ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

JFETs - General Purpose

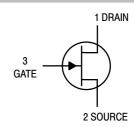
N-Channel – Depletion

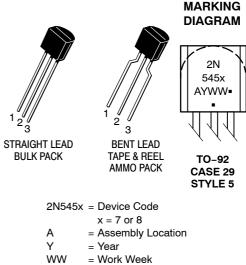
N-Channel Junction Field Effect Transistors, depletion mode (Type A) designed for audio and switching applications.

Features

- N-Channel for Higher Gain
- Drain and Source Interchangeable
- High AC Input Impedance
- High DC Input Resistance
- Low Transfer and Input Capacitance
- Low Cross-Modulation and Intermodulation Distortion
- Plastic Encapsulated Package
- Pb-Free Packages are Available*

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain-Gate Voltage	V _{DG}	25	Vdc
Reverse Gate – Source Voltage	V _{GSR}	-25	Vdc
Gate Current	l _G	10	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	310 2.82	mW mW/°C
Operating Junction Temperature	ТJ	135	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

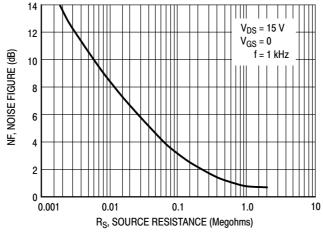
http://onsemi.com

= Pb-Free Package

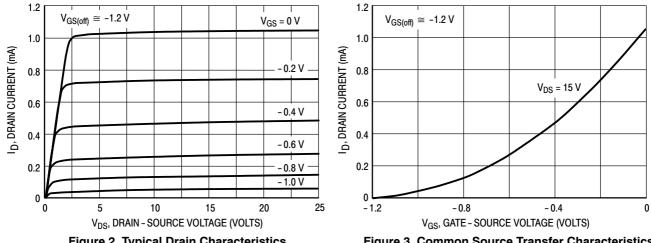
(Note: Microdot may be in either location)

ORDERING INFORMATION

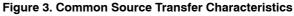
Device	Package	Shipping
	·	
2N5457	TO-92	1000 Units/Box
2N5457G	TO-92 (Pb-Free)	1000 Units/Box
2N5458	TO-92	1000 Units/Box
2N5458G	TO-92 (Pb-Free)	1000 Units/Box


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						•
Gate – Source Breakdown Voltage $(I_G = -10 \ \mu Adc, V_{DS} = 0)$		V _{(BR)GSS}	-25	_	_	Vdc
$ \begin{array}{l} \mbox{Gate Reverse Current} \\ (V_{GS} = -15 \mbox{ Vdc}, V_{DS} = 0) \\ (V_{GS} = -15 \mbox{ Vdc}, V_{DS} = 0, \mbox{ T}_A = 100^{\circ}\mbox{C}) \end{array} $		I _{GSS}			- 1.0 -200	nAdc
Gate-Source Cutoff Voltage (V _{DS} = 15 Vdc, i _D = 10 nAdc)	2N5457 2N5458	V _{GS(off)}	-0.5 -1.0		-6.0 -7.0	Vdc
$\begin{array}{l} \mbox{Gate-Source Voltage} \\ (V_{DS} = 15 \mbox{ Vdc}, i_D = 100 \mu\mbox{Adc}) \\ (V_{DS} = 15 \mbox{ Vdc}, i_D = 200 \mu\mbox{Adc}) \end{array}$	2N5457 2N5458	V _{GS}		-2.5 -3.5		Vdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current (Note 1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	2N5457 2N5458	I _{DSS}	1.0 2.0	3.0 6.0	5.0 9.0	mAdc
DYNAMIC CHARACTERISTICS						
Forward Transfer Admittance (Note 1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ kHz})$	2N5457 2N5458	Y _{fs}	1000 1500	3000 4000	5000 5500	μmhos
Output Admittance Common Source (Note 1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ kHz})$		Y _{os}	_	10	50	μmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1 kHz)		C _{iss}	_	4.5	7.0	pF
Reverse Transfer Capacitance $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ kHz})$		C _{rss}	_	1.5	3.0	pF
Dulas Width < 620 ma. Duty Ovala < 10%						

