

SLAS890-AUGUST 2012

www.ti.com

MIXED SIGNAL MICROCONTROLLER

FEATURES

- Low Supply-Voltage Range: 1.8 V to 3.6 V
- **Ultralow Power Consumption** ٠
 - Active Mode (AM): **All System Clocks Active**
 - Standby Mode (LPM3): Real Time Clock With Crystal, Watchdog, and Supply Supervisor Operational, Full **RAM Retention, Fast Wake-Up:** Low-Power Oscillator (VLO), General Purpose Counter, Watchdog, and Supply Supervisor Operational, Full RAM **Retention, Fast Wake-Up:**
 - Off Mode (LPM4): **Full RAM Retention, Supply Supervisor Operational, Fast Wake-Up:**
 - Shutdown Mode (LPM4.5)
- Wake-Up From Standby Mode
- 16-Bit RISC Architecture, Extended Memory
- Flexible Power Management System ٠
 - Fully Integrated LDO With Programmable **Regulated Core Supply Voltage**
 - Supply Voltage Supervision, Monitoring, and Brownout
- Unified Clock System •
 - FLL Control Loop for Frequency Stabilization
 - Low-Power Low-Frequency Internal Clock Source (VLO)
 - Low-Frequency Trimmed Internal Reference Source (REFO)
 - 32-kHz Watch Crystals (XT1)
 - High-Frequency Crystals Up to 32 MHz (XT2)

DESCRIPTION

The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with extensive lowpower modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in 3.5 µs (typical).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

- 16-Bit Timer TA0, Timer A With Five Capture/Compare Registers
- 16-Bit Timer TA1, Timer A With Three Capture/Compare Registers
- 16-Bit Timer TA2, Timer_A With Three **Capture/Compare Registers**
- 16-Bit Timer TB0, Timer_B With Seven Capture/Compare Shadow Registers
- **Two Universal Serial Communication** Interfaces
 - USCI A0 and USCI A1 Each Supporting _
 - Enhanced UART supporting Auto-**Baudrate Detection**
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - USCI B0 and USCI B1 Each Supporting – I²C[™]
 - Synchronous SPI
- Integrated 3.3-V Power System
- 12-Bit Analog-to-Digital (A/D) Converter With • Internal Reference, Sample-and-Hold, and **Autoscan Feature**
- Comparator
- Hardware Multiplier Supporting 32-Bit ٠ Operations
- Serial Onboard Programming, No External **Programming Voltage Needed**
- **Three Channel Internal DMA**
- Basic Timer With Real-Time Clock Feature

www.ti.com

SLAS890-AUGUST 2012

The MSP430F5326 is a microcontroller configuration with an integrated 3.3-V LDO, four 16-bit timers, a high-performance 12-bit analog-to-digital converter (ADC), two universal serial communication interfaces (USCI), hardware multiplier, DMA, real-time clock module with alarm capabilities, and 63 I/O pins. The MSP430F5326 includes all of these peripherals but has 47 I/O pins.

Typical applications include analog and digital sensor systems, data loggers and various general-purpose applications.

ORDERING INFORMATION⁽¹⁾

PRODUCT	PACKAGE DESIGNATOR	PACKAGE	ORDERABLE PART NUMBER	PACKAGE QUANTITY
	SP430F5326 TD	Done die is wette root (2)	MSP430F5326TDF1	49
MSP430F5326		Bare die in waffle pack ⁽²⁾	MSP430F5326TDF2	10

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Processing is per the Texas Instruments commercial production baseline and is in compliance with the Texas Instruments Quality Control System in effect at the time of manufacture. Electrical screening consists of DC parametric and functional testing at room temperature only. Unless otherwise specified by Texas Instruments AC performance and performance over temperature is not warranted. Visual Inspection is performed in accordance with MIL-STD-883 Test Method 2010 Condition B at 75X minimum.

MSP430F5326-DIE

SLAS890-AUGUST 2012

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

BARE DIE INFORMATION

DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BOND PAD METALLIZATION COMPOSITION	BOND PAD THICKNESS
11 mils.	Silicon with backgrind	Floating	W/TiW/AlCu (0.5%)/TiN	800 nm

93	2 91 90 89 88	87 86 85 84	83	82 81	80 79	78 77	76 75 74	73 72	71 70	
1										
2										
3										
4										
5										69
6 7										68
8										67
9										66
10										65 64
11										63
11										62
13										61
14										60
15										59
16										58
17										56
18										55
19										54
										53
										52
										51 50
20										49
21										48
22										
24										
25										
6	6 27									
C		28 29 30 31 3	32 33 34 35	36 37 38 39	40 41 42	43 44	45 46 47			
-										

