MAX32680

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

General Description

The MAX32680 microcontroller (MCU) is an advanced system-on-chip (SoC), featuring an Arm[®] Cortex[®]-M4F CPU for efficient computation of complex functions and algorithms that is qualified to operate at a temperature range of -40°C to +85°C. The SoC integrates power regulation and management with a single-inductor multiple-output (SIMO) buck regulator system. Onboard is the latest generation Bluetooth[®] 5.2 Low Energy (LE) radio, supporting LE Audio, angle of arrival (AoA), and angle of departure (AoD) for direction finding, long-range (coded) modes, and high-throughput modes.

The device offers large onboard memory with 512KB flash and 128KB SRAM, with optional error correction coding (ECC) on one 32KB SRAM bank. This 32KB bank can be optionally retained in BACKUP mode. An 8KB user one-time programmable (OTP) area is available, and 8 bytes are retained, even during power-down.

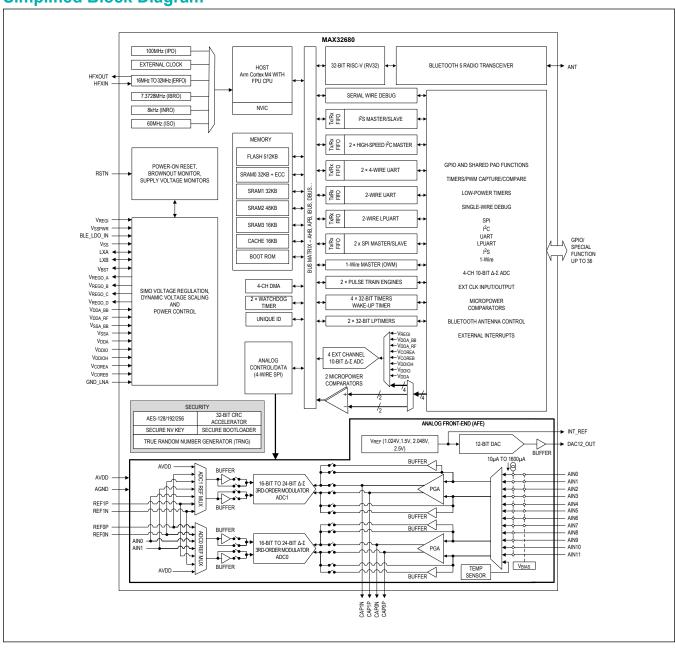
An analog front-end (AFE) provides two 12-channel delta-sigma (Δ - Σ) analog-to-digital converters (ADC) with features and specifications optimized for precision sensor measurement. Each Δ - Σ ADC can digitize external analog signals as well as system temperature. An optional programmable gain amplifier (PGA) with gains of 1x to 128x precedes each ADC. ADC outputs can be optionally converted on the fly from integer to single-precision floating-point format. A 12-bit digital-to-analog converter (DAC) is also included. The device also provides robust security features such as an advanced encryption standard (AES) engine, true random number generator (TRNG), and secure boot.

The device is available in an 88L LGA (10mm x 10mm, 0.4mm pitch) package.

Applications

- Industrial Pressure, Temperature, Level, and Flow Sensors/Transmitters
- Medical Pressure and Temperature Sensors

Benefits and Features


- Ultra-Low-Power Wireless Microcontroller
 - · Internal 100MHz Oscillator
 - · 512KB Flash and 128KB SRAM
 - Optional ECC on One 32KB SRAM Bank
- Bluetooth 5.2 LE Radio
 - Dedicated, Ultra-Low-Power, 32-Bit RISC-V Coprocessor to Offload Timing-Critical Bluetooth Processing
 - Fully Open-Source Bluetooth 5.2 Stack Available
 - Supports AoA, AoD, LE Audio, and Mesh
 - High-Throughput (2Mbps) Mode
 - Long-Range (125kbps and 500kbps) Modes
 - Rx Sensitivity: -97.5dBm; Tx Power: +4.5dBm
 - Single-Ended Antenna Connection (50Ω)
- Smart Integration Reduces BOM, Cost, and PCB Size
 - Two 16-Bit to 24-Bit Δ-Σ ADCs
 - · 12 Channels, Assignable to Either ADC
 - Flexible Resolution and Sample Rates
 - 24-Bits at 0.4ksps, 16-Bits at 4ksps
 - Four External Input, 10-Bit Δ-Σ ADC 7.8ksps
 - 12-Bit DAC
 - On-Die Temperature Sensor
 - Digital Peripherals: Two SPI, Two I²C, up to Four UART, and up to 36 GPIOs
 - Timers: Six 32-Bit Timers, Two Watchdog Timers, Two Pulse Trains, 1-Wire[®] Master
- Power Management Maximizes Battery Life
 - 2.0V to 3.6V Supply Voltage Range
 - Integrated SIMO Power Regulator
 - Dynamic Voltage Scaling (DVS)
 - 23.8µA/MHz ACTIVE Mode Current at 3.0V Coremark[®]
 - 4.4µA at 3.0V Retention Current for 32KB SRAM
 - · Selectable SRAM Retention in Low-Power Modes
- Robust Security and Reliability
 - TRNG
 - Secure Nonvolatile Key Storage and AES-128/192/ 256
 - · Secure Boot to Protect IP/Firmware
 - Wide, -40°C to +85°C Operating Temperature

Ordering Information appears at end of data sheet.

1-Wire is a registered trademark of Maxim Integrated Products, Inc. Arm and Cortex are registered trademarks of Arm Limited. Bluetooth is a registered trademark of Bluetooth SIG, Inc. Cordio is a registered trademark of Sunrise Micro Devices, Inc. Coremark is a registered trademark of EMBCC.

Simplified Block Diagram

TABLE OF CONTENTS

General Description	
Applications	1
Benefits and Features	1
Simplified Block Diagram	2
Absolute Maximum Ratings	
Package Information	7
Electrical Characteristics	7
Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA	17
Electrical Characteristics—12-Bit DAC	24
Electrical Characteristics—Internal Voltage Reference	25
Electrical Characteristics—SPI	25
Electrical Characteristics—I ² C	26
Electrical Characteristics—I ² S	28
Electrical Characteristics—1-Wire Master	28
Pin Configuration	
Pin Descriptions	
Detailed Description	41
Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor	41
Memory	41
Internal Flash Memory	41
Internal SRAM	41
Bluetooth 5.2	42
Bluetooth 5.2 Low Energy Radio	42
Bluetooth 5.2 Software Stack	42
Comparators	42
Dynamic Voltage Scaling (DVS) Controller	43
Clocking Scheme	43
General-Purpose I/O (GPIO) and Special Function Pins	44
10-Bit ADC for Supply and GPIO Monitoring	45
Single-Inductor Multiple-Output (SIMO) Switch-Mode Power Supply (SMPS)	45
Power Management	45
Power Management Unit (PMU)	45
ACTIVE Mode	46
SLEEP Mode	46
LOW POWER Mode (LPM)	46
MICRO POWER Mode (UPM)	
STANDBY Mode	
BACKUP Mode	47
POWER DOWN Mode (PDM)	47

TABLE OF CONTENTS (CONTINUED)

Wake-Up Sources	
Standard DMA Controller	48
Programmable Timers	48
32-Bit Timer/Counter/PWM (TMR, LPTMR)	48
Watchdog Timer (WDT)	
Pulse Train Engine (PT)	
Serial Peripherals	
I ² C Interface (I2C)	50
I ² S Interface (I2S)	
Serial Peripheral Interface (SPI)	
UART (UART, LPUART)	
1-Wire Master (OWM)	
16-Bit to 24-Bit Δ-Σ ADC with PGA	
12-Bit DAC	
Security	
AES	
TRNG Non-Deterministic Random Bit Generator (NDRBG)	
Cyclic Redundancy Check (CRC) Module	
Secure Boot	
Debug and Development Interface (SWD, JTAG)	
Applications Information	
Bypass Capacitors	
Ordering Information	
Revision History	

MAX32680

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

LIST OF FIGURES

Figure 1. SPI Master Mode Timing Diagram	
Figure 2. SPI Slave Mode Timing Diagram	30
Figure 3. I ² C Timing Diagram	30
Figure 4. I ² S Timing Diagram	31
Figure 5. 1-Wire Master Data Timing Diagram	
Figure 6. Clocking Scheme Diagram	44

MAX32680

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

LIST OF TABLES

Table 1. BACKUP Mode SRAM Retention	47
Table 2. Wake-Up Sources	48
Table 3. Timer Configuration Options	49
Table 4. Watchdog Timer Configuration Options	49
Table 5. SPI Configuration Options	51
Table 6. UART Configuration Options	52
Table 7. Common CRC Polynomials	54

Absolute Maximum Ratings

V _{COREA} , V _{COREB} 0.3V to +1.21V	Output Current (source) by Any GPIO Pin	-25mA
V _{DDIO} , V _{DDA} 0.3V to +1.98V	V _{DDIO} Combined Pins (sink)	100mA
V _{DDIOH} , AVDD	V _{DDIOH} Combined Pins (sink)	
AIN[0-11]V _{SSA} - 0.03V to AVDD + 0.03V	V _{SSA} , V _{SSA} _{BB}	
V _{REGI} 0.3V to +3.63V	V _{SS} , AGND, GND_LNA	100mA
V _{DDA RF} , V _{DDA BB}	V _{SSPWR}	100mA
BLE_EDO_IN0.3V to +1.5V	Continuous Package Power Dissipation CTBGA (mu	ıltilayer
RSTN, GPIO (V _{DDIOH})0.3V to V _{DDIOH} + 0.5V	board) $T_A = +70^{\circ}C$ (derate 18.99mW/°C	above
GPIO (V _{DDIO})	+70°C)1518	.99mW
HFXIN, HFXOUT, RSTN, GPIO0.3V to V _{DDIO} + 0.3V	Operating Temperature Range40°C to	+85°C
REF1P, REF1N, REF0P, REF0N, VREG1, CAP1N, CAP1P,	Storage Temperature Range65°C to	+150°C
CAPON, CAPOP, DAC12_OUT0.3V to AVDD + 0.3V	Soldering Temperature	+260°C
Output Current (sink) by Any GPIO Pin25mA		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

Package Code	L8800M+1
Outline Number	<u>21-100567</u>
Land Pattern Number	90-100205
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	N/A
Junction to Case (θ _{JC})	N/A
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	52.67°C/W
Junction to Case (θ _{JC})	27.00°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Core Input Supply Voltage A	V _{COREA}		0.9	1.1	1.21	V
Core Input Supply Voltage B	V _{COREB}		0.9	1.1	1.21	V
Input Supply Voltage, Battery	V _{REGI}		2.7	3.3	3.63	V
Input Supply Voltage,	AVDD	A _{VDD} must be connected to V _{DDIOH}	2.7	3.3	3.63	V
Analog	V _{DDA}		1.71	1.8	1.98	\ \ \

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Supply Voltage, GPIO	V _{DDIO}		1.71	1.8	1.98	V
Input Supply Voltage, GPIO (High)	V _{DDIOH}	V _{DDIOH} must be connected to AVDD	1.71	3.0	3.63	V
		Monitors V _{COREA}		0.76		
		Monitors V _{COREB}	0.72	0.77		
		Monitors V _{DDA}	1.58	1.64	1.69	
Power-Fail Reset	\/	Monitors V _{DDIO}	1.58	1.64	1.69	. v
Voltage	V _{RST}	Monitors V _{DDIOH}	1.58	1.64	1.69]
		Monitors V _{REGI}	1.91	1.98	2.08	
		Monitors V _{DDA_BB}		0.773		
	Monitors V _{DDA_RF}		0.773			
Power-On Reset	V	Monitors V _{COREA}		0.57	·	V
Voltage	VDOD	Monitors V _{DDA}		1.25		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
V _{REGI} Current, ACTIVE Mode		Dynamic, IPO enabled, f _{SYS_CLK} (MAX) = 100MHz, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in ACTIVE mode executing Coremark, RV32 in SLEEP mode, ECC disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	23.8		
	^I REGI_DACT	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 100MHz, total current into V _{REGI} pin, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 and RV32 in ACTIVE mode executing While(1), ECC disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA. This specification is a function of the IPO frequency.	29.3		μ A /MHz
		Dynamic, IPO enabled, $f_{SYS_CLK(MAX)} = 100 \text{MHz}$, total current into V_{REGI} pin, $V_{REGI} = 3.0 \text{V}$, $V_{COREA} = V_{COREB} = 1.1 \text{V}$, CM4 in ACTIVE mode executing While(1), RV32 in SLEEP mode, ECC disabled; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/sink 0mA	22.2		
		Dynamic, total current into V_{REGI} pin, $V_{REGI} = 3.0V$, $V_{COREA} = V_{COREB} = 1.1V$, CM4 in SLEEP mode, RV32 in ACTIVE mode running from ISO, ECC disabled; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/sink 0mA	18.7		
	^I REGI_FACT	Fixed, IPO enabled, ISO enabled, total current into V_{REGI} , $V_{REGI} = 3.0V$, $V_{COREA} = V_{COREB} = 1.1V$, CM4 in ACTIVE mode 0MHz, RV32 in ACTIVE mode 0MHz; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/sink 0mA	740		μА
V _{REGI} Current, SLEEP Mode	^I REGI_DSLP	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 100MHz, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in SLEEP mode, ECC disabled, standard DMA with two channels active; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	6.4		μΑ/MHz
Mode	lregi_fslp	Fixed, IPO enabled, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} = V _{COREB} = 1.1V, CM4 in SLEEP mode, RV32 in SLEEP mode, ECC disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ; outputs source/sink 0mA	1.33		mA