1. Pulse Width \leq 630 ms, Duty Cycle \leq 10%.



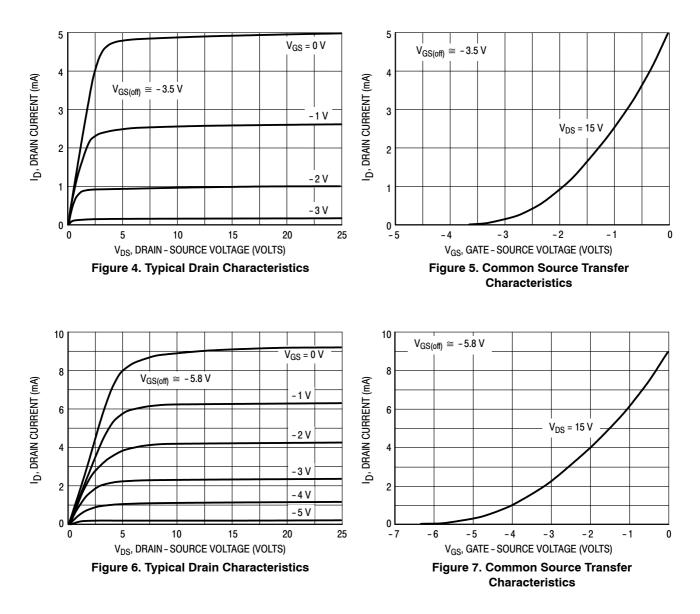
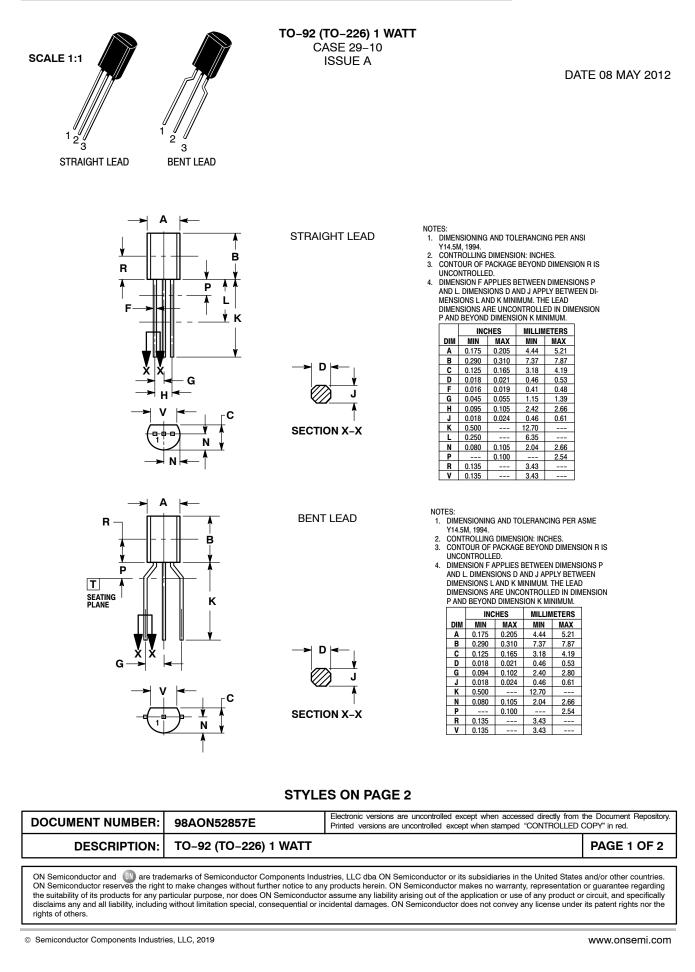


Figure 2. Typical Drain Characteristics


TYPICAL CHARACTERISTICS For 2N5457 Only

NOTE: Note: Graphical data is presented for dc conditions. Tabular data is given for pulsed conditions (Pulse Width = 630 ms, Duty Cycle = 10%). Under dc conditions, self heating in higher I_{DSS} units reduces I_{DSS}.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE A

DATE 08 MAY 2012

	EMITTER BASE COLLECTOR								
	GATE SOURCE & SUBSTRATE DRAIN								
STYLE 11: PIN 1. 2. 3.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 Gate Main Terminal 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
STYLE 21: PIN 1. 2. 3.	COLLECTOR EMITTER BASE	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	Emitter Collector/Anode Cathode	STYLE 25: PIN 1. 2. 3.	MT 1 GATE MT 2
STYLE 26: PIN 1. 2. 3.	V _{CC} GROUND 2 OUTPUT	STYLE 27: PIN 1. 2. 3.	MT SUBSTRATE MT	STYLE 28: PIN 1. 2. 3.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	STYLE 30: PIN 1. 2. 3.	DRAIN GATE SOURCE
STYLE 31: PIN 1. 2. 3.	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	input Ground Logic	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2			
ON Carries dusta and Mass to damaging of Carries dusta. Company to Industrias II Carlos ON Carries advector or its subsidiaries in the United States and/or other countries						

ON Semiconductor and us are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative