High Power LED Series Chip Scale Package

Use of Samsung's Chip Scale Package technology provide high performance and energy conserving

Features & Benefits

- Utilizes Samsung TF chip technology
- Suitable for use in indoor and outdoor lighting
- Operates at a maximum current of up to 1.4 A
- Compact footprint (2.36 x 2.36 mm)

Applications

- Indoor Lighting: Spotlight, Downlight, MR, PAR
- Outdoor Lighting: Street Light, Tunnel Light, Security Light, Parking Lot Light
- Industrial Lighting: High Bay Light, Low Bay Light
- Consumer Lighting: Torch Light

Table of Contents

1.	Characteristics	 3
2.	Product Code Information	 6
3.	Typical Characteristics Graphs	 11
4.	Outline Drawing & Dimension	 13
5.	Reliability Test Items & Conditions	 14
6.	Soldering Conditions	 15
7.	Tape & Reel	 16
8.	Label Structure	 18
9.	Packing Structure	 19
10.	Precautions in Handling & Use	 21

SAMSUNG

2

1. Characteristics

a) Absolute Maximum Rating

ltem	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	-40 ~ +100	°C	Note 1)
Storage Temperature	T _{stg}	-40 ~ +125	δC	-
LED Junction Temperature	Tj	135	δC	-
Forward Current	lF	1400	mA	Note 1)
Peak Pulse Forward Current	I _{FP}	2000	mA	Duty 1/10 pulse width 10ms
Assembly Process Temperature	-	260 <10	⁰C S	-
ESD (HBM)	-	±2	kV	-

Note:

1) Refer to the derating curve, '3. Typical Characteristics Graph', for proper driving current that maintained below maximum junction temperature.

b) Electro-optical Characteristics

ltem	L Init	Nominal CCT	Conc	Value	
	Onit	(K)	I⊧ (mA)	T _j (°C)	Тур.
			350	25	168
			350	85	152
Luminous Flux (Φ_v)	lm	3500 (80 CRI)	700	85	283
			1000	85	381
			1400	85	492
			350	25	2.92
			350	85	2.82
Forward Voltage (V_F)	V		700	85	2.97
			1000	85	3.08
			1400	85	3.20
Thermal Resistance (junction to solder point)	K/W				2
Beam Angle	Q				120

Note:

Samsung maintains measurement tolerance of: luminous flux = $\pm 7\%$, forward voltage = ± 0.1 V

c) Luminous Flux Characteristics $(T_s = 85 \ ^{\circ}C)$

	Sorting @ 350 mA (lm)			Calculated Minimum Flux ²⁾ (lm)					
Flux Rank	Flux Range ¹⁾	Sub Rank	@ 350 mA	@ 700 mA	@ 1050 mA	@ 1500 mA			
E3	80 ~ 110	E1, F1, G1	80	149	200	259			
F3	90 ~ 120	F1, G1, H1	90	167	226	291			
G3	100 ~ 130	G1, H1, J1	100	186	251	324			
НЗ	110 ~ 140	H1, J1, K1	110	205	276	356			
J3	120 ~ 150	J1, K1, M1	120	223	301	388			
K3	130 ~ 160	K1, M1, N1	130	242	326	421			
МЗ	140 ~ 170	M1, N1, P1	140	260	351	453			
N3	150 ~ 180	N1, P1, Q1	150	279	376	485			
P3	160 ~ 190	P1, Q1, R1	160	298	401	518			
Q3	170 ~ 200	Q1, R1, S1	170	316	426	550			
R3	180 ~ 210	R1, S1, T1	180	335	451	582			
S3	190 ~ 220	S1, T1, U1	190	353	476	615			
ТЗ	200 ~ 230	T1, U1, V1	200	372	501	647			
U3	210 ~ 240	U1, V1, W1	210	391	526	679			
V3	220 ~ 250	V1, W1, X1	220	409	551	712			
W3	230 ~ 260	W1, X1, Y1	230	428	576	744			
X3	240 ~ 270	X1, Y1, Z1	240	446	601	776			
Y3	250 ~ 280	Y1, Z1, 11	250	465	627	809			
Z3	260 ~ 290	Z1, 11, 21	260	484	652	841			

Notes:

1) Samsung maintains measurement tolerance of: luminous flux = ± 7 %, CRI = ± 3

2) Calculated minimum flux values are for reference only

2. Product Code Information

1	2	<u>3</u>	4	5	<u>6</u>	7	8	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	13	14	15	16	17	18
S	С	Р	8	U	т	F	1	н	E	L	1	U	K	M	3	4	E
Di	git		PKG Information			Code					S	pecificati	on				
1 2	2 3	Sams	ung Chip	Scale Pa	ickage	SCP 7	CBI 70										
4			C	RI		8	CRI 80										
			0	1.11		9	CRI 90										
						W	2700K										
						v	3000K										
						U	3500K										
5			CC	T(K)		т	4000K										
			R	5000K													
						Q	5700K										
					Р	6500K											
6			Chip	Shape		т	Square	type									
78	39		Pro	duct		F1H	Chip ve	rsion									
10 1	1 12		Product	Purpose		EL1	FEC for	lighting									
						W	2700K										
						V	3000K										
						U	3500K										
13			CC	Г (К)		Т	4000K										
						R	5000K										
						Q	5700K										
						ĸ	Eulle	Din for Ma	A dam F	Stop							
14			MacAda	am Step						Step							
						50		sin for Ivia	CAdam 3	-Step							
						G3	100-130		G1	100-110	E3						
						НЗ	110- 140		H1	110- 120		G3					
						J 3	120- 150		J1	120- 130)		НЗ				
						К 3	130~160		K1	130~140)		J	3			
						М 3	140~170		M1	140~150)			К 3			
15	16		Lumino	us Flux		N 3	150~180		N1	150~160)				М 3		
			P 3	160~190		P1	160~170)					N 3				
						Q 3	170~200		Q1	170~180						P	3
																	Gr 5
							Digit 15	: Min. spe	ec.								
						Digit 16	The nun	nber of hig	gher bin(s	s) from m	in. spec.						
							e.g.: K1	= 130~14	40 lm, K	3 = 130~	160 lm						
17	18	F	orward V	oltage (V	f)	4 E	2.7 ~	3.1 V									

a) Luminous Flux Bins (IF = 350 mA, Ts = 85 $^{\circ}$ C)

CRI/		Flux rank											
Nomina	al CCT (K)	Eı	Fı	Gı	Hı	Jı	Kı	Мı	Nı	Pı	Qı	Rı	Sı
	(min. flux)	80	90	100	110	120	130	140	150	160	170	180	190
	2700							SCP7W	TF1HEL1W	/ <i>◇M34E</i>			
	3000								SCP7V	TF1HEL1V	<i>⇔</i> N34E		
	3500								SCP7L	SCP7UTF1HEL1U�N34E			
70	4000									SCP7TTF1HEL1T¢P34E		⊘P34E	
	5000									SCP7RTF1HEL1R <i>\$</i> P34E		<i>⊘</i> P34E	
	5700									SCP7QTF1HEL1Q <i>\$</i> P34E		⊘P34E	
	6500								SCP7F	PTF1HEL1P�N34E			
	2700						SCP8W	TF1HEL1W	′ <i>⇔</i> K34E				
	3000						SCP8V	/TF1HEL1V <i>\$</i> K34E					
	3500							SCP8UTF1HEL1U�M34E					
80	4000							SCP8T	TF1HEL1T	<i>⇔</i> M34E			
	5000								SCP8F	TF1HEL1R	<i>⇔</i> N34E		
	5700								SCP8G	TF1HEL1Q	<i>⇔</i> N34E		
	6500							SCP8P	TF1HEL1P	<i>◇M34E</i>			
	2700			SCP9W	TF1HEL1W	/◇G34E							
	3000			SCP9V	TF1HEL1V	<i>⇔G34E</i>							
90	3500				SCP9U	ITF1HEL1U	<i>⇔</i> H34E						
	4000				SCP9T	TF1HEL1T	<i>⇔</i> H34E						
	5000				SCP9R	TF1HEL1R	<i>⇔</i> H34E						

Notes:

1) \bigcirc : MacAdam step code, K(MacAdam 5-step) / U(MacAdam 3-step)

b) Color Bins (I_F = 350 mA, T_s= 85 $^{\circ}$ C)

Nominal CCT (K)	CRI (R₂)	Color Rank	Chromaticity Bins
2700, 3000, 3500, 4000, 5000, 5700, 6500	70		
2700, 3000, 3500, 4000, 5000, 5700, 6500	80	K (Full Bin for MacAdam 5-step) U (Full Bin for MacAdam 3-step)	☆K ☆U
2700, 3000, 3500,4000,5000	90		

Notes:

1) 🕆 : Nominal CCT code, W(2700K)/V(3000K)/U(3500K)/T(4000K)/R(5000K)/Q(5700K)/P(6500K)

c) Voltage Bins (I_F = 350 mA, T_s = 85 $^{\circ}$ C)

CRI (R _a)	Nominal CCT (K)	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
			4E	4E	2.7 ~ 3.1

e) Chromaticity Region & Coordinates ($I_F = 350 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

	ССТ	Cente	r point	Major-axis	Minor-axis	Rotation
	(K)	CIE x	CIE y	a	b	Φ
	2700	0.4578	0.4101	0.0081	0.0042	53.70
	3000	0.4338	0.4030	0.0083	0.0041	53.22
	3500	0.4073	0.3917	0.0093	0.0041	54.00
3 step	4000	0.3818	0.3797	0.0094	0.0040	53.72
	5000	0.3447	0.3553	0.0082	0.0035	59.62
	5700	0.3287	0.3417	0.0075	0.0032	59.10
	6500	0.3123	0.3282	0.0067	0.0029	58.57
	2700	0.4578	0.4101	0.0135	0.0070	53.70
	3000	0.4338	0.4030	0.0138	0.0068	53.22
	3500	0.4073	0.3917	0.0155	0.0068	54.00
5 step	4000	0.3818	0.3797	0.0157	0.0067	53.72
	5000	0.3447	0.3553	0.0137	0.0058	59.62
	5700	0.3287	0.3417	0.0125	0.0053	59.10
	6500	0.3123	0.3282	0.0112	0.0048	58.57

Note:

Samsung maintains measurement tolerance of: Cx, Cy = ± 0.005

10

3. Typical Characteristics Graphs

3000K/CRI70

a) Spectrum Distribution ($I_F = 350 \text{ mA}, T_s = 85 \text{ }^{\circ}\text{C}$)

b) Forward Current Characteristics (T_s = 85 °C)

c) Temperature Characteristics (I_F = 350 mA)

d) Color Shift Characteristics ($I_F = 350 \text{ mA}, T_s = 85 \text{ }^{\circ}C$)

4. Outline Drawing & Dimension

Precautions:

- 1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
- 2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED's characteristics should be carefully checked before and after such repair.
- Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items & Conditions

