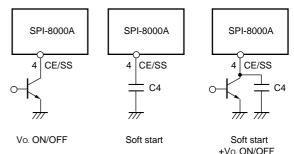
■Applications

- Onboard local power supplies
- OA equipment
- For stabilization of the secondary-side output voltage of switching power supplies

■Recommended Operating Conditions

 Wide Input Voltage Range (8 to 50V) 					
 Output ON/OFF available 			È		
Built-in overcurrent and thermal protectic circuits	tion				
■Applications					
Onboard local power supplies					
OA equipment					
For stabilization of the secondary-side	output voltage of switchin	a nower cumplice			
- 1 of stabilization of the secondary-side	output voltage of switching	g power supplies			
■Recommended Operating		g power supplies			
■Recommended Operating	Conditions	Ratings	Unit		
■Recommended Operating Parameter	Conditions	Ratings SPI-8010A	Unit		
Parameter DC Input Voltage Range	Conditions Symbol VIN	Ratings SPI-8010A (8 or Vo+3) 1 to 50	V		
■Recommended Operating Parameter	Conditions	Ratings SPI-8010A			
Parameter DC Input Voltage Range	Conditions Symbol VIN	Ratings SPI-8010A (8 or Vo+3) 1 to 50	V		
Parameter DC Input Voltage Range Output Voltage Range	Conditions Symbol VIN Vo	Ratings SPI-8010A (8 or Vo+3) ¹¹ to 50 1 to 14	V		

^{*1:} The minimum value of an input voltage range is the higher of either 8V or Vo+3V.

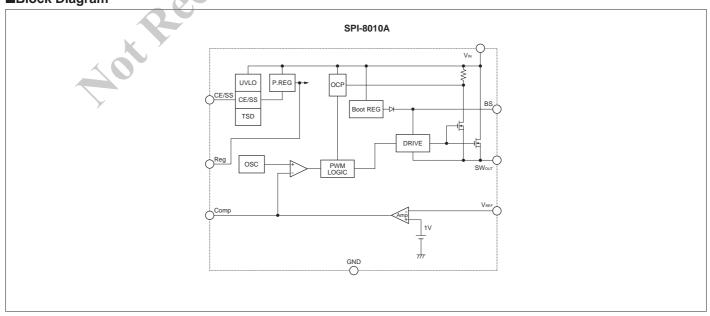

■Electrical Characteristics

(Ta=25°C)

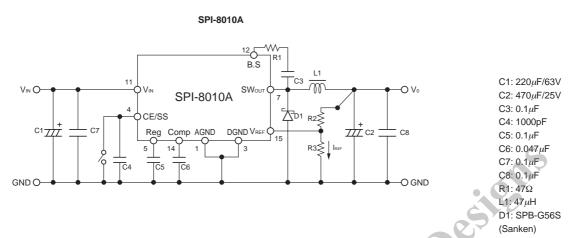
Parameter			Rating				
		Symbol	SPI-8010A (Variable type)			Unit	
	min.		typ.	max.			
Defense Vallens	VREF	0.97	1.00	1.03	V		
Reference Voltage		Conditions		Vin=12V, lo=1A			
Efficiency		Eff		86			
	Conditions		VIN=20V, Io=1A, Vo=5V		%		
Oscillation Fragueses	Fosc	,	250		111		
Oscillation Frequency		Conditions		VIN=12V, Io=1A		kHz	
Line Regulation	ΔVOLINE		20	40			
Line Regulation		Conditions		VIN=10 to 30V, Io=1A		mV	
Load Regulation		ΔVOLOAD		10	30	mV	
		Conditions		Vin=12V, Io=0.1 to 1.5A		mv	
Temperature Co Reference Volta		ΔVREF/ΔTa		±0.5		mV/°C	
Overcurrent Protection Starting Current		Is	3.1			А	
		Conditions		V _{IN} =12V			
Quiescent Circuit Current		_ lq		7		^	
		Conditions		VIN=12V, Io=0A		mA	
Circuit Current at Output OFF		Iq(off)			400	Δ.	
		Conditions		Vin=12V, Von/off=0.3V		μΑ	
CE/SS -	Low Level Voltage	Vssl			0.5	V	
	Outflow Current at	Issl			50	μΑ	
	Low Voltage	Conditions		Vssl=0V			