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
V _{REGI} Current, LOW	I _{REGI_DLP}	Dynamic, ISO enable V _{REGI} pins, V _{REGI} = V _{COREB} = 1.1V, CM in ACTIVE mode, f _S \ 60MHz; inputs tied to V _{DDIOH} ; outputs sou	3.0V, V _{COREA} = 4 powered off, RV32 (S_CLK(MAX) = 5 V _{SS} , V _{DDIO} , or		μΑ/MHz			
POWER Mode	I _{REGI_FLP}	Fixed, ISO enabled, V _{REGI} pins, V _{REGI} = V _{COREB} = 1.1V, CM in ACTIVE mode 0M V _{SS} , V _{DDIO} , or V _{DDI} sink 0mA	3.0V, V _{COREA} = 4 powered off, RV32 Hz; inputs tied to		630		μА	
V _{REGI} Current, MICRO POWER Mode	I _{REGI_DMP}	Dynamic, ERTCO er enabled, total curren V _{REGI} = 3.0V, V _{COR} 1.1V, LPUART active 32.768kHz; inputs tie V _{DDIOH} ; outputs sou	t into V _{REGI} pins, EA = VCOREB = e, f _{LPUART} = ed to V _{SS} , V _{DDIO} , or		230		μА	
V _{REGI} Current, STANDBY Mode	I _{REGI_STBY}	Fixed, total current in V _{REGI} = 3.0V, V _{COR} 1.1V; inputs tied to V V _{DDIOH} ; outputs sou	EA = V _{COREB} = SS, V _{DDIO} , or		7.1		μA	
		Total current into VREGI pins, VREGI = 3.0V, VCOREA = VCOREB = 1.1V, RTC disabled; inputs tied to VSS, VDDIO, or VDDIOH; outputs source/sink 0mA	All SRAM retained		6.3			
V _{REGI} Current, BACKUP Mode	^I REGI_BK	Total current into VREGI pins, VREGI = 3.0V, VCOREA = VCOREB = 1.1V, RTC disabled; inputs tied to VSS, VDDIO, or VDDIOH, outputs source/sink 0mA	No SRAM retention		3		μА	
		Total current into	SRAM0 retained		4.4			
	V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} =	SRAM0 and SRAM1 retained		5.2				
		VCOREB = 1.1V, RTC disabled; inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} ;		SRAM0, SRAM1, and SRAM2 retained		5.6		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{REGI} Current, POWER DOWN Mode	IREGI_PDM	Total current into V_{REGI} pins, V_{REGI} = 3.0V, V_{COREA} = V_{COREB} = 1.1V; inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} ; outputs source/sink 0mA		0.16		μΑ
V _{REGO_X} Output Current	V _{REGO_X_IOU}	Output current for each of the V _{REGO_X} outputs		5	50	mA
V _{REGO_X} Output Current Combined	V _{REGO_X_IOU} T_TOT	All four V _{REGO_X} outputs combined		15	100	mA
V _{REGO_X} Output Voltage Range	V _{REGO_X_RA}	V _{REGI} ≥ V _{REGO_X} + 200mV; output voltage range must be configured to meet the input voltage range of the load device pin (V _{RST} to V _{MAX})	V _{RST}	1.0	V_{MAX}	V
V _{REGO_X} Efficiency	V _{REGO_X_EFF}	V _{REGI} = 2.7V, V _{REGO_X} = 1.1V, load = 30mA		90		%
SLEEP Mode Resume Time	tslp_on	Time from power mode exit to execution of first user instruction		0.847		μs
LOW POWER Mode Resume Time	t _{LP_ON}	Time from power mode exit to execution of first user instruction		6.08		μs
MICRO POWER Mode Resume Time	t _{MP_ON}	Time from power mode exit to execution of first user instruction		12.4		us
STANDBY Mode Resume Time	tstby_on	Time from power mode exit to execution of first user instruction		14.7		μs
BACKUP Mode Resume Time	t _{BKU_ON}	Time from power mode exit to execution of first user instruction		1.15		ms
POWER DOWN Mode Resume Time	t _{PDM_ON}	Time from power mode exit to execution of first user instruction		5		ms
CLOCKS						
System Clock Frequency	fsys_clk		0.0625		100,000	kHz
System Clock Period	tsys_clk			1/f _{SYS_C} LK		ns
Internal Primary Oscillator (IPO)	f _{IPO}			100		MHz
Internal Secondary Oscillator (ISO)	fiso			60		MHz
Internal Baud Rate Oscillator (IBRO)	f _{IBRO}			7.3728		MHz
		8kHz selected		8		
Internal Nanoring Oscillator (INRO)	f _{INRO}	16kHz selected		16		kHz
Cosmator (IIIIC)		30kHz selected		32		
External RF Oscillator Frequency (ERFO)	fERFO	32MHz crystal, C_L = 12pF, ESR ≤ 50Ω, C_0 ≤ 7pF, temperature stability ±20ppm, initial tolerance ±20ppm		32		MHz
External System Clock Input Frequency	f _{EXT_CLK}	EXT_CLK selected			80	MHz

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
External Low-Power Timer 1 Clock Input Frequency	fEXT_LPTMR1_ CLK	LPTMR1_CLK selected			8	MHz
External Low-Power Timer 2 Clock Input Frequency	fEXT_LPTMR2_ CLK	LPTMR2_CLK selected			8	MHz
GENERAL-PURPOSE I/	0					
Input Low Voltage	V _{IL_VDDIO}	V _{DDIO} selected as I/O supply			0.3 × V _{DDIO}	V
	V _{IL_VDDIOH}	V _{DDIOH} selected as I/O supply			0.3 × V _{DDIOH}	-
Input Low Voltage for RSTN	V _{IL_RSTN}			0.5 x V _{DDIOH}		V
Input High Voltage	V _{IH} _VDDIO	V _{DDIO} selected as I/O supply	0.7 × V _{DDIO}			V
pat i ngi i voltago	V _{IH} _VDDIOH	V _{DDIOH} selected as I/O supply	0.7 × V _{DDIOH}			•
Input High Voltage for RSTN	V _{IH_RSTN}			0.5 x V _{DDIOH}		٧
		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 00, I _{OL} = 1mA		0.2	0.4	
	V	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 01, I _{OL} = 2mA		0.2	0.4	
	V _{OL_} VDDIO	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 10, I _{OL} = 4mA		0.2	0.4	
Output Law Valtage		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 11, I _{OL} = 8mA		0.2	0.4	V
Output Low Voltage		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 00, I _{OL} = 1mA		0.2	0.4	V
		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 01, I _{OL} = 2mA		0.2	0.4	
	Vol_vddioh	V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 10, I _{OL} = 4mA		0.2	0.4	
	=	V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 11, I _{OL} = 8mA		0.2	0.4	
Combined I _{OL} , All GPIO	I _{OL_} TOTAL				48	mA

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 00, I _{OL} = -1mA	V _{DDIO} - 0.4			
		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 01, I _{OL} = -2mA	V _{DDIO} - 0.4			
Output High Voltage	VOH_VDDIO	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 10, I _{OL} = -4mA	V _{DDIO} - 0.4			
		V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1:0] = 11, I _{OL} = -8mA	V _{DDIO} - 0.4			
		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 00, I _{OL} = -1mA	V _{DDIOH} - 0.4			V
		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 01, I _{OL} = -2mA	V _{DDIOH} - 0.4			
	Voh_vddioh	V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 10, I _{OL} = -8mA	V _{DDIOH} - 0.4			
		V _{DDIOH} selected as I/O supply, V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] = 11, I _{OL} = -8mA	V _{DDIOH} - 0.4			
		V _{DDIOH} = 1.71V, GPIOn_DS_SEL[1:0] fixed at 00, I _{OL} = -1mA	V _{DDIOH} - 0.4			
Combined I _{OH} , All GPIO	IOH_TOTAL				-48	mA
Input Hysteresis (Schmitt)	V _{IHYS}			300		mV
Input Leakage Current Low	I _{IL}	V _{DDIO} = 1.89V, V _{DDIOH} = 3.6V, V _{DDIOH} selected as I/O supply, V _{IN} = 0V, internal pullup disabled	-100		+100	nA
	IIH	V_{DDIO} = 1.89V, V_{DDIOH} = 3.6V, V_{DDIOH} selected as I/O supply, V_{IN} = 3.6V, internal pulldown disabled	-800		+800	nA
Input Leakage Current High	I _{OFF}	V _{DDIO} = 0V, V _{DDIOH} = 0V, V _{DDIO} selected as I/O supply, V _{IN} < 1.89V	-1		+1	
	I _{IH3V}	V _{DDIO} = V _{DDIOH} = 1.71V, V _{DDIO} selected as I/O supply, V _{IN} = 3.6V	-2		+2	μA
Input Pullup Resistor RSTN	R _{PU_R}	Pullup to V _{DDIOH}		25		kΩ
Input Pullup/Pulldown	R _{PU1}	Normal resistance, P1M = 0		25		kΩ
Resistor for All GPIO	R _{PU2}	Highest resistance, P1M = 1		1		МΩ
BLUETOOTH RADIO / P	OWER					
Bluetooth LDO Input Voltage	V _{BLE_LDO_IN}		0.9	1.1	1.5	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BLUETOOTH RADIO / FI	REQUENCY		<u>'</u>			
Operating Frequency		1MHz channel spacing	2360		2500	MHz
PLL Programming Resolution	PLL _{RES}			1		MHz
Frequency Deviation at 1Mbps	Δf _{1MHz}			±170		kHz
Frequency Deviation at BLE 1Mbps	Δf _{BLE1MHz}			±250		kHz
Frequency Deviation at 2Mbps	Δf _{2MHz}			±320		kHz
Frequency Deviation at BLE 2Mbps	Δf _{BLE2MHz}			±500		kHz
BLUETOOTH RADIO / C Bluetooth LE stack runn mode.)	URRENT CONSI ing on CM4. Me	JMPTION (SIMO enabled, $V_{REGI} = 3.3V_{REGI}$ asured at the V_{REGI} device pin, V_{REGO}	IPO enabled, _B = 0.9V, V _{RI}	fsys_clk ego_c = 1.	= 100MHz, 0V, RV32 ii	n SLEEP
	I _{TX_+4.5DBM}			6.35		
	I _{RFFE_+4.5DB}	P_{RF} = +4.5dBm		4.3		
Tx Run Current	I _{TX_0DBM}	P _{RF} = 0dBm		4.17		mA
	I _{RFFE_0DBM}	I KE – ADDIII		2.12		
	I _{TX10DBM}	 P _{RF} = -10dBm		3.65		
	I _{RFFE10DBM}	I KE - 100DIII		1.65		
Tx Startup Current	ISTART_TX			2.05		mA
BLUETOOTH RADIO / Cl Bluetooth LE stack runn mode)	URRENT CONSI ing on CM4. Me	JMPTION (SIMO enabled, $V_{REGI} = 3.3V$. asured at the V_{REGI} device pin, V_{REGO}	IPO enabled, _B = 0.9V, V _{RI}	fsys_clk ego_c = 1.	= 100MHz, 0V, RV32 ii	n SLEEP
	I _{RX_1M}	f _{RX} = 1Mbps		4.0		
Rx Run Current	I _{RX_2M}	f _{RX} = 2Mbps		4.12		mA
To real carrolle	I _{RFFE_1M}	f _{RX} = 1Mbps		1.95		
	I _{RFFE_2M}	f _{RX} = 2Mbps		2.07		
Rx Startup Current	I _{START_RX}			2.05		mA
BLUETOOTH RADIO / TI						1
Maximum Output Power	P _{RF}			+4.5		dBm
RF Power Accuracy	P _{RF_ACC}			±1		dB
First Adjacent Channel Transmit Power ±2MHz	P _{RF1_1}	1Mbps Bluetooth LE		-30.5		dBc
First Adjacent Channel Transmit Power ±4MHz	P _{RF2_1}	1Mbps Bluetooth LE		-40		dBc
BLUETOOTH RADIO / R	ECEIVER					
Maximum Received Signal Strength at < 0.1% PER	P _{RX_MAX}			0		dBm

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Receiver Sensitivity,	D	Measured with 37	1Mbps Bluetooth LE		-97.5		dBm	
Ideal Transmitter	PSENS_IT	byte payload	2Mbps Bluetooth LE		-94		- ubili	
Receiver Sensitivity,		Measured with 37	1Mbps Bluetooth LE		-95.5		dBm	
Dirty Transmitter	「SENS_DI	byte payload	2Mbps Bluetooth LE		-93		dbiii	
Receiver Sensitivity,	Postua i B Meas	Measured with 37	125kbps Bluetooth LE	-	105.5		- dBm	
Long-Range Coded	P _{SENS_LR}	byte payload	500kbps Bluetooth LE		-101		25	
C/I Cochannel	C/I _{1MHz}	1Mbps Bluetooth LE			6.7		dB	
On Cochannel	C/I _{2Mhz}	2Mbps Bluetooth LE			7		ub	
	C/I+1_1	+1MHz offset, 1Mbp	s Bluetooth LE		-2.5			
	C/I _{-1_1}	-1MHz offset, 1Mbps	s Bluetooth LE		-2.6		1	
	C/I _{+2_1}	+2MHz offset, 1Mbps Bluetooth LE			-22		İ	
	C/I _{-2 1}	-2MHz offset, 1Mbps	-2MHz offset, 1Mbps Bluetooth LE				1	
Adjacent Interference	C/I _{+2_2}	+2MHz offset, 2Mbp			-2		dB	
	C/I _{-2_2}	-2MHz offset, 2Mbps			-3		1	
	C/I _{+4 2}	+4MHz offset, 2Mbp			-32		1	
	C/I _{-4_2}	-4MHz offset, 2Mbps			-34		1	
Adjacent Interference, (3+n) MHz Offset [n = 0, 1, 2,]	C/I _{3+MHZ}	1Mbps Bluetooth LE			-34.5		dB	
Adjacent Interference, (6+2n) MHz Offset [n = 0, 1, 2,]	C/I _{6+MHZ}	2Mbps Bluetooth LE			-34		dB	
Intermodulation Performance, 1Mbps Bluetooth LE with 3MHz, 4MHz, 5MHz Offset	P _{IMD_1MBPS}	1Mbps Bluetooth LE			-38		dBm	
Intermodulation Performance, 2Mbps Bluetooth LE with 6MHz, 8MHz, 10MHz Offset	P _{IMD_2MBPS}	2Mbps Bluetooth LE			-38		dBm	
Received Signal Strength Indicator Accuracy	RSSI _{ACC}				±3		dB	
Received Signal Strength Indicator Range	RSSI _{RANGE}			-	-98 to -50		dB	
ΑDC (Δ-Σ)							•	
Resolution					10		bits	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
ADC Clock Rate	fACLK			0.1		8	MHz
ADC Clock Period	t _{ACLK}				1/f _{ACLK}		μs
		AIN[15:12], ADC_DIVSEL = [00], ADC_CH_SEL = [7:4]	REF_SEL = 0, INPUT_SCALE = 0	V _{SSA} + 0.05		V _{BG}	
Input Voltage Range	W	AIN[15:12, ADC_DIVSEL = [01], ADC_CH_SEL = [7:4]	REF_SCALE = 0, INPUT_SCALE = 0	V _{SSA} + 0.05		2 x V _{BG}	V
	Vain	AIN[15:12], ADC_DIVSEL = [10], ADC_CH_SEL = [7:4]	REF_SCALE = 0, INPUT_SCALE = 0, V _{DDIOH} selected as the I/O supply	V _{SSA} + 0.05		V _{DDIOH}	V
		AIN[15:12], ADC_DIVSEL = [11], ADC_CH_SEL = [7:4]	REF_SEL = 0, INPUT_SCALE = 0, V _{DDIOH} selected as the I/O supply	V _{SSA} + 0.05		V _{DDIOH}	
Input Impedance	R _{AIN}				30		kΩ
Analog Input	C	Fixed capacitance to	o V _{SSA}		1		pF
Capacitance	C _{AIN}	Dynamically switched	ed capacitance		250		fF
Integral Nonlinearity	INL	Measured at +25°C				±2	LSb
Differential Nonlinearity	DNL	Measured at +25°C				±1	LSb
Offset Error	Vos				±1		LSb
ADC Active Current	I _{ADC}	ADC active, reference input buffer disabled			102		μΑ
ADC Setup Time	t _{ADC_SU}	Any power-up of AD to CpuAdcStart	C clock or ADC bias			10	μs
ADC Output Latency	t _{ADC}				1067		t _{ACLK}
ADC Sample Rate	f _{ADC}					7.8	ksps
ADC Input Leakage	I _{ADC_LEAK}	ADC inactive or cha	nnel not selected		10		nA
Full-Scale Voltage	V _{FS}	ADC code = 0x3FF			1.2		V
Bandgap Temperature Coefficient	V _{TEMPCO}	Box method			30		ppm
COMPARATORS							
Input Offset Voltage	V _{OFFSET}				±1		mV
		AINCOMPHYST[1:0	0] = 00		±23		
Input Hysteresis	V	AINCOMPHYST[1:0	0] = 01		±50		mV
IIIput Hysteresis	VIIVOT -	AINCOMPHYST[1:0] = 10			±2		IIIV
		AINCOMPHYST[1:0] = 11			±7		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +85°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked "GBD" are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
Input Voltage Range	V _{IN_CMP}	Common-mode range	0.6		1.35	V			
FLASH MEMORY									
Flash Erase Time	t _{M_ERASE}	Mass erase		20		ma			
	t _{P_ERASE}	Page erase		20		ms			
Flash Programming Time per Word	t _{PROG}			42		μs			
Flash Endurance			10			kcycles			
Data Retention	t _{RET}	T _A = +125°C	10			years			

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS	
ANALOG INPUTS						
Full-Scale Input Voltage				±V _{REF} / Gain		
Absolute Input Voltage		Buffers disabled	V _{SSA} - 30mV	AVDD + 30mV	V	
Input Voltago Bango		Unipolar	0	V_{REF}	V	
Input Voltage Range		Bipolar	-V _{REF}	V_{REF}	V	
		AIN buffers/PGA disabled	V _{SSA}	AVDD		
Common-Mode Voltage Range		Buffers enabled	V _{SSA} + 0.1	AVDD - 0.1		
	V_{CM}	PGA gain = 1 to 16	V _{SSA} +0. 1 + (V _{IN})(Ga in)/2	AVDD - 0.1 - (V _{IN})(Ga in)/2	V	
	PGA gai		PGA gain = 32 to 128	V _{SSA} + 0.2 + (V _{IN})(Ga in)/2	AVDD - 0.2 - (V _{IN})(Ga in)/2	
		Buffer disabled		±1	μΑ/V	
Differential Input Current		Buffer enabled		0 to 50	Λ	
		PGA enabled, GBD		±1	nA	
		Buffer disabled		±1	μA/V	
Absolute Input Current		Buffer enabled	:	20 to 80	~ Λ	
		PGA enabled, -40°C to +85°C, GBD ±2		±2	nA	
Input Capacitance		Bypass mode		10	pF	
SYSTEM PERFORMANCE						
Resolution				24	bits	

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS
		50Hz/60Hz FIR filter, single-cycle conversions		2, 4, 16	
		50Hz FIR filter, single-cycle conversions	5,	2.5, 10, 35.6	
Data Rate		60Hz FIR filter, single-cycle conversions	5,	2.5. 10, 36.5	
		SINC4 filter, single-cycle conversions	10, 30, 12 24 48 90	.5, 5, 15, 60, 20, 40, 30, 60,	
		SINC4 filter, continuous conversions	20, 60, 24 44 90 19 38	10, 40, 120, 40, 30, 50, 20, 40,	sps
		SINC4 filter, duty cycle conversions	0. 1. 2 3. 7.7 30,	25, 63, 25, .5, 75, , 15, 60, 20,	
Data Rate Tolerance		Determined by internal clock accuracy	-6	6	%
Integral Nonlinearity		Differential input, reference buffer enabled, PGA = 1, tested at 16sps, measured at +25°C, AVDD = 3.3V	-12 +	-2 +12	
(Note 2)	INL	Differential input, PGA = 2 to 16		6	ppmFS
		Differential input, PGA = 32 to 64	11		
		Differential input, PGA = 128	15		
Offset Error		Referred to modulator input. After self and system calibration; V _{REFP} - V _{REFN} = 2.5V, tested at 16sps, measured at AVDD = 3.3V	-25 ±0).5 +25	μV
Offset Error Drift			±	50	nV/°C

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PGA Gain Settings				1, 2, 4, 8, 16, 32, 64, 128		
Digital Gain Settings				2, 4		
PGA Gain Error (Note 1)		No calibration		±0.3		%
TOA Gaill Elloi (<u>Ivote T</u>)		Gain = 1, after calibration	-0.012		+0.012	70
PGA Gain Drift (<u>Note 2</u>)				32		ppmFS/ °C
Input Noise	V _n	FIR50Hz/60Hz, 16.8sps, PGA = 128		208		nV _{RMS}
Noise-Free Resolution	NFR	FIR50Hz/60Hz, 16.8sps, PGA = 1		17.3		bits
Normal Mode Rejection (Internal Clock)		50Hz/60Hz FIR filter, 50Hz ±1%, 16sps conversion, GBD		88		
		50Hz/60Hz FIR filter, 60Hz ±1%, 16sps single-cycle conversion, GBD		88		
	NMR	50Hz FIR filter, 50Hz ±1%, 35.6sps single-cycle conversion, GBD		49		dB
	INIVIR	60Hz FIR filter, 60Hz ±1%, 35.6sps single-cycle conversion, GBD		55.6		ив
		SINC4 filter, 50Hz ±1%, 10sps single- cycle conversion, GBD		88		
		SINC4 filter, 60Hz ±1%, 10sps single- cycle conversion, GBD		91	91	
		50Hz/60Hz FIR filter, 50Hz or 60Hz ±1%, 16sps single-cycle conversion		91		
		50Hz FIR filter, 50Hz ±1%, 35.6sps single-cycle conversion	49.4			
Normal Mode Rejection (External Clock)	NMR	60Hz FIR filter, 60Hz ±1%, 35.6sps single-cycle conversion		55.6		dB
		SINC4 filter, 50Hz ±1%, 10sps single- cycle conversion		92.4		
		SINC4 filter, 60Hz ±1%, 10sps single- cycle conversion		92.6		
Common-Mode	CMR	DC rejection, any PGA gain		100		
Rejection	CMR60	50Hz/60Hz rejection, PGA enabled		104		dB
Power Supply Rejection	PSRRA			94		dB
REFERENCE INPUTS						
Reference Voltage		Reference buffer(s) disabled	V _{SSA} - 30m		AVDD + 30m	\ \/
Range		Reference buffer(s) enabled	V _{SSA} + 0.1		AVDD - 0.1	V
Reference Voltage Input		V _{REF} = V _{REFP} - V _{REFN}	0.75	2.5	AVDD	V

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Input Current		Reference buffer disabled		2.1		μA/V
Reference input Current		Reference buffer enabled	-200	61	+200	nA
Reference Input Capacitance		Reference buffers disabled		15		pF
MATCHED CURRENT SO	URCES					
Matched Current Source Outputs	IDAC			10, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 400, 600, 800, 1200, 1600		μА
Current Source Output		IDAC ≤ 250μA	0		AVDD - 0.7	V
Voltage Compliance		IDAC = 1.6mA	0		AVDD - 1.2	v
Initial Tolerance		T _A = +25°C, GBD	-5	±1	+5	%
Temperature Drift		Each IDAC		±50		ppm/°C
Current Matching		Between IDACs		±0.1		%
Temperature Drift Matching		Between IDACs		10		ppm/°C
Current Source Output Noise	I _N	Output current = 250µA. SINC4 filter, 60sps continuous. Noise is referred to input.		0.47		pA rms
V _{BIAS} OUTPUTS						
V _{BIAS} Voltage				AVDD/2		V
V _{BIAS} Voltage Output Impedance				125k (active), 20k (passive) , 125k (passive)		Ω
SYSTEM TIMING						
Power-On Wake-Up Time		From AVDD > V _{POR}		240		μs
	<u> </u>	C _{FILTER} = 0		0.25		
PGA Power-Up Time		C _{FILTER} = 20nF		2		ms
		C _{FILTER} = 100nF	<u> </u>	10		

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		After changing gain settings to Gain = 1, C _{FILTER} = 0		0.25		
PGA Settling Time		After changing gain settings to Gain = 1, C _{FILTER} = 100nF		10		ms
		After changing gain settings to Gain = 128, C _{FILTER} = 0		2		
Input Multiplexer Power- Up Time		Settled to 21 bits with 10pF load		2		μs
Input Multiplexer Channel-to-Channel Settling Time		Settled to 21 bits with 2kΩ external source resistor		2		μs
		Active generator; settled within 1% of final value; C _{LOAD} = 1µF		10		
V _{BIAS} Power-Up Time		125K passive generator; settled within 1% of final value; C _{LOAD} = 1µF		575		ms
		20K passive generator; settled within 1% of final value; C _{LOAD} = 1μF		90		
		Active generator; settled within 1% of final value; C _{LOAD} = 1µF		10		
V _{BIAS} Settling Time		125K passive generator; settled within 1% of final value; C _{LOAD} = 1µF		605		ms
		20K passive generator; settled within 1% of final value; C _{LOAD} = 1μF		100		
Matched Current Source Startup Time				110		μs
Matched Current Source Settling Time				12.5		μs

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	COND	ITIONS	MIN TYP	MAX	UNITS
POWER SPECIFICATION	NS		,			
AVDD Current			Bypass mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps	92		
	ADC0 only	Buffered mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps	193.7			
			PGA enabled, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps	292.4		μA
		Bypass mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps	167			
		ADC1. ADC0 must be enabled in Standby mode.	Buffered mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps	193.7		
			PGA enabled, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps	292.4		

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

(AVDD = +3.3V, REFP - REFN = AVDD, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}\text{C}$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}\text{C}$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	COND	ITIONS	MIN TYP	MAX	UNITS
			Bypass mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps	74		
		ADC0 only	Buffered mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps	89.1		
AVDD Duty Cycle			PGA enabled, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps	195.7		μA
Power Mode			Bypass mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps	74		μΛ
		ADC1. ADC0 must be enabled in Standby mode.	Buffered mode, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps	89.1		
			PGA enabled, IDAC, V _{BIAS} sources off, AVDD = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps	195.7		

Electrical Characteristics—12-Bit DAC

(AVDD = 3.3V, R_L = 10kΩ and C_L = 100pF, T_A = T_{MIN} to T_{MAX} , unless otherwise noted. T_A = +25°C for typical specifications, unless otherwise noted. VREF = 1.5V. Limits are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	TYP	MAX	UNITS	
Resolution	DAC _R			12			bits	
Differential Nonlinearity	DNL	Power mode = 2 GBD	Power mode = 2 or 3, noise filter enabled GBD				LSB	
Integral Nonlinearity	INL	Power mode = 2 GBD	or 3, noise filter enabled		±1		LSB	
Offset Error	EO	Measured at AVE	DD = 3.3V		±1		mV	
Output Voltage Range	Vo	Min code to max	code, GBD	V _{SSA} + E _O		AVDD - 0.5 + E _G	V	
		Power mode = 3			6.1			
Output Impadance		Power mode = 2			8.9		1.0	
Output Impedance		Power mode = 1			16.3		kΩ	
		Power mode = 0			97.7			
Voltage Output Settling		Noise filter enable rising or falling, to	ed, code 400h to C00h, o ±0.5 LSB		4			
Time	tsfs	Noise filter disabl	ed, code 400h to C00h, 0 ±0.5 LSB		0.03		ms	
Olitab Essentia		Power mode = 0,	1, or 2		12			
Glitch Energy		Power mode = 3,	code 000h to A50h		12		v x ns	
			Power mode = 3		680			
		Static,	Power mode = 2		570			
		V _{REF} = 2.5V	Power mode = 1		458			
			Power mode = 0		347			
			Power mode = 3		601		kΩ ms V x ns	
		Static,	Power mode = 2		509			
		$V_{REF} = 2.0V$	Power mode = 1		418			
Active Current	la.c.c		Power mode = 0		327		۸	
Active Current	I _{DAC12}		Power mode = 3		497		μΑ	
		Static,	Power mode = 2		431			
		V _{REF} = 1.5V	Power mode = 1		364			
			Power mode = 0		297			
			Power mode = 3		407		V kΩ ms V x ns	
		Static,	Power mode = 2		361			
		V _{REF} = 1.0V	Power mode = 1		304			
			Power mode = 0		284			
Power-On Time		Excluding referen	Excluding reference				μs	

Electrical Characteristics—Internal Voltage Reference

(AVDD = 3.3V, $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted. Internal Reference mode, 4.7 μ F at INT_REF; V_{REF} = 1.5V. T_A = +25°C for typical specifications, unless otherwise noted. Limits are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
			INT_REF 1.024V		1.024		
Output Voltage at	V	T _Δ = +25°C	INT_REF 1.50V		1.500		. v
INT_REF	V _{INT_REF}	1A - +25 C	INT_REF 2.048V		2.048] v
			INT_REF 2.50V		2.500		
Internal Reference Temperature Coefficient	T _{CREF}	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		±50		ppm/°C	
Turn-On Time	t _{ON}	GBD		0.1 + (INT_VR EF x 1.8)		ms	
Leakage Current with INT_REF Output Disabled	I _{INT_REF}	GBD			15	50	nA
INT_REF Line Regulation					±50		μV/V
INT_REF Load Regulation	INT_Load	I _{SOURCE} = 0 to 500μA, T _A = +25°C			10		μV/V
Reference Supply Current		Measured at V _{REF} = 2.5V	Buffer enabled		218		μΑ

Electrical Characteristics—SPI

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MASTER MODE			•			
SPI Master Operating Frequency	fMCK	f _{SYS_CLK} = 100MHz, f _{MCK(MAX)} = f _{SYS_CLK} /2			50	MHz
SPI Master SCK Period	t _{MCK}			1/f _{MCK}		ns
SCK Output Pulse- Width High/Low	t _{MCH} , t _{MCL}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Sample Edge	tмон		t _{MCK} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Low Idle	t _{MLH}			t _{MCK} /2		ns
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCK} /2		ns
SLAVE MODE						
SPI Slave Operating Frequency	fsck				50	MHz

Electrical Characteristics—SPI (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
SPI Slave SCK Period	tsck		1/f _{SCK}	ns
SCK Input Pulse-Width High/Low	t _{SCH} , t _{SCL}		t _{SCK} /2	
SSx Active to First Shift Edge	t _{SSE}		10	ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	t _{SIS}		5	ns
MOSI Input from SCK Sample Edge Transition Hold	tsін		1	ns
MISO Output Valid After SCLK Shift Edge Transition	tsov		5	ns
SCK Inactive to SSx Inactive	t _{SSD}		10	ns
SSx Inactive Time	tssh		1/f _{SCK}	μs
MISO Hold Time After SSx Deassertion	t _{SLH}		10	ns

Electrical Characteristics—I²C

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
STANDARD MODE									
Output Fall Time	t _{OF}	Standard mode, from V _{IH(MIN)} to V _{IL(MAX)}		150		ns			
SCL Clock Frequency	f _{SCL}		0		100	kHz			
Low Period SCL Clock	t _{LOW}		4.7			μs			
High Time SCL Clock	tHIGH		4.0			μs			
Setup Time for Repeated Start Condition	tsu;sta		4.7			μs			
Hold Time for Repeated Start Condition	t _{HD;STA}		4.0			μs			
Data Setup Time	t _{SU;DAT}			300		ns			
Data Hold Time	t _{HD;DAT}			10		ns			
Rise Time for SDA and SCL	t _R			800		ns			
Fall Time for SDA and SCL	t _F			200		ns			
Setup Time for a Stop Condition	tsu;sто		4.0			μs			

Electrical Characteristics—I²C (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μs
Data Valid Time	t _{VD;DAT}		3.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		3.45			μs
FAST MODE						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	t _{LOW}		1.3			μs
High Time SCL Clock	^t HIGH		0.6			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.6			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.6			μs
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sто		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs
FAST MODE PLUS						_
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	t _{LOW}		0.5			μs
High Time SCL Clock	^t HIGH		0.26			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.26			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.26			μs

Electrical Characteristics—I²C (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Setup Time	tsu;dat			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			50		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

Electrical Characteristics—I²S

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bit Clock Frequency	f _{BCLKS}	96kHz LRCLK frequency			3.072	MHz
Bit Clock Period	t _{BCLKS}		1/f _{BCLKS}			ns
BCLK High Time	twbclkhs			0.5		1/f _{BCLKS}
BCLK Low Time	twbclkls			0.5		1/f _{BCLKS}
LRCLK Setup Time	tLRCLK_BCLKS			25		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDOS			12		ns
Setup Time for SD (Input)	tsu_sdis			6		ns
Hold Time SD (Input)	t _{HD_SDIS}			3		

Electrical Characteristics—1-Wire Master

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS MIN TYP MA				UNITS
Write 0 Low Time	4	Standard		60		
While o Low Time	t _{WOL}	Overdrive		8		μs
		Standard		6		
Write 1 Low Time	t _{W1L}	Standard, Long Line mode		8		μs
		Overdrive		1		
		Standard		70		
Presence Detect Sample	t _{MSP}	Standard, Long Line mode		85		μs
		Overdrive		9		

Electrical Characteristics—1-Wire Master (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MA	XX UNITS
		Standard	15	
Read Data Value	t _{MSR}	Standard, Long Line mode	24	μs
		Overdrive	3	
Recovery Time		Standard	10	
	t _{REC0}	Standard, Long Line mode	20	μs
		Overdrive	4	
Doost Time High	4	Standard	480	
Reset Time High	trsth	Overdrive	58	μs
Dood Time Low	4	Standard	600	
Reset Time Low	t _{RSTL}	Overdrive	70	μs
Time Clot	+	Standard	70	
Time Slot	^t SLOT	Overdrive	12	μs

Note 1: Gain error does not include zero-scale errors. It is calculated as (full-scale error - offset error).

Note 2: ppmFS is parts per million of full scale.

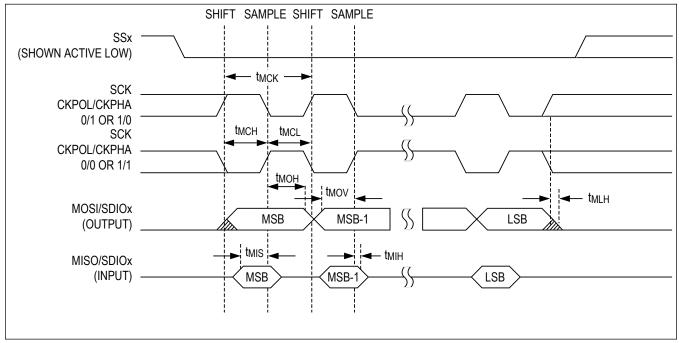


Figure 1. SPI Master Mode Timing Diagram

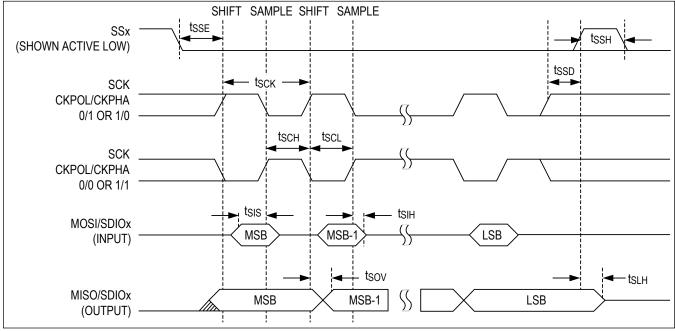


Figure 2. SPI Slave Mode Timing Diagram

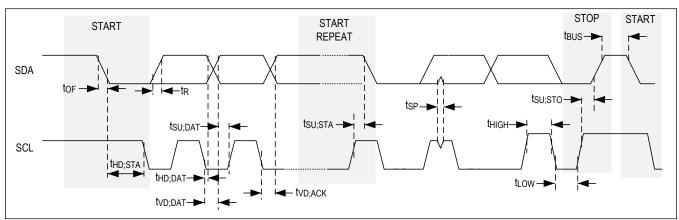


Figure 3. I²C Timing Diagram

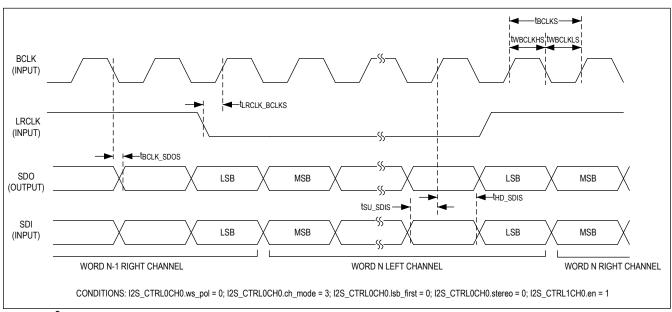


Figure 4. I²S Timing Diagram

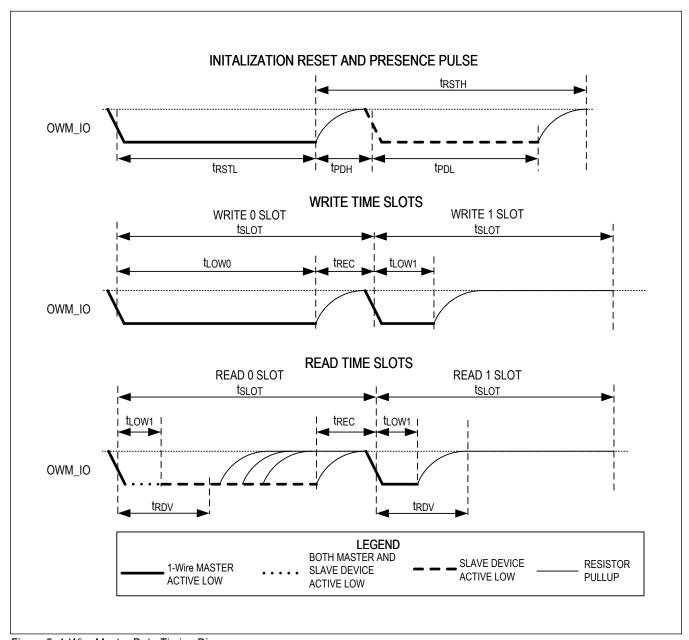
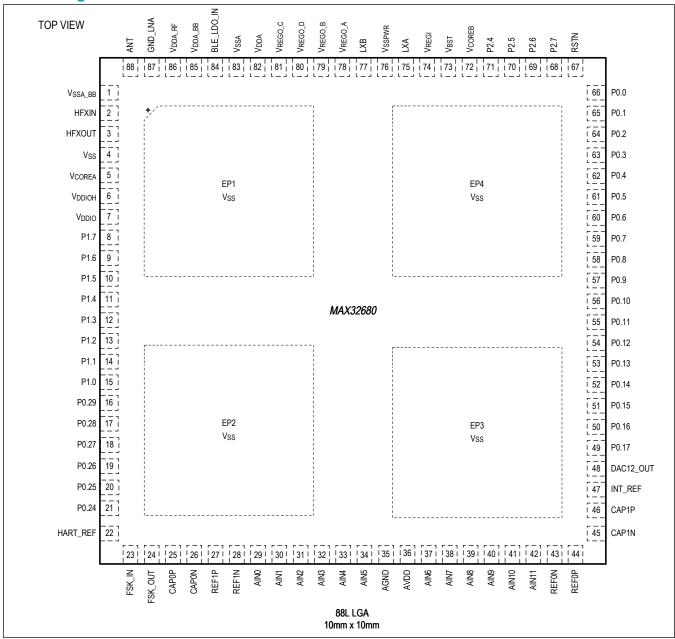



Figure 5. 1-Wire Master Data Timing Diagram

Pin Configuration

Pin Descriptions

		FUNCTION MODE					
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION	
POWER	R (See the App	olications Inform	nation section f	or bypass capa	citor recomme	ndations.)	
74	V _{REGI}	_	_	_	_	Battery Power Supply for the SIMO Switch-Mode Power Supply (SMPS). Bypass device pin C9 with 2 x 47µF capacitors placed as close as possible to the device pin C9 and V _{SSPWR} pins for applications using a coin cell as the battery. See the <i>Bypass Capacitors</i> section for more information. If power to the device is cycled, the voltage applied to this device pin must reach V _{REGI} (rising).	
84	BLE_LDO_ IN			_	_	Bluetooth LDO Input. Bypass BLE_LDO_IN with a 100nF capacitor to V _{SS} placed as close as possible to the BLE_LDO_IN device pin.	
82	V_{DDA}	_	_	_	_	1.8V Analog Power Supply	
85	V _{DDA_BB}	_	_	_	_	1.8V Analog Power Supply for the Bluetooth Baseband	
86	V _{DDA_RF}	_	_	_	_	1.8V Analog Power Supply for the Bluetooth Radio	
5	V _{COREA}	_	_	_	_	Digital Core Supply Voltage A	
72	V _{COREB}	_	_			Digital Core Supply Voltage B	
73	V _{BST}	_	_	_	_	Boosted Supply Voltage for the Gate Drive of High-Side Switches. Bypass V _{BST} to LXB with a 3.3nF capacitor.	
78	V _{REGO_} A	_	_	_	_	Buck Converter A Voltage Output. Do not connect to external circuits. Bypass V_{REGO_A} with a $22\mu F$ capacitor to V_{SS} placed as close as possible to the V_{REGO_A} device pin. This capacitor should be placed on the PCB trace between the V_{REGO_A} device pin and the V_{DDA} device pin.	
79	V _{REGO_B}	_	_	_	_	Buck Converter B Voltage Output. Do not connect to external circuits. Bypass V_{REGO_B} with a 22 μ F capacitor to V_{SS} placed as close as possible to the V_{REGO_B} device pin. This capacitor should be placed on the PCB trace between the V_{REGO_B} device pin and the closest V_{COREB} device pin.	

			FUNCTIO	N MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION
81	V _{REGO_C}	_	_	_	_	Buck Converter C Voltage Output. Do not connect to external circuits. Bypass V_{REGO_C} with a 22 μ F capacitor to V_{SS} placed as close as possible to the V_{REGO_C} device pin. This capacitor should be placed on the PCB trace between the V_{REGO_C} device pin and the closest V_{COREA} device pin.
80	V _{REGO_D}	-	-	_	_	Buck Converter D Voltage Output. Do not connect to external circuits. Bypass V_{REGO_D} with a 22 μ F capacitor to V_{SS} placed as close as possible to the V_{REGO_D} device pin. This capacitor should be placed on the PCB trace between the V_{REGO_D} device pin and the BLE_LDO_IN device pin.
7	V _{DDIO}	_	_	_	_	GPIO Supply Voltage. Bypass this pin to V_{SS} with a 1.0 μ F capacitor placed as close as possible to the package.
6	V _{DDIOH}	_	_	_	_	GPIO Supply Voltage, High. V _{DDIOH} ≥ V _{DDIO} . Bypass this pin to V _{SS} with a 1.0µF capacitor placed as close as possible to the package.
EP1, EP2, EP3, EP4, 4	V _{SS}	_	_	_	_	Digital Ground/Exposed Pad. This must be connected to V _{SS} . Refer to <u>Application</u> Note 3273: Exposed Pads: A Brief Introduction for additional information.
83	V _{SSA}	_	_	_	_	Analog Ground
1	V _{SSA_BB}	_	_	_	_	Bluetooth Baseband Analog Ground
76	V _{SSPWR}	_	_	_	_	Ground for the SIMO SMPS. This device pin is the return path for the the V _{REGI} device pins C6 and C9.
36	AVDD	_	_	_	_	3.0V Analog Power Supply
35	AGND	_		_	_	Analog Ground for AVDD
87	GND_LNA	_	_			Analog Ground
75	LXA	_	_	_	_	Switching Inductor Input A. Connect a 2.2µH inductor between LXA and LXB.
77	LXB	_	<u> </u>	_	_	Switching Inductor Input B. Connect a 2.2µH inductor between LXA and LXB.
RESET	AND CONTRO	DL				
67	RSTN	_	_	_	_	Active-Low, External System Reset Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin has an internal pullup to the VDDIOH supply.

PIN	NAME	FUNCTION MODE				
		Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION
CLOCK			•			
3	HFXOUT	_	_	_	_	32MHz Crystal Oscillator Output
2	HFXIN	_	_	_	_	32MHz Crystal Oscillator Input. Connect a 32MHz crystal between HFXIN and HFXOUT for Bluetooth operation. Optionally, this pin can be configured as the input for an external CMOS-level clock source.
ANTENNA OUTPUT						
88	ANT	_	_	_	_	Antenna for Bluetooth Radio. Attach the single-ended, unbalanced Bluetooth radio antenna.
16-BIT TO 24-BIT Δ-Σ ADC WITH PGA						
44	REF0P	_	_	_	_	Positive Differential Reference 0 Input. REF0P must be more positive than REF0N.
43	REF0N	_	_	_	_	Negative Differential Reference 0 Input. REF0P must be more positive than REF0N.
27	REF1P	_	_	_	_	Positive Differential Reference 1 Input. REF1P must be more positive than REF1N.
28	REF1N	_	_	_	_	Negative Differential Reference 1 Input. REF1P must be more positive than REF1N.
25	CAP0P	_	_	_	_	ADC0 PGA Positive Output. Connect 1nF capacitor across CAP0P and CAP0N.
26	CAP0N	_	_	_	_	ADC0 PGA Negative Output. Connect 1nF capacitor across CAP0P and CAP0N.
46	CAP1P	_	_	_	_	ADC1 PGA Positive Output. Connect 1nF capacitor across CAP1P and CAP1N.
45	CAP1N	_	_	_	_	ADC1 PGA Negative Output. Connect 1nF capacitor across CAP1P and CAP1N.
29	AIN0	_	_	_	_	Channel 0 Analog Input/Positive Differential Reference Input. When used as an analog input, may serve as either the positive or negative differential input. May also serve as current source output. When used as a reference input paired with AIN1, AIN0 must be more positive than AIN1.

			FUNCTIO	N MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION
30	AIN1	_	_	_	_	Channel 1 Analog Input/Negative Differential Reference Input. When used as an analog input, may serve as either the positive or negative differential input. May also serve as current source output. When used as a reference input paired with AINO, AINO must be more positive than AIN1.
31	AIN2	_	_	_	_	Channel 2 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
32	AIN3	_	_	_	_	Channel 3 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
33	AIN4	_	_	_	_	Channel 4 Analog Input. May serve as either the positive or negative differential input paired with any of the other AlNx analog inputs. May also serve as current source output.
34	AIN5	_	_	_	_	Channel 5 Analog Input. May serve as either the positive or negative differential input paired with any of the other AlNx analog inputs. May also serve as current source output.
37	AIN6	_	_	_	_	Channel 6 Analog Input. May serve as either the positive or negative differential input paired with any of the other AlNx analog inputs. May also serve as current source output.
38	AIN7	_	_	_	_	Channel 7 Analog Input. May serve as either the positive or negative differential input paired with any of the other AlNx analog inputs. May also serve as current source output.
39	AIN8	_	_	_	_	Channel 8 Analog Input. May serve as either the positive or negative differential input paired with any of the other AlNx analog inputs. May also serve as current source output.
40	AIN9	_	_	_	_	Channel 9 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.

