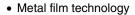


Vishay BCcomponents


Fusible Power Metal Film Leaded Resistors

A homogenous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a red non-flammable lacquer, which provides electrical, mechanical, and climatic protection.

The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" and "IEC 60068-2-45".

FEATURES

- High power (upto 3 W) in small package
- Small standard sizes (0207/0414/0617)
- · High stability, reliability and uniformity characteristics
- Defined interruption behaviour (fusing time)
- Various forming styles
- Non flammable
- Compatible with lead (Pb)-free and lead containing soldering processes
- Lead (Pb)-free and RoHS compliant

APPLICATIONS

- Audio
- Video

TECHNICAL SPECIFICATIONS				
DESCRIPTION	NFR01	NFR02	NFR03	
Resistance Range (1)		0.47 Ω to 1 k Ω		
Resistance Tolerance		± 5 %; E24 series		
Temperature Coefficient		± 200 ppm/K		
Climatic Category (LCT/UCT/days)		55/155/56		
Rated Dissipation P ₇₀	1 W	2 W	3 W	
Maximum Permissible Voltage: DC or RMS	350 V	500 V		
Cusing Daway	0.47 Ω to 10 Ω; ≥ 20 x Pn			
Fusing Power	10.1 Ω to 1 kΩ; ≥ 16 x Pn			
Fusing Time	≤ 60 s			
Maximum Resistance Change at P_{70} for Resistance Range, ΔR max., after:				
Load	± (5 % R + 0.1 Ω)			
Climatic Tests	± (3 % R + 0.1 Ω)			
Resistance to Soldering Heat	± (1 % R + 0.05 Ω)			

Note

 $^{(1)}$ Resistance values below 0.47 Ω with \pm 10 % tolerance are available on request

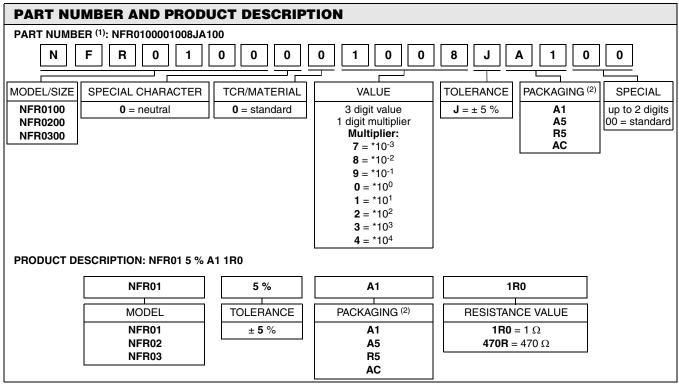
NFR01, NFR02, NFR03

Vishay BCcomponents

Fusible Power Metal Film Leaded Resistors

12NC INFORMATION FOR HISTORICAL CODING REFERENCE ONLY

- The resistors have a 12 digit ordering code starting with 2306
- The next 5 digits indicate the resistor type and packaging
- The last 3 digits indicate the resistance value:
 - The first 2 digits indicate the actual resistance value
 - The last digit indicates the resistance decade in accordance with table


Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
0.47 Ω to 0.91 Ω	7
1 Ω to 9.1 Ω	8
10 Ω to 91 Ω	9
100 Ω to 910 Ω	1
1 kΩ	2

12NC Example

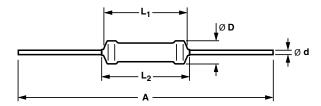
NFR01, 1 Ω , ± 5 %, ammopack 1000 pieces is **2306 208 13108**

12NC - resistor type and packaging								
	ORDERING CODE 2306							
DESCRIPTION		BANDOLIER IN AMMOPACK BANDOL ON REI						
TYPE	TAPE WIDTH	TOL.	500 UNITS	5000 UNITS				
NFR01	52.5	± 5 %	-	208 13	208 53	208 23		
NFR02	52.5	± 5 %	-	209 13	-	209 23		
NFR03	63.0	±5%	210 13					

Notes

(1) The PART NUMBER is shown to facilitate the introduction of the unified part numbering system