Pin 4 is the CE/SS pin. Soft start at power on can be performed with a capacitor connected to this pin. The output can also be turned ON/OFF with this pin. The output is stopped by setting the voltage of this pin to VssL or lower. CE/SS-pin voltage can be changed with an opencollector drive circuit of a transistor. When using both the soft-start and ON/OFF functions together, the discharge current from C4 flows into the ON/OFF control transistor. Therefore, limit the current securely to protect the transistor if C3 capacitance is large.

The CE/SS pin is pulled up to the power supply in the IC, so applying the external voltage is prohibited.



^{*2:} When mounted on glass-epoxy board 700cm2 (copper laminate area 30.8cm2).


^{*2:} Please be sure to let the output current run more than 20 mA. When using by less than 20 mA, there is a possibility that the output voltage becomes unstable.

■External Dimensions (HSOP16) (Unit:mm) 1+0.1/-0.05 (Heatsink thickness) 10.5±0.2 10.5 ± 0.3 0.25+0.15/-0.05 Pin Assignment 1.AGND 2.N.C S 0.10 3.DGND 12.2±0.2 4.CE/SS (Gate remains: Not included in dimensions) 5.Reg 6.N.C (11) 7.SWout 8.N.C 9.N.C 10.N.C 11.VIN 12.B.S 13.N.C 14.Comp 15.VREF 16.N.C Product Mass : Approx 0.86g 1.27±0.25

■Block Diagram

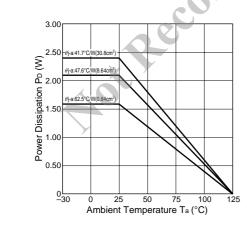
■Typical Connection Diagram

Diode D₁

 Be sure to use a Schottky-barrier diode for D1. If other diodes like fast recovery diodes are used, ICs may be destroyed because of the reverse voltage generated by the recovery voltage or ON voltage.

Choke coil L1

- If the winding resistance of the choke coil is too high, the efficiency may drop below the rated value.
- As the overcurrent protection starting current is about 4.5A, take care concerning heat radiation from the choke coil caused by magnetic saturation due to overload or short-circuited load.


Capacitors C₁, C₂

- As large ripple currents flow through C₁ and C₂, use high-frequency and low-impedance capacitors aiming for switching-mode-power-supply use. Especially when the impedance of C₂ is high, the switching waveform may become abnormal at low temperatures. For C₂, do not use a capacitor with an extremely low equivalent series resistance (ESR) such as an OS capacitor or a tantalum capacitor, which may cause an abnormal oscillation.
- $\bullet \ \ R_2 \ and \ R_3 \ are \ the \ resistors \ to \ set \ the \ output \ voltage. \ Set \ their \ values \ so \ that \ I_{REF} \ becomes \ approx. \ 2mA. \ Obtain \ R_2 \ and \ R_3 \ values \ by \ the \ following \ formula:$

$$R2 = \frac{(Vout-Vref)}{Iref} = \frac{(Vout-1)}{2\times 10^{-3}}(\Omega), \ R3 = \frac{Vref}{Iref} = \frac{1}{2\times 10^{-3}} = 500(\Omega)$$

To create the optimum operating conditions, place the components as close as possible to each other.

■Ta-Pp Characteristics

$$P_D = V_O \bullet I_O \left(\frac{100}{\eta \chi} - 1\right) - V_F \bullet I_O \left(1 - \frac{V_O}{V_{IN}}\right)$$

Note 1: The efficiency depends on the input voltage and the output current. Therefore, obtain the value from the efficiency graph and substitute the percentage in the formula above.

Note 2: Thermal design for D₁ must be considered separately.

Vo : Output voltage
Vin : Input voltage
Io : Output current
ηχ : Efficiency (%)
VF : Diode D1 forward voltage

F: Diode D₁ forward voltage SPB-G56S···0.4V(Io=2A)