

Ph. 480-503-4295 | NOPP@FocusLCD.com

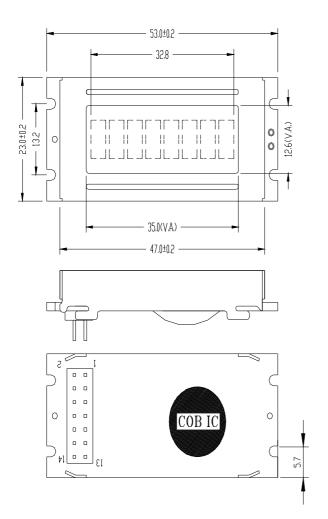
TFT | CHARACTER | UWVD | FSC | SEGMENT | CUSTOM | REPLACEMENT

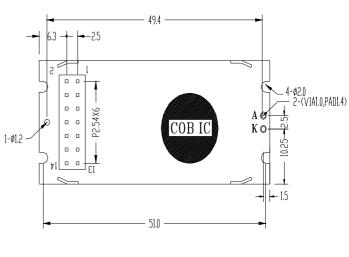
Character Display Module

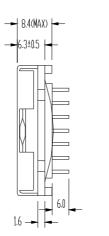
Part Number

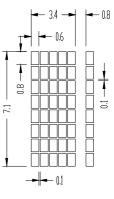
C81BXBSYSY6WT33XAA

Overview

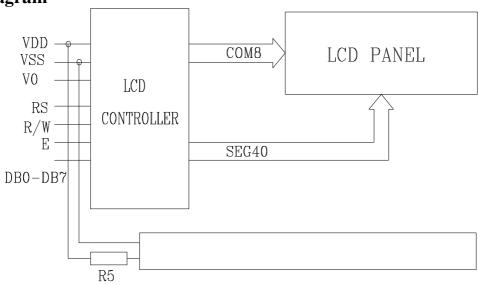

Character: 8x1(53x23), STN, Yellow/ Green background, Yellow/Green Edge lit, Bottom view, Wide temp, Transflective (positive), 3.3V LCD, 3.3V LED, Controller=ST7066U, RoHS Compliant




1.Features

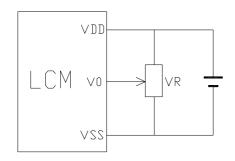

- 1. 5x8 dots
- 2. Built-in controller (ST7066U-0A or equivalent)
- 3. +3.3V power supply
- Display Mode: STN (Yellow-Green), Transflective
- 5. Viewing agnle: 6:00 O' clock
- 6. Parallel interface input
- 7. 1/8 duty
- 8. LED sidelight: Yellow-Green
- 9. 8x1 character

2. Outline dimension


UNIT:mm

3. Absolute maximum ratings

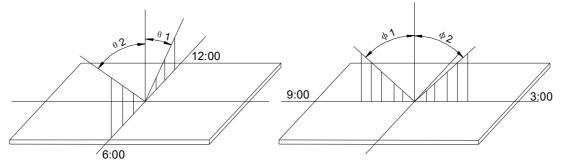
Item	Symbol		Standard		Unit
Power voltage	V_{DD} - V_{SS}	-0.3	-	7.0	17
Input voltage	VIN	-0.3	-	VDD+0.3	V
Operating temperature range	Тор	-20	-	+70	°C
Storage temperature range	Tst	-30	-	+80	C


4.Block diagram

5.Interface pin description

·iiiicoi iu	ce pili deser	ipuon						
Pin no.	Symbol	External connection	Function					
1	$ m V_{SS}$		Signal ground for LCM (GND)					
2	$V_{ m DD}$	Power supply	Power supply for logic (+3.3V) for LCM					
3	V_0		Contrast adjust					
4	RS	MPU	Register select signal					
5	R/W	MPU	Read/write select signal					
6	Е	MPU	Operation (data read/write) enable signal					
7~10	DB0~DB3	MPU	Four low order bi-directional three-state data bus lines. Used for data transfer between the MPU and the LCM. These four are not used during 4-bit operation.					
11~14	DB4~DB7	MPU	Four high order bi-directional three-state data bus lines. Used for data transfer between the MPU					