			FUNCTIO	N MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION
41	AIN10	_	_	ı	ı	Channel 10 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
42	AIN11	ı	_	I	ı	Channel 11 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
12-BIT I	DAC					
48	DAC12_O UT	_	_	_	_	12-Bit DAC Analog Voltage Output
INTERN	AL REFEREN	ICE				
47	INT_REF	П	_	_	_	Internal Reference Output. This reference is used by the 12-bit DAC and the 16-bit to 24-bit ADC0/1. It must be bypassed to V _{SSA} with a 4.7µF capacitor.
GPIO A	ND ALTERNA	TE FUNCTION				
66	P0.0	P0.0	UART0A_RX			UART0 Port Map A Receive
65	P0.1	P0.1	UART0A_TX	_	_	UART0 Port Map A Transmit
64	P0.2	P0.2	TMR0A_IOA	UART0B_CT S	_	Timer 0 I/O 32 Bits or Lower 16 Bits Port Map A; UART0 Clear to Send Port Map B
63	P0.3	P0.3	EXT_CLK/ TMR0A_IOB		_	External Clock for Use as SYS_OSC/ Timer 0 Port Map A I/O Upper 16 Bits; UART0 Port Map B Request to Send
62	P0.4	P0.4	SPI0A_SS0	TMR0B_IOA N	_	SPI0 Port Map A Slave Select 0; Timer 0 Port Map B I/O 32 Bits or Lower 16 Bits Inverted Output
61	P0.5	P0.5	SPI0A_MOSI	TMR0B_IOB N	١	SPI0 Port Map A Master-Out Slave-In/ Serial Data 0; Timer 0 Port Map B Upper 16 Bits Inverted Output
60	P0.6	P0.6	SPI0A_MISO	OWM_IO	_	SPI0 Port Map A Master-In Slave-Out/ Serial Data 1; 1-Wire Master Data I/O
59	P0.7	P0.7	SPI0A_SCK	OWM_PE	_	SPI0 Port Map A Clock; 1-Wire Master Pullup Enable Output
58	P0.8	P0.8	SPI0A_SDIO 2	TMR0B_IOA	_	SPI0 Port Map A Data 2; Timer 0 Port Map B I/O 32 Bits or Lower 16 Bits
57	P0.9	P0.9	SPI0A_SDIO 3	TMR0B_IOB	_	SPI0 Port Map A Data 3; Timer 0 Port Map B I/O Upper 16 Bits
56	P0.10	P0.10	I2C0A_SCL	SPI0B_SS2	_	I2C0 Port Map A Clock; SPI0 Port Map B Slave Select 2
55	P0.11	P0.11	I2C0A_SDA	SPI0B_SS1		I2C0 Port Map A Serial Data; SPI0 Port Map B Slave Select 1
54	P0.12	P0.12	UART1A_RX	TMR1B_IOA N	_	UART1 Port Map A Receive; Timer 1 Port Map B 32 Bits or Lower 16 Bits Inverted Output

			FUNCTIO	ON MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION
53	P0.13	P0.13	UART1A_TX	TMR1B_IOB N	_	UART1 Port Map A Transmit; Timer 1 Port Map B Upper 16 Bits Inverted Output
52	P0.14	P0.14	TMR1A_IOA	UART1B_CT S	_	Timer 1 Port Map A I/O 32 Bits or Lower 16 Bits; UART1 Port Map B Clear to Send
51	P0.15	P0.15	TMR1A_IOB	UART1B_RT S	_	Timer 1 I/O Port Map A Upper 16 Bits; UART1 Port Map B Request to Send
50	P0.16	P0.16	I2C1A_SCL	PT2	_	I2C1 Port Map A Clock; Pulse Train 2
49	P0.17	P0.17	I2C1A_SDA	PT3	_	I2C1 Port Map A Serial Data; Pulse Train 3
21	P0.24	P0.24	SPI1A_SDIO 2	TMR2B_IOA	ADC0_RDY	SPI1 Port Map A Data 2; Timer 2 I/O Port Map B 32 Bits or Lower 16 Bits
20	P0.25	P0.25	SPI1A_SDIO 3	TMR2B_IOB	ADC1_RDY	SPI1 Port Map A Data 3; Timer 2 I/O Port Map B Upper 16 Bits
19	P0.26	P0.26	TMR2A_IOA	SPI1B_SS1	_	Timer 2 I/O Port Map A 32 Bits or Lower 16 Bits; SPI1 Port Map B Slave Select 1
18	P0.27	P0.27	TMR2A_IOB	SPI1B_SS2	_	Timer 2 I/O Port Map A Upper 16 Bits; SPI1 Port Map B Slave Select 2
17	P0.28	P0.28	SWDIO	_	_	Serial Wire Debug Data I/O
16	P0.29	P0.29	SWCLK	_	_	Serial Wire Debug Clock
15	P1.0	P1.0	UART2A_RX	RV_TCK	_	UART2 Port Map A Receive; 32-Bit RISC-V Test Port Clock
14	P1.1	P1.1	UART2A_TX	RV_TMS	_	UART2 Port Map A Transmit; 32-Bit RISC-V Test Port Select
13	P1.2	P1.2	I2S0A_SCK	RV_TDI	_	I2S0 Port Map A Bit Clock; 32-Bit RISC-V Test Port Data Input
12	P1.3	P1.3	I2S0A_LRCL K	RV_TDO	_	I2S0 Port Map A Left/Right Clock; 32-Bit RISC-V Test Port Data Output
11	P1.4	P1.4	I2S0A_SDI	TMR3B_IOA	_	I2S0 Port Map A Serial Data Input; Timer 3 I/O Port Map B 32 Bits or Lower 16 Bits
10	P1.5	P1.5	I2S0A_SDO	TMR3B_IOB	_	I2S0 Port Map A Serial Data Output; Timer 3 I/O Upper 16 Bits Port Map B
9	P1.6	P1.6	TMR3A_IOA	BLE_ANT_C TRL2	_	Timer 3 I/O Port Map A 32 Bits or Lower 16 Bits; Bluetooth Antenna Control Line 2
8	P1.7	P1.7	TMR3A_IOB	BLE_ANT_C TRL3	_	Timer 3 I/O Port Map A Upper 16 Bits; Bluetooth Antenna Control Line 3
71	P2.4	P2.4	AIN12/ COMP2N	LPTMR0B_IO A	_	10-Bit Δ-Σ ADC Input 4/Comparator 2 Negative Input; Low-Power Timer 0 I/O Port Map B 32 Bits or Lower 16 Bits
70	P2.5	P2.5	AIN13/ COMP2P	LPTMR1B_IO A	_	10-Bit Δ-Σ ADC Input 5/Comparator 2 Positive Input; Low-Power Timer 1 I/O Port Map B 32 Bits or Lower 16 Bits

			FUNCTIO	N MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 4	FUNCTION
69	P2.6	P2.6	LPTMR0_CL K/AIN14/ COMP3N	LPUARTB_R X	_	Low-Power Timer 0 External Clock Input/ 10-Bit Δ-Σ ADC Input 6/Comparator 3 Negative Input; Low-Power UART 0 Port Map B Receive
68	P2.7	P2.7	LPTMR1_CL K/AIN15/ COMP3P	LPUARTB_T X	-	Low-Power Timer 1 External Clock Input/ 10-Bit Δ-Σ ADC Input 7/Comparator 3 Positive Input; Low-Power UART 0 Port Map B Transmit
DO NOT	CONNECT					
23	FSK_IN	_	_	_		Do Not Connect. Internally connected. Do not make any electrical connection to this pin, including power supply grounds.
24	FSK_OUT	_	_	_	_	Do Not Connect. Internally connected. Do not make any electrical connection to this pin, including power supply grounds.
22	HART_RE F	_	_	_	_	This pin must be connected to a 0.1µF capacitor.

Detailed Description

The MAX32680 microcontroller (MCU) is an advanced system-on-chip featuring an Arm Cortex-M4F CPU for efficient computation of complex functions and algorithms that is qualified to operate over a temperature range of -40°C to +85°C. The SoC integrates power regulation and management with a SIMO buck regulator system. Onboard is the latest generation Bluetooth 5.2 LE radio, supporting LE Audio, angle of arrival (AoA) and angle of departure (AoD) for direction finding, long-range (coded) modes, and high-throughput modes.

The device offers large onboard memory with 512KB flash and 128KB SRAM, with optional ECC on one 32K SRAM bank. This 32KB bank can be optionally retained in BACKUP mode. An 8KB user OTP area is available, of which 8 bytes are retained even during POWER DOWN mode.

An AFE provides two 12-channel Δ - Σ ADCs with features and specifications that are optimized for precision sensor measurement. Each Δ - Σ ADC can digitize external analog signals as well as system temperature and supplies. An optional PGA with gains of 1x to 32x precedes each ADC. ADC outputs can be optionally converted on the fly from integer to single-precision floating-point format. A 12-bit DAC is also included. The integrated temperature sensor can be used with the internal sense element or an external diode for temperature compensation of sensor outputs. The device also includes a trust protection unit (TPU), providing robust security features such as an AES Engine, TRNG, and secure boot.

Many high-speed interfaces are supported on the device, including SPI, UART, and I²C serial interfaces, plus one I²S port for connecting to an audio codec. Additional low-power peripherals include flexible LPTIMER, LPUART, and analog comparators. A four-input, 10-bit ADC is available to monitor analog input from external analog sources.

Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor

The Arm Cortex-M4 with floating point unit (FPU) processor (CM4) is ideal for low-power system control. The architecture combines high-efficiency signal processing functionality with low power, low cost, and ease of use.

The Arm Cortex-M4 with FPU DSP supports single instruction multiple data (SIMD) path DSP extensions, providing:

- Four parallel 8-bit add/sub
- Floating point single precision
- Two parallel 16-bit add/sub
- Two parallel MACs
- 32- or 64-bit accumulate
- Signed and unsigned data with or without saturation

The addition of the 32-bit RISC-V coprocessor (RV32) provides the system with ultra-low-power consumption signal processing.

Memory

Internal Flash Memory

512KB of internal flash memory provides nonvolatile storage of program and data memory.

Internal SRAM

The internal 128KB SRAM provides low-power retention of application information in all power modes except POWER DOWN. The SRAM is divided into four banks. SRAM0 and SRAM1 are both 32KB, SRAM2 is 48KB, and SRAM3 is 16KB. SRAM2 and SRAM3 are accessible by the RV32 in LOW POWER mode. For enhanced system reliability, SRAM0 (32KB) can be configured with ECC, single error correction-double error detection (SED-DED). This data-retention feature is optional and configurable. This granularity allows the application to minimize its power consumption by only retaining essential data.

Bluetooth 5.2

Bluetooth 5.2 Low Energy Radio

Bluetooth 5.2 LE is the latest version of the Bluetooth wireless communication standard. It is used for wireless headphones and other audio hardware and communication between various smart home and internet of things (IoT) devices. Bluetooth LE communications operate in the unlicensed 2.4GHz industrial-scientific-medical (ISM) band. A frequency-hopping transceiver is used to combat interference and fading. The system operates in the 2.4GHz ISM band at 2400MHz to 2483.5MHz. It uses 40 RF channels that have center frequencies $2402 + k \times 2MHz$, where k = 0, ..., 39. The Bluetooth stack runs on RV32 so that the CM4 can be freed to run the software. The features of the radio include the following:

- Higher transmit power up to +4.5dbm
- 1Mbps, 2Mbps, and long-range coded (125kbps and 500kbps)
- · Increased broadcast capability
 - · Advertising packet up to 255 bytes
- On-chip matching network to the antenna
- Antenna control outputs
- Direction finding with AoA and AoD
- Provides hardware on-the-fly encryption and decryption for lower power consumption
- Low transmit current of 4.17mA at 0dbm at 3.3V
- Low receive current of 4.0mA at 3.3V
- Supports mesh networking
- Supports high-quality audio streaming (isochronous)

Bluetooth 5.2 Software Stack

A Bluetooth 5.2 software stack is available for application developers to quickly add support to devices. The Arm Cordio[®]-B50 software stack is provided in library form and provides application developers access to Bluetooth technology without validation and development of a software stack. The Cordio-B50 software stack interfaces to the Bluetooth link layer running on dedicated hardware. The dedicated hardware for the stack enables the ultimate in power management for IoT applications. Cordio-B50 features the following:

- C library for linking directly into an application development tool
- Change PHY support
 - · Host selects the PHY it needs to use at any given time enabling long range or higher bandwidth only when required
 - Bluetooth LE 1M
 - Bluetooth LE Coded S = 2
 - Bluetooth LE Coded S = 8
 - · Bluetooth LE 2M
- Bluetooth 5.2 advertising extension support for enabling next-generation Bluetooth beacons
 - · Larger packets and advertising channel offloading
 - Packets up to 255 octets long
 - · Advertising packet chaining
 - · Advertising sets
 - · Periodic advertising
 - · High-duty cycle, non-connectable advertising
 - Sample applications using standard profiles built on the Cordio-B50 software framework

Comparators

The four AIN[15:12] inputs can be configured as two pairs and deployed as two independent comparators with the following features:

- Comparison events can trigger interrupts
- Events can wake CM4 from SLEEP, LOW POWER, MICRO POWER, STANDBY, or BACKUP operating modes
- Can be active in all power modes

Dynamic Voltage Scaling (DVS) Controller

The DVS controller works using the fixed high-speed oscillator and the V_{COREA} supply voltage to optimally operate the Arm core at the lowest practical voltage. The ability to adaptively adjust the voltage provides a significant reduction in dynamic power consumption.