(2) Please refer to table PACKAGING, see next page

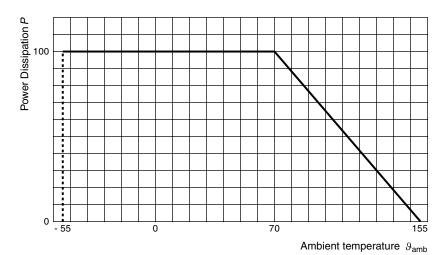


Fusible Power Metal Film Leaded Resistors

Vishay BCcomponents

PACKAGING						
MODEL	RE	EL	вох			
	PIECES	CODE	PIECES	CODE		
NFR01	5000	R5	1000 5000	A1 A5		
NFR02	5000	R5	1000	A1		
NFR03	-	-	500	AC		

DIMENSIONS



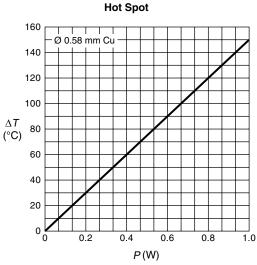
DIMENSIONS - resistor types, mass and relevant physical dimensions							
TYPE					MASS (g)/ 100 pieces		
NFR01	6.5	8.5	2.5	0.58 ± 0.05	52.5 ± 1.5	22	
NFR02	10	12	4	0.80 ± 0.03	52.5 ± 1.5	50	
NFR03	16.7	19.5	5.3	0.80 ± 0.03	63.0 ± 1.5	120	

MARKING

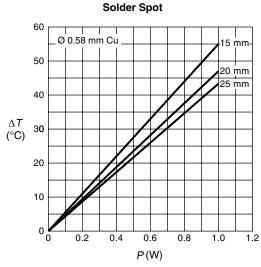
The nominal resistance and tolerance are marked on the resistor using four colored bands in accordance with IEC 60062 "Color code for fixed resistors". There is a fifth black band in order to indicate the type of resistor. Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of \pm 5 %.

FUNCTIONAL PERFORMANCE

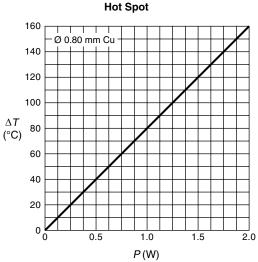
Derating - Standard Operation


Maximum dissipation ($P_{\text{max.}}$) in percentage of rated power as a function of ambient temperature (T_{amb})

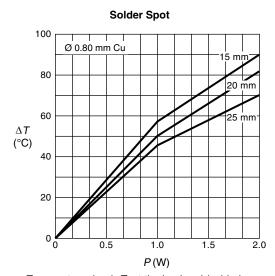
Vishay BCcomponents


Fusible Power Metal Film Leaded Resistors

APPLICATION INFORMATION NFR01



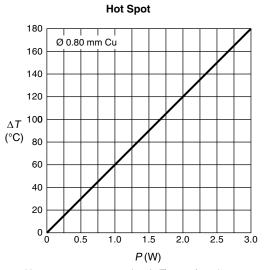
Hot spot temperature rise (ΔT) as a function of dissipated power

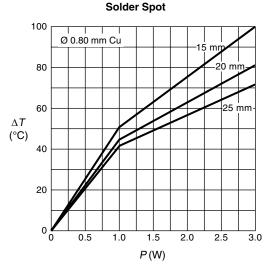


Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various leads lengths after mounting

NFR₀2

Hot spot temperature rise (ΔT) as a function of dissipated power


Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various leads lengths after mounting


Fusible Power Metal Film Leaded Resistors

Vishay BCcomponents

NFR₀3

Hot spot temperature rise (ΔT) as a function of dissipated power

Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various leads lengths after mounting

FUSING CHARACTERISTIC

The resistors will fuse without the risk of fire and within an indicated range of overload. Fusing means that the resistive value of the resistor increases at least 100 times.