6.Contrast adjust



 $V_{DD^{\sim}}V_0$: LCD Driving voltage

VR: 10k~20k

7. Optical characteristics

STN type display module (Ta=25℃, VDD=3.3V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
	θ 1			20			
Viowing angle	θ 2	Cr≥3		40		dog	
Viewing angle	Ф1	Or > 3		35		deg	
	Ф2			35			
Contrast ratio	Cr		-	10	-	-	
Response time (rise)	Tr	-	-	200	250	me	
Response time (fall)	Tr	-	-	300	350	ms	

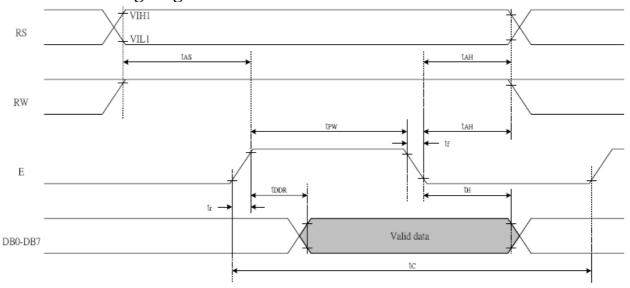
8. Electrical characteristics

LED Backlight circuit (color: Yellow-Green)

LED ratings

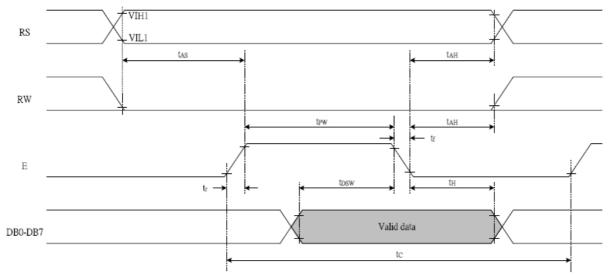
Item	Symbol	Min	Тур.	Max	Unit
Forward Voltage	VF	2.8	3.0	3.2	V
Forward current	lf		11	15	mA
Power	Р			50	mW
Peak wave length	λр	565	-	575	nm
Luminance	Lv		60		Cd/m2

DC characteristics


Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage for LCD	V_{DD} - V_0	Ta =25℃	-	-	3.3	V
Input voltage	$V_{ m DD}$		3.0	3.3	3.5	
Supply current	Idd	Ta=25°C, V _{DD} =5.0V	-	1.0	1.5	mA
Input leakage current	Ilkg		-1	-	1.0	uA
"H" level input voltage	V_{IH}		$0.7V_{\mathrm{DD}}$	-	V_{DD}	
"L" level input voltage	VIL	Twice initial value or less	-0.3	-	0.6	
"H" level output voltage	Voh	LOH=-0.1mA	3.9	-	V_{DD}	V
"L" level output voltage	Vol	LOH=0.1mA	-	-	0.4	
Supply voltage for LED			-	3.3	-	
Supply current for LED		R5=27 ohm	-	11	-	mA

Read cycle (Ta=25°C, VDD=2.7V)

Parameter	Symbol	Test pin	Min.	Тур.	Max.	Unit
Enable cycle time	tc		1200	-	-	
Enable pulse width	$t_{ m pw}$	Е	480	-	-	
Enable rise/fall time	tr, tf		-	-	25	
Address setup time	tas	RS; R/W,E	0	-	-	ns
Address hold time	t ah	RS; R/W,E	10	-	-	
Data setup delay	t ddr	DB0~DB7	-	-	320	
Data hold time	t h	DB0~DB7	10	-	-	


Read mode timing diagram

Write cycle (Ta=25°C, VDD=2.7V)

Parameter	Symbol	Test pin	Min.	Typ.	Max.	Unit
Enable cycle time	tc		1200	-	-	
Enable pulse width	$t_{ m pw}$	Е	460	-	-	
Enable rise/fall time	tr, tf		-	-	25	
Address setup time	tas	RS; R/W,E	0	-	-	ns
Address hold time	tah	RS; R/W,E	10	-	-	
Data setup delay	tdsw	DB0~DB7	80	-	-	
Data hold time	t h	DDU~DD/	10	-	-	

Write mode timing diagram

9. FUNCTION DESCRIPTION

System Interface

This chip has all two kinds of interface type with MPU: 4-bit bus and 8-bit bus. 4-bit bus and 8-bit bus is selected by DL bit in the instruction register.

Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not high.

Address Counter (AC)

Address Counter (AC) stores DDRAM/CGRAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0 - DB6 ports.

Display Data RAM (DDRAM)

DDRAM stores display data of maximum 80 x 8 bits (80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number.

Display position	1	2	3	4	5	6	7	8
DDRAM address	00	01	02	03	04	05	06	07

CGROM (Character Generator ROM)

CGROM has a 5×8 dots 204 characters pattern and a 5×10 dots 32 characters pattern. CGROM has 204 character patterns of 5×8 dots.

CGRAM (Character Generator RAM)

CGRAM has up to 5×8 dot, 8 characters. By writing font data to CGRAM, user defined characters can be used.

	(ha	rac	te	r C	ode	е			(CGF	RAN	Л			Ch	ara	cte	r Pa	atte	rns	;				
		(DE)R/	٩M	Da	ıta)			Address						(CG	RA	M E)ata	a)						
b8	b7	b6	b5	b4	b3	b2	b1	b0	b5	b4	b3	b2	b1	b0	b7	b6	b5	b4	b3	b2	b1	b0				
						0	0	0				0	0	0				1	1	1	1	1				
l						0	0	0				0	0	1				0	0	1	0	0				
l						0	0	0				0	1	0				0	0	1	0	0				
0	0	0	0	0		0	0	0	0	0	0	0	1	1				0	0	1	0	0				
ľ	U	۰	U	U	-	0	0	0	U	١٠١] ٽ [ٽ	1	0	0	-	-	-	0	0	1	0	0				
						0	0	0				1	0	1]			0	0	1	0	0				
						0	0	0				1	1	0				0	0	1	0	0				
						0	0	0				1	1	1				0	0	0	0	0				
						0	0	1				0	0	0				1	1	1	1	0				
						0	0	1				0	0	1]			1	0	0	0	1				
						0	0	1				0	1	0]			1	0	0	0	1				
0	0	0	0	0		0	0	1	0	0	1	0	1	1				1	1	1	1	0				
ľ	U	۰	U	U	-	0	0	1	U	U	'	1	0	0	-	-	-	1	0	1	0	0				
						0	0	1				1	0	1				1	0	0	1	0				
						0	0	1								1	1	0				1	0	0	0	1
						0	0	1				1	1	1				0	0	0	0	0				

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data) Notes:

- 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types).
- 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor

display position, at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor presence.

- 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
- 4. As shown Table, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H
- 5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.
- "-": Indicates no effect.

Cursor/Blink Control Circuit

It controls cursor/blink ON/OFF at cursor position.

10.Instruction description

Outline

To overcome the speed difference between the internal clock of ST7066U and the MPU clock, ST7066U performs internal operations by storing control in formations to IR or DR. The internal operation is determined according to the signal from MPU, composed of read/write and data bus (Refer to Table7). Instructions can be divided largely into four groups:

- 1) ST7066U function set instructions (set display methods, set data length, etc.)
- 2) Address set instructions to internal RAM
- 3) Data transfer instructions with internal RAM
- 4) Others

The address of the internal RAM is automatically increased or decreased by 1.

Note: during internal operation, busy flag (DB7) is read "High".

Busy flag check must be preceded by the next instruction.

Instruction Table

Ilisti uctio				Ins	struct	ion co	de					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRA and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" From AC and return cursor to Its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction And blinking of entire display	39us
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and Blinking of cursor (B) on/off Control bit.	
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display Shift control bit, and the Direction, without changing of DDRAM data.	39us
Function set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-Bit/4-bit), numbers of display Line (N: =2-line/1-line) and, Display font type (F: 5x11/5x8)	39us
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address Counter.	39us
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address Counter.	39us
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal Operation or not can be known By reading BF. The contents of Address counter can also be read.	Ous
Write data to Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43us
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43us

NOTE: When an MPU program with checking the busy flag (DB7) is made, it must be necessary 1/2fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the busy flag (DB7) goes to "Low".

Contents

1) Clear display

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter).

Return cursor to the original status, namely, bring the cursor to the left edge on the fist line of the display.

Make the entry mode increment (I/D="High").

2) Return home

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	-

Return home is cursor return home instruction.

Set DDRAM address to "00H" into the address counter.

Return cursor to its original site and return display to its original status, if shifted.

Contents of DDRAM does not change.

Set the moving direction of cursor and display.