The DVS controller provides the following features:

- DVS monitoring and adjustment functions
- Continuous monitoring with programmable monitor sample period
- Controlled transition to a programmable operating point
- Independent high and low operating limits for safe, bounded operation
- Independent high, center, and low operating range delay line monitors
- Programmable adjustment rate when an adjustment is required
- Single clock operation
- · APB interface provides IP control and status access
- · Interrupt capability during error

Clocking Scheme

Multiple clock sources can be selected as the system clock:

- Internal primary oscillator (IPO) at a nominal frequency of 100MHz
- Internal secondary oscillator (ISO) at a nominal frequency of 60MHz
- Configurable internal nanoring oscillator (INRO) at 8kHz, 16kHz, or 30kHz
- Internal baud rate oscillator at 7.3728MHz (IBRO)
- External square-wave clock up to 80MHz
- External RF oscillator at 32MHz (ERFO)—external crystal required

There are multiple external clock inputs:

- LPTMR0 and LPTMR1 can be clocked from unique external sources.
- SYS_CLK can be derived from an external source.

The AFE is configured by SPI1 and is clocked by the built-in Δ - Σ clock generation or the EXT_CLK signal.

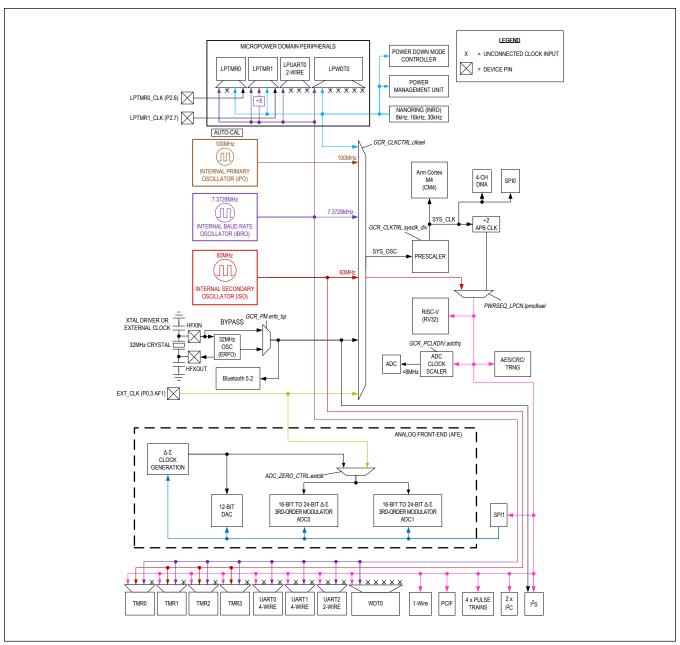


Figure 6. Clocking Scheme Diagram

General-Purpose I/O (GPIO) and Special Function Pins

Most GPIO pins share both a firmware-controlled I/O function and one or more alternate functions associated with peripheral modules. Software can individually enable device pins for GPIO or peripheral alternate function use. Configuring a pin as an alternate function usually supersedes its use as a firmware-controlled I/O. Multiplexing between alternate functions and GPIO can be performed dynamically. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or alternate function, except where explicitly noted in the <u>Electrical Characteristics</u> tables.

In GPIO mode, pins are logically divided into ports of 32 pins. Each pin of a port has an interrupt function that can be

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

independently enabled and configured as a level- or edge-sensitive interrupt. All GPIOs of a given port share the same interrupt vector.

When configured as GPIO, all features can be independently enabled or disabled on a per-pin basis. The following features are provided:

- Configurable as input, output, bidirectional, or high impedance
- Optional internal pullup resistor or internal pulldown resistor when configured as input
- Exit from low-power modes on rising or falling edge
- Selectable standard- or high-drive modes

The MAX32680 provides up to 36 GPIO pins.

10-Bit ADC for Supply and GPIO Monitoring

The 10-bit Δ - Σ ADC provides an integrated reference generator and a single-ended input multiplexer. The multiplexer selects an input channel from one of the four external analog input signals (AIN15–AIN12) or the internal power supply inputs.

The reference for the ADC can be:

- Internal 1.22V bandgap (VBG)
- V_{DDA} analog supply

An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel-limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a power mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the CPU is in SLEEP, LOW POWER, or MICRO POWER mode. The four AIN[15:12] inputs can be configured as two pairs and deployed as two independent comparators.

The ADC measures the following voltages:

- AIN[15:12] up to 3.3V
- V_{REGI}
- V_{COREA}
- V_{COREB}
- V_{DDIOH}
- V_{DDIO}
- V_{DDA} RF
- V_{DDA_BB}
- V_{DDA}

Single-Inductor Multiple-Output (SIMO) Switch-Mode Power Supply (SMPS)

The SIMO SMPS built into the device provides a monolithic power supply architecture for operation from a single lithium (Li+) cell. The SIMO provides four buck regulator outputs that are voltage programmable. This architecture optimizes the power consumption efficiency of the device and minimizes the bill of materials for the circuit design, since only a single inductor/capacitor pair is required.

Power Management

Power Management Unit (PMU)

The PMU provides high-performance operation while minimizing power consumption. It exercises intelligent, precise control of power distribution to the CPUs and peripheral circuitry.

The PMU provides the following features:

- User-configurable system clock
- Automatic enabling and disabling of crystal oscillators based on power mode
- Multiple power domains
- Fast wake-up of powered-down peripherals when activity detected

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

ACTIVE Mode

In this mode, CM4 and RV32 can execute software, and all digital and analog peripherals are available on demand. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power consumption. CM4 has access to all system SRAM. RV32 has access to SRAM2 and SRAM3. Both CM4 and the RV32 can execute from internal flash simultaneously. SRAM3 can be configured as an instruction cache for RV32.

SLEEP Mode

This mode consumes less power, but wakes faster because software can optionally enable the clocks.

The device status is as follows:

- CM4 is asleep.
- RV32 is asleep.
- · Peripherals are on.
- Standard DMA is available for optional use.

LOW POWER Mode (LPM)

This mode is suitable for running the RV32 processor to collect and move data from enabled peripherals.

The device status is a follows:

- The CM4, SRAM0, and SRAM1 are in state retention.
- The RV32 can access the SPI, all UARTS, all timers, I²C, 1-Wire, pulse train engines, I²S, CRC, AES, TRNG, PCIF, and comparators, as well as SRAM2 and SRAM3. SRAM3 can be configured to operate as an RV32 instruction cache.
- The transition from LOW POWER mode to ACTIVE mode is faster than the transition from BACKUP mode because system initialization is not required.
- The DMA can access flash.
- IPO can be optionally powered down.
- The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
 - ISO
 - ERFO

MICRO POWER Mode (UPM)

This mode is used for extremely low power consumption while using a minimal set of peripherals to provide the wake-up capability.

The device status is a follows:

- Both CM4 and RV32 are state retained. (System state and all SRAM is maintained.)
- The GPIO pins retain their state.
- All non-MICRO POWER peripherals are state retained.
- IBRO can be optionally powered down.
- The following oscillators are powered down:
 - IPO
 - ISO
 - ERFO
- The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
- The following MICRO POWER mode peripherals are available for use to wake up the device:
 - LPUART0, LPUART1
 - WDT1
 - All four low-power analog comparators

STANDBY Mode

This mode is used to maintain the system operation while keeping time with the RTC.

The device status is as follows:

- Both CM4 and RV32 are state retained. (System state and all SRAM is maintained.)
- The GPIO pins retain their state.
- RTC is on.
- All peripherals are state retained.
- The following oscillators are powered down:
 - IPO
 - ISO
 - IBRO
 - ERFO
- The following oscillators are enabled:
 - ERTCO
 - INRO

BACKUP Mode

This mode is used to maintain the system RAM. The device status is as follows:

- CM4 and RV32 are powered off.
- SRAM0, SRAM1, SRAM2, and SRAM3 can be configured to be state retained as per Table 1.
- All peripherals are powered off.
- The GPIO pins retain their state.
- · RTC is on.
- The following oscillators are powered down:
 - IPO
 - ISO
 - IBRO
 - INRO
 - ERFO
- The following oscillators are enabled:
 - ERTCO

Table 1. BACKUP Mode SRAM Retention

RAM BLOCK	RAM SIZE
SRAM0	32KB + ECC
SRAM1	32KB
SRAM2	48KB
SRAM3	16KB

POWER DOWN Mode (PDM)

This mode is used during product level distribution and storage.

The device status is as follows:

- CM4 and RV32 are powered off.
- All peripherals and SRAM are powered down.
- All oscillators are powered down.
- Eight bytes of OTP data are retained.
- Values in the flash are preserved.
- Voltage monitors are operational.

Wake-Up Sources

The wake-up sources from the SLEEP, LOW POWER, MICRO POWER, STANDBY, BACKUP, and POWER DOWN operating modes are summarized in <u>Table 2</u>.

Table 2. Wake-Up Sources

OPERATING MODE	WAKE-UP SOURCE				
SLEEP	Any enabled peripheral with interrupt capability; RSTN				
LOW POWER (LPM)	PI0, I ² S, I ² C, UARTs, timers, watchdog timers, wake-up timer, all comparators, RTC, GPIOs, RSTN, and RV32				
MICRO POWER (UPM)	All comparators, LPUART, LPTMR1, LPTIMER2, LPWDT0, RTC, wake-up timer, GPIOs, and RSTN				
STANDBY	RTC, wake-up timer, GPIOs, CMP0, and RSTN				
BACKUP	RTC, wake-up timer, GPIOs, CMP0, and RSTN				
POWER DOWN (PDM)	RSTN				

Standard DMA Controller

The standard DMA controller allows automatic one-way data transfer between two entities. These entities can be either memories or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported:

- 4-channel
- · Peripheral to data memory
- Data memory to peripheral
- Data memory to data memory
- Event support

All DMA transactions consist of an AHB burst read into the DMA FIFO, followed immediately by an AHB burst write from the FIFO.

The MAX32680 provides one instance of the standard DMA controller.

Programmable Timers

32-Bit Timer/Counter/PWM (TMR, LPTMR)

General-purpose, 32-bit timers provide timing, capture/compare, or generate pulse-width modulated (PWM) signals with minimal software interaction.

The timer provides the following features:

- 32-bit up/down auto-reload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External pin multiplexed with GPIO for timer input, clock gating, or capture
- Timer output pin
- TMR0-TMR3 can be configured as two 16-bit general-purpose timers
- Timer interrupt

The MAX32680 provides six 32-bit timers (TMR0, TMR1, TMR2, TMR3, LPTMR0, and LPTMR1). LPTMR0 and LPTMR1 are capable of operation in the SLEEP, LOW POWER, and MICRO POWER modes.

I/O functionality is supported for all of the timers. Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all the ports depending on the device configuration. See $\underline{\text{Table 3}}$ for individual timer features.

Table 3. Timer Configuration Options

	REGISTER	SINGLE	DUAL	SINGLE	POWER				CLOCK	(SOURCE	
INSTANCE	ACCESS NAME	32 BIT	16 BIT	16 BIT	MODE	PCLK	PCLK ISO		INRO	LPTMR0_CLK	LPTMR1_CLK
TMR0	TMR0	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	No	No
TMR1	TMR1	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	No	No
TMR2	TMR2	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	No	No
TMR3	TMR3	Yes	Yes	No	ACTIVE, SLEEP, LOW POWER	Yes	Yes	Yes	No	No	No
LPTMR0	TMR4	No	No	Yes	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	No	Yes	Yes	Yes	No
LPTMR1	TMR5	No	No	Yes	ACTIVE, SLEEP, LOW POWER, MICRO POWER	No	No	Yes	Yes	No	Yes

Watchdog Timer (WDT)

Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the windowed WDT, which detects runaway code or system unresponsiveness.