Resistance Range	Power Overload	Fusing Time
0.47 Ω - 10 Ω	≥ 20 x maximum dissipation at 70 °C (Pn)	≤ 60 s
10.1 Ω - 1 kΩ	≥ 16 x maximum dissipation at 70 °C (Pn)	≥ 60.5

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of IEC 60115-1, category 55/155/56 (rated temperature range - 55 to + 155 °C; damp heat, long term, 56 days) and along the lines of IEC 60068-2; "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmosphere conditions according to IEC 60068-1 subclause 5.3, unless otherwise specified. In some instances deviations from IEC applications were necessary for our specified method.

PERFO	PERFORMANCE							
IEC 60115-1	IEC 60068-2	TEST	ST PROCEDURE		REQUIREMENTS MISSIBLE CHANGE	(∆ <i>R</i>)		
CLAUSE	TEST METHOD			NFR01	NFR02	NFR03		
4.8	-	Temperature coefficient	Between - 55 °C and + 155 °C	± 200 ppm/K				
4.25.1	-	Endurance at 70 °C	1000 h; loaded with Pn or V _{max.} ; 1.5 h ON; 0.5 h OFF	± (5 % R + 0.1 Ω)				
4.26	-	Accidental overload	Overload of 5, 10, 16, 25, 40, 63 and 100 times the rated power, but the applied voltage shall not exceed four times the limiting voltage.	Non-flammable				

NFR01, NFR02, NFR03

Vishay BCcomponents

Fusible Power Metal Film Leaded Resistors

PERFO	RMANC	E						
IEC 60115-1	IEC 60068-2	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (ΔR)		11-4-11-11-11		E (∆ <i>R</i>)
CLAUSE	TEST METHOD			NFR01	NFR02	NFR03		
4.24	3 (Ca)	Damp heat, steady state	56 days; 40 °C; 90 to 95 % RH loaded with 0.01 Pn		$R_{\text{ins}} \text{ min. } 10^3 \text{ M}\Omega$ ± $(3 \% R + 0.1 \Omega)$			
4.16	21 (U)	Robustness of terminations:						
4.16.2	21 (Ua1)	Tensile all samples	Load 10 N; 10 s		No damage			
4.16.3	21 (Ub)	Bending half number of samples	Load 5 N; 4 x 90°		$\pm (0.5 \% R + 0.05 \Omega$)		
4.16.4	21 (Uc)	Torsion other half of samples	3 x 360° in opposite direction					
4.19	14 (Na)	Rapid change of temperature	30 min at LCT; 30 min at UCT; LCT = - 55 °C; UCT = 155 °C; 5 cycles	± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)	± (2 % R + 0.05 Ω		
4.23		Climatic sequence			1			
4.23.2	2 (Ba)	Dry heat	16 h, 155 °C					
4.23.3	30 (Db)	Damp heat (accelerated)	24 h; 25 °C to 55 °C 90 % to 100 % RH; 1 cycle		R_{ins} min. $10^3\mathrm{M}\Omega$			
4.23.4	1 (Aa)	Cold	2 h, - 55 °C		$\pm (3 \% R + 0.1 \Omega)$			
4.23.6	30 (Db)	Damp heat, (accelerated) remaining cycles	5 days; 25 °C to 55 °C 90 to 100 % RH					
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 500 Hz; displacement 1.5 mm or acceleration 10 g; 6 h (3 x 2 h)		No visual damage \pm (0.5 % R + 0.05 Ω)		
4.17	20 (Ta)	Solderability (after ageing)	16 h at 155 °C; immersed in flux 600, leads immersed 2 mm in solder bath at (235 ± 5) °C for (2 ± 0.5) s		Good tinning (≥ 95% covered); no visible damage			
4.18	20 (Tb)	Resistance to soldering heat	Solder bath method; (350 ± 10) °C; 6 mm from body; for 3 s		± (1 % R + 0.05 Ω)			
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol; MIL STD 202E		No visible damage			
4.7	-	Voltage proof on insulation	500 V _{RMS} during 1 min, V-block method	No	flashover or breakd	own		
4.6.1.1	-	Insulation resistance	500 V _{DC} during 1 min, V-block method		$R_{\rm ins}$ min. $10^4~{ m M}\Omega$			

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

www.vishay.com Revision: 11-Mar-11