I/D: increment / decrement of DDRAM address (cursor or blink)

When I/D="high", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D="Low", cursor/blink moves to left and DDRAM address is increased by 1.

*CGRAM operates the same way as DDRAM, when reading from or writing to CGRAM.

SH: shift of entire display

When DDRAM read (CGRAM read/write) operation or SH="Low", shifting of entire display is not performed. If SH ="High" and DDRAM write operation, shift of entire display is performed according to I/D value. (I/D="high". shift left, I/D="Low". Shift right).

4) Display ON/OFF control

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	C	В

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit

When D="High", entire display is turned on.

When D="Low", display is turned off, but display data remains in DDRAM.

C: cursor ON/OFF control bit

When D="High", cursor is turned on.

When D="Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor blink ON/OFF control bit

When B="High", cursor blink is on, which performs alternately between all the "High" data and display characters at the cursor position.

When B="Low", blink is off.

5) Cursor or display shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

9

www.FocusLCDs.com

Shifting of right/left cursor position or display without writing or reading of display data.

This instruction is used to correct or search display data.

During 2-line mode display, cursor moves to the 2nd line after the 40th digit of the 1st line.

Note that display shift is performed simultaneously in all the lines.

When display data is shifted repeatedly, each line is shifted individually.

When display shift is performed, the contents of the address counter are not changed.

Shift patterns according to S/C and R/L bits

S/C	R/L	Operation					
0	0	Shift cursor to the left, AC is decreased by 1					
0	0 1 Shift cursor to the right, AC is increased by 1						
1	0	Shift all the display to the left, cursor moves according to the display					
1 Shift all the display to the right, cursor moves according to the display							

6) Function set

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	-	-

DL: Interface data length control bit

When DL="High", it means 8-bit bus mode with MPU.

When DL="Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-but bus mode, it needs to transfer 4-bit data twice.

N: Display line number control bit

When N="Low", 1-line display mode is set.

When N="High", 2-line display mode is set.

F: Display line number control bit

When F="Low", 5x8 dots format display mode is set.

When F="High", 5x11 dots format display mode.

7) Set CGRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

Set CGRAM address to AC.

The instruction makes CGRAM data available from MPU.

8) Set DDRAM address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available form MPU.

When 1-line display mode (N=LOW), DDRAM address is form "00H" to "4FH". In 2-line display mode (N=High), DDRAM address in the 1st line form "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

9) Read busy flag & address

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether ST7066U is in internal operation or not.

If the resultant BF is "High", internal operation is in progress and should wait BF is to be LOW, which by then the nest instruction can be performed. In this instruction you can also read the value of the address counter.

10) Write data to RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM.

The selection of RAM from DDRAM, and CGRAM, is set by the previous address set instruction (DDRAM address set, CGRAM address set).

RAM set instruction can also determine the AC direction to RAM.

After write operation. The address is automatically increased/decreased by 1, according to the entry mode.

11) Read data from RAM

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM.

The selection of RAM is set by the previous address set instruction. If the address set instruction of RAM is not performed before this instruction, the data that has been read first is invalid, as the direction of AC is not yet determined. If RAM data is read several times without RAM address instructions set before, read operation, the correct RAM data can be obtained from the second. But the first data would be incorrect, as there is no time margin to transfer RAM data.

In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction, it also transfers RAM data to output data register.

After read operation, address counter is automatically increased/decreased by 1 according to the entry mode.

After CGRAM read operation, display shift may not be executed correctly.

NOTE: In case of RAM write operation, AC is increased/decreased by 1 as in read operation.

At this time, AC indicates next address position, but only the previous data can be read by the read instruction.

Standard character pattern

Standa	ira c	narac	eter p	atter	'n											
Upper 4bit Lower 4bit	LLLL	ши	LLHL	шнн	LHLL	LHLH	LHHL	гннн	нш	нілн	ні.ні.	нгнн	нны	н.пн	нннг	нннн
LIII	CG RAM (1)							00100								
LLLH	(2)															
LLHL	(3)														EE 38E	
ггин	(4)								66366 66366 66366							
LHLL	(5)															
LHLH	(6)							00300								
LHHL	(7)															
rinni	(8)															
HLLL	(1)															
HILH	(2)															E38E3
шш	(3)															
10.101	(4)															
HHLL	(5)															E38E3
ннгн	(6)															
нинь	(7)															
шин	(8)												30010			