The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution. The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be reset within a specific time window. See <u>Table 4</u> for individual timer features.

The MAX32680 provides two instances of the watchdog timer—WDT0 and LPWDT0.

Table 4. Watchdog Timer Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	POWER MODE	CLOCK SOURCE			
INSTANCE NAME	REGISTER ACCESS NAME	POWER WIDDE	PCLK	IBRO	INRO	
WDT0	WDT0	ACTIVE SLEEP LOW POWER	Yes	Yes	No	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

Table 4. Watchdog Timer Configuration Options (continued)

LPWDT0	WDT1	ACTIVE SLEEP LOW POWER MICRO POWER	No	Yes	Yes
--------	------	---	----	-----	-----

Pulse Train Engine (PT)

Multiple, independent pulse train generators can provide either a square wave or a repeating pattern from 2 to 32 bits in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit level allowing for multibit patterns. Each pulse train generator is independently configurable.

The pulse train generators provide the following features:

- Independently enabled
- Safe enable and disable for pulse trains without bit banding
- Multiple pin configurations allow for a flexible layout
- Software can start/synchronize pulse trains independently or as a group
- The frequency of each enabled pulse train generator is also set separately, based on a divide down (divide by 2, divide by 4, divide by 8, and so on) of the pulse train module clock
- The pulse train module clock can be optionally configured by software to be independent of the system AHB clock
- Multiple repetition options
 - Single-shot mode (nonrepeating pattern of 2 to 32 bits)
 - · Pattern mode repeats a user-configurable number of times or indefinitely
 - Termination of one pulse train loop count can restart one or more other pulse trains

The pulse train engine feature is an alternate function associated with a GPIO pin. In most cases, enabling the pulse train engine function supersedes the GPIO function.

The MAX32680 provides up to two instances of the pulse train engine peripheral (PT[3:2]).

Serial Peripherals

I²C Interface (I2C)

The I²C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many, or many-to-many communications medium. This interface supports standard-mode, fast-mode plus, and high-speed mode I²C speeds. It provides the following features:

- Master or slave mode operation
 - · Supports up to four different slave addresses in slave mode
- Supports standard 7-bit addressing or 10-bit addressing
- RESTART condition
- Interactive receive mode
- Tx FIFO preloading
- Support for clock stretching to allow slower slave devices to operate on higher speed busses
- Multiple transfer rates
 - · Standard mode: 100kbps
 - Fast mode: 400kbps
 - · Fast mode plus: 1000kbps
 - · High-speed mode: 3.4Mbps
- Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes

The MAX32680 provides two instances of the I²C peripheral—I2C0, and I2C1.

I²S Interface (I2S)

The I²S interface is a bidirectional, four-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I²S Bus Specification, June 5, 1996. It provides the following features:

- Master and slave mode operation
- Support for 4 channels
- 8, 16, 24, and 32-bit frames
- Receive and transmit DMA support
- Wakeup on FIFO status (full/empty/threshold)
- Pulse density modulation support for the receive channel
- Word-select polarity control
- First-bit position selection
- Interrupts generated for FIFO status
- Receiver FIFO depth of 32 bytes
- Transmitter FIFO depth of 32 bytes

The MAX32680 provides one instance of the I²S peripheral (I2S0).

Serial Peripheral Interface (SPI)

The SPI is a highly configurable, flexible, and efficient synchronous interface where multiple SPI devices can coexist on a single bus. The bus uses a single clock signal and numerous data signals, and one or more slave select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead.

The provided SPI peripherals can operate in either slave or master mode and offer the following features:

- SPI modes 0, 1, 2, or 3 for single-bit communication
- 3- or 4-wire mode for single-bit slave device communication
- Full-duplex operation in single-bit, 4-wire mode
- Dual and quad data modes supported
- Multiple slave selects on some instances
- Multimaster mode fault detection
- · Programmable interface timing
- Programmable SCK frequency and duty cycle
- 32-byte transmit and receive FIFOs
- Slave select assertion and de-assertion timing for leading/trailing SCK edge

The MAX32680 provides one instance of the SPI peripheral—SPI0. See Table 5 for configuration options.

Table 5. SPI Configuration Options

INSTANCE	DATA	SLAVE SELECT LINES	MAXIMUM FREQUENCY MASTER MODE (MHz)	MAXIMUM FREQUENCY SLAVE MODE (MHz)
SPI0	3-wire, 4-wire, dual, or quad data support	3	50	50

UART (UART, LPUART)

The universal asynchronous receiver-transmitter (UART, LPUART) interface supports full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry-standard request to send (RTS) and clear to send (CTS) flow control signaling. Each instance is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 8-byte send/receive FIFO
- Full-duplex operation for asynchronous data transfers
- Interrupts available for frame error, parity error, CTS, Rx FIFO overrun, and FIFO full/partially full conditions
- Automatic parity and frame error detection
- Independent baud-rate generator
- Programmable 9th-bit parity support
- Multidrop support

- Start/stop bit support
- Hardware flow control using RTS/CTS
- Two DMA channels can be connected (read and write FIFOs)
- Programmable word size (5 bits to 8 bits)

The MAX32680 provides four instances of the UART peripheral—UART0, UART1, UART2, and LPUART0. LPUART0 is capable of operation in the SLEEP, LOW POWER, and MICRO POWER modes. See <u>Table 6</u> for configuration options.

Table 6. UART Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	HARDWARE FLOW CONTROL	POWER MODE	CLOCK SOURCE	
INSTANCE NAME	REGISTER ACCESS NAIVIE	HARDWARE FLOW CONTROL	POWER MODE	PCLK	IBRO
UART0	UART0	Yes	ACTIVE SLEEP LOW POWER	Yes	Yes
UART1	UART1	Yes	ACTIVE SLEEP LOW POWER	Yes	Yes
UART2	UART2	No	ACTIVE SLEEP LOW POWER	Yes	Yes
LPUART0	UART3	No	ACTIVE SLEEP LOW POWER MICRO POWER	No	Yes

1-Wire Master (OWM)

Maxim's 1-Wire bus consists of one signal that carries data and supplies power to the slave devices and a ground return. The bus master communicates serially with one or more slave devices through the bidirectional, multidrop 1-Wire bus. The single-contact serial interface is ideal for communication networks requiring minimal interconnection.

The provided 1-Wire master supports the following features:

- · Single contact for control and operation
- Unique factory identifier for any 1-Wire device
- Multiple device capability on a single line

The OWM supports both standard (15.6kbps) and overdrive (110kbps) speeds.

16-Bit to 24-Bit Δ - Σ ADC with PGA

A low-power, multichannel, 24-bit Δ - Σ ADC has features and specifications optimized for the precision measurement of sensors and other analog signal sources. The architecture includes a low-noise PGA, low-power input buffers, programmable matched current sources, differential/single-ended input multiplexer, and integrated on-chip oscillator.

- PGA with available gains 1x to 128x
 - · Very high input impedance
 - · Optimizes overall dynamic range
- Low-power input buffers
 - · Provide input isolation
- Selectable reference
 - Internal differential (V_{RFF})
 - · External differential
- Programmable current sources
 - Bias for resistive sensors
 - 16 current levels available
 - · Detection of broken sensor wires
- 12 analog inputs

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

- · 6 differential or 12 single ended
- Sample rates up to 1920 samples per second
- FIR digital filters
 - Provides single-cycle settling in 16ms
 - 90dB of noise rejection at 50Hz and 60Hz
- On-chip clock source
 - · No external components required
- External clock capable
- Sample ready interrupts
 - ADC0_RDY and ADC1_RDY

The MAX32680 provides two instances of this ADC (ADC_ZERO, ADC_ONE) that share the multiplexed 12 analog inputs (AIN0-AIN11).

12-Bit DAC

The 12-bit DAC outputs a single-ended voltage. It can be set independently to generate either a static output voltage or to generate a series of preloaded sample outputs at a specified sample rate.

The 12-bit DAC peripheral support the following features:

- Configurable clock rate and output sample rate
- Selectable output voltage reference
- Can be set to output a static voltage level, a preset number of samples at a configurable sample rate, or samples continuously at a configurable sample rate
- Interpolation filter allows for linearly interpolated output samples to be generated between each pair of output samples (2 to 1, 4 to 1, or 8 to 1)
- DAC output samples are pulled from a FIFO to allow continuous sample output generation

Security

AES

The dedicated hardware-based AES engine supports the following algorithms:

- AES-128
- AES-192
- AES-256

The AES keys are automatically generated by the engine and stored in a dedicated flash region to protect against tampering. Key generation and storage are transparent to the user.

TRNG Non-Deterministic Random Bit Generator (NDRBG)

The device provides a nondeterministic entropy source that can generate cryptographic seeds or strong encryption keys as part of an overall framework for a secure customer application.

Software can use random numbers to trigger asynchronous events that add complexity to program execution to thwart replay attacks or key-search methodologies.

The TRNG can support the system-level validation of many security standards. Maxim Integrated works directly with the customer's validation laboratory to provide the laboratory with any required information. Contact Maxim Integrated for details of compliance with specific standards.

Cyclic Redundancy Check (CRC) Module

A CRC hardware module provides fast calculations and data integrity checks by application software. It supports a user-defined programmable polynomial up to 32-bits. Direct memory access copies data into the CRC module so that CRC calculations on large memory blocks are performed with minimal CPU intervention. Examples of common polynomials are depicted in <u>Table 7</u>.

Table 7. Common CRC Polynomials

ALGORITHM	POLYNOMIAL EXPRESSION	ORDER	POLYNOMIAL	CHECK
CRC-32-ETHERNET	x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x^{1} + x^{0}	0xEDB8 8320	LSB	0xDEBB 20E3
CRC-CCITT	x ¹⁶ + x ¹² + x ⁵ + x ⁰	0x0000 8408	LSB	0x0000 F0B8
CRC-16	x ¹⁶ + x ¹⁵ + x ² + x ⁰	0x0000 A001	LSB	0x0000 B001
USB DATA	x ¹⁶ + x ¹⁵ + x ² + x ⁰	0x8005 0000	LSB	0x800D 0000
PARITY	x ¹ + x ⁰	0x0000 0001	MSB	_

Secure Boot

Following every reset, the device performs a secure boot to confirm that the program memory has come from an authenticated source and has not been modified or corrupted. An ECDSA-256 public key is loaded into nonvolatile memory during the initial configuration. The application binary is created and then signed with the corresponding private key before programming the device memory. Following every reset, the memory contents are checked using the ECDSA-256 key. If the contents are validated, the application software is considered trusted, and the device begins code execution. Programs that fail the integrity check indicate intentionally or unintentionally corrupted or modified program memory. The device then transitions to safe mode, which prevents the execution of the customer code. The device can be reloaded with new trusted program memory signed with the private key during the development phase. The JTAG interface can be disabled before deployment to prevent further modification of the program memory.

Debug and Development Interface (SWD, JTAG)

The serial wire debug (SWD) interface is used for code loading and ICE debug activities for the CM4. The JTAG interface is provided for the RV32. All devices in mass production have the debugging/development interface enabled.

Applications Information

Bypass Capacitors

The proper use of bypass capacitors reduces noise generated by the IC into the ground plane. The <u>Pin Descriptions</u> table indicates which pins should be connected to bypass capacitors, and the appropriate ground plane.

It is recommended that one instance of a bypass capacitor should be connected to each pin/ball of the IC package. For example, if the <u>Pin Descriptions</u> table shows four device pins associated with voltage supply A, a separate capacitor should be connected to each pin for a total of four capacitors.

Capacitors should be placed as close as possible to their corresponding device pins. Pins that recommend more than one value of capacitor per pin should place them in parallel with the lowest value capacitor first, closest to the pin.

Ordering Information

PART	FLASH	SYSTEM RAM	PIN-PACKAGE
MAX32680GLR+	512KB	128KB	88L LGA
MAX32680GLR+T*	512KB	128KB	88L LGA

T = Tape and reel.

^{* =} Future product—contact factory for availability.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End and Bluetooth LE 5.2

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/21	Initial release	_

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.