a) Test Items

Test item	Test Condition	Test Hour / Cycle
Room Temperature Life Test	25 °C, Derated maximum current	1000 h
High Temperature Life Test	85 °C, Derating maximum current	1000 h
High Temperature Humidity Life Test	60 °C, 90% RH, Derating maximum current	1000 h
Low Temperature Life Test	-40 °C, Derating maximum current	1000 h
Temperature Humidity Cycle Test	-10 °C ↔ 25 °C /Dry, 25 °C ↔ 65 °C 95% R.H. Derating maximum current	10 cycles
Powered Temperature Cycle Test	-40 °C / 85 °C each 20 min, 100 min transfer power on/off each 5 min, Derating maximum current	100 cycles
Thermal Shock	-45 °C / 15 min \leftrightarrow 125 °C / 15 min temperature change within 5 min	500 cycles
High Temperature Storage	120 ºC	1000 h
Low Temperature Storage	-40 °C	1000 h
ESD (HBM)	R ₁ : 10 MΩ R ₂ : 1.5 kΩ C: 100 pF V: ±2 kV	5 times
ESD (MM)	R1: 10 ΜΩ R2: 0 C: 200 pF V: ±0.2 kV	5 times
Vibration Test	20~2000~20 Hz, 200 m/s², sweep 4 min X, Y, Z 3 direction, each 1 cycle	4 cycles
Mechanical Shock Test	1500 g, 0.5 ms 3 shocks each X-Y-Z axis	5 cycles

b) Criteria for Judging the Damage

ltem	Symbol	Test Condition	Lir	nit
item	Symbol	(T₅ = 25 ^Q C)	Min.	Max.
Forward Voltage	V _F	I _F = 350 mA	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ _v	I _F = 350 mA	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions

a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

No more than 5 seconds @ max. 300 °C, under soldering iron.

7. Tape & Reel

a) Taping Dimension

More than 40 mm

Unloaded tape

Mounted with

LED package

More than 100~200 mm

Unloaded tape

SAMSUNG

Leading part more than

200~400 mm

(unit: mm)

Width	W1	W2
8mm	9 ±0.3	11.9±1.0

Notes:

- 1) Quantity: 2,000 Qty/reel
- 2) Cumulative tolerance: Cumulative tolerance / 10 pitches is ±0.2 mm
- Adhesion strength of cover tape: Adhesion strength is 0.1-0.7 N when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
- 4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag

8. Label Structure

a) Label Structure

Note: Denoted Bin ID and product code above is only an example

Rank Code:

- (a)(b): Chromaticity bin (refer to page 6)
- ©: Luminous Flux bin (refer to page 6,7)
- (e)(f): Voltage bin (refer to page 6,9)

b) Lot Number

(2)

The lot number is composed of the following characters:

- ① : T (T: Taping ID)
 - : 1 (1: LED Manufacture Line)
- ③ : Year (G:2016, H: 2017, ...)
- (4) : Month (1, 2, ..., 7: July, ..., A: Oct., B: Nov., C: Dec.)
- (5) : Day (1~9, A: 10, ..., K: 20, ..., U: 30, V:31)
- 6789 : Product serial number (0001 ~ 9999)

SAMSUNG

SAMSUNG

LED

Туре	Size (mm)			Noto
	(a)	(b)	(c)	NOLE
7 inch	245 ± 5	220 ± 5	182 ± 5	Up to 7 reels

Material: Paper SW(B)

9. Packing Structure

a) Packing Process

b) Aluminum Vinyl Packing Bag

c) Silica Gel & Humidity Indicator Card inside Aluminum Vinyl Bag

20

10. Precautions in Handling & Use

- For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
- 2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
- 3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
- 4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature 0~40 °C, 0~90 % RH).
- After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
 a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than 30 °C / 60 % RH, or
 b. Stored at <10 % RH
- 6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
- 7) Devices require baking before mounting, if humidity card reading is >60 % at 23 \pm 5 °C.
- 8) Devices must be baked for 1 hour at 60 \pm 5 °C, if baking is required.
- 9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
- 10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co. Ltd inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and semiconductor and LED solutions. For the latest news, please visit the Samsung Newsroom at http://news.samsung.com.

Copyright © 2018 Samsung Electronics Co., Ltd. All rights reserved. Samsung is a registered trademark of Samsung Electronics Co., Ltd. Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd. 1, Samsung-ro Giheung-gu Yongin-si, Gyeonggi-do, 17113 KOREA

www.samsungled.com