MSP430F5326-DIE

www.ti.com

SLAS890-AUGUST 2012

 Table 1. Bond Pad Coordinates in Microns⁽¹⁾

DESCRIPTION	PAD NUMBER	X MIN	Y MIN	ХМАХ	Y MAX
P6.0/CB0/A0	1	19.8	3383	84.8	3447
P6.1/CB1/A1	2	19.8	3273	84.8	3337
P6.2/CB2/A2	3	19.8	3163	84.8	3227
P6.3/CB3/A3	4	19.8	3053	84.8	3117
P6.4/CB4/A4	5	19.8	2943	84.8	3007
P6.5/CB5/A5	6	19.8	2833	84.8	2897
P6.6/CB6/A6	7	19.8	2633	84.8	2097
	8				
P6.7/CB7/A7 P5.0/A8/VREF+/VeREF+	9	19.8 19.8	2613 2503	84.8 84.8	2677 2567
P5.1/A9/VREF-/VeREF-	10	19.8	2303	84.8	2307
	10	66.3	2383	131.3	2447
AVCC1			-		
	12	66.3	2093	131.3	2157
P5.4/XIN	13	19.8	1968	84.8	2032
P5.5/XOUT	14	19.8	1848	84.8	1912
AVSS1	15	66.3	1722.995	131.3	1786.995
AVSS1	16	66.3	1607.995	131.3	1671.995
N/C	17	19.8	1458	84.8	1522
N/C	18	19.8	1358	84.8	1422
N/C	19	19.8	1258	84.8	1322
DVCC1	20	66.3	793	131.3	857
DVCC1	21	66.3	678	131.3	742
DVSS1	22	66.3	578	131.3	642
DVSS1	23	66.3	463	131.3	527
N/C	24	66.3	363	131.3	427
N/C	25	66.3	248	131.3	312
VCORE	26	248	66.3	312	131.3
VCORE	27	363	66.3	427	131.3
P1.0/TA0CLK/ACLK	28	813	19.8	877	84.8
P1.1/TA0.0	29	913	19.8	977	84.8
P1.2/TA0.1	30	1013	19.8	1077	84.8
P1.3/TA0.2	31	1113	19.8	1177	84.8
P1.4/TA0.3	32	1213	19.8	1277	84.8
P1.5/TA0.4	33	1313	19.8	1377	84.8
P1.6/TA1CLK/CBOUT	34	1413	19.8	1477	84.8
P1.7/TA1.0	35	1513	19.8	1577	84.8
N/C	36	1613	19.8	1677	84.8
N/C	37	1713	19.8	1777	84.8
N/C	38	1813	19.8	1877	84.8
N/C	39	1913	19.8	1977	84.8
N/C	40	2013	19.8	2077	84.8
P2.0/TA1.1	41	2113	19.8	2177	84.8
P2.1/TA1.2	42	2213	19.8	2277	84.8
P2.2/TA2CLK/SMCLK	43	2313	19.8	2377	84.8
P2.3/TA2.0	44	2413	19.8	2477	84.8
P2.4/TA2.1	45	2513	19.8	2577	84.8
P2.5/TA2.2	46	2613	19.8	2677	84.8

(1) Substrate V_{DD} .

MSP430F5326-DIE

SLAS890-AUGUST 2012

www.ti.com

 Table 1. Bond Pad Coordinates in Microns⁽¹⁾ (continued)

Table 1. Bond Pad Coordinates in Microns ⁽¹⁾ (continued)								
DESCRIPTION	PAD NUMBER	X MIN	Y MIN	X MAX	Y MAX			
P2.6/RTCCLK/DMAE0	47	2713	19.8	2777	84.8			
P2.7/UCB0STE/UCA0CLK	48	3565.2	633	3630.2	697			
P3.0/UCB0SIMO/UCB0SDA	49	3565.2	733	3630.2	797			
P3.1/UCB0SOMI/UCB0SCL	50	3565.2	833	3630.2	897			
P3.2/UCB0CLK/UCA0STE	51	3565.2	933	3630.2	997			
P3.3/UCA0TXD/UCA0SIMO	52	3565.2	1033	3630.2	1097			
P3.4/UCA0RXD/UCA0SOMI	53	3565.2	1133	3630.2	1197			
N/C	54	3565.2	1233	3630.2	1297			
N/C	55	3565.2	1333	3630.2	1397			
DVSS2	56	3518.7	1478	3583.7	1542			
DVSS2	57	3518.7	1593	3583.7	1657			
DVCC2	58	3518.7	1703	3583.7	1767			
DVCC2	59	3518.7	1818	3583.7	1882			
N/C	60	3565.2	1943	3630.2	2007			
N/C	61	3565.2	2043	3630.2	2107			
P4.0/PM_UCB1STE/PM_UCA1 CLK	62	3565.2	2143	3630.2	2207			
P4.1/PM_UCB1SIMO/PM_UC B1SDA	63	3565.2	2243	3630.2	2307			
P4.2/PM_UCB1SOMI/PM_UC B1SCL	64	3565.2	2343	3630.2	2407			
P4.3/PM_UCB1CLK/PM_UCA1 STE	65	3565.2	2443	3630.2	2507			
P4.4/PM_UCA1TXD/PM_UCA 1SIMO	66	3565.2	2543	3630.2	2607			
P4.5/PM_UCA1RXD/PM_UCA 1SOMI	67	3565.2	2643	3630.2	2707			
P4.6/PM_NONE	68	3565.2	2743	3630.2	2807			
P4.7/PM_NONE	69	3565.2	2843	3630.2	2907			
VSSU	70	3327.17	3518.7	3391.17	3583.7			
VSSU	71	3212.17	3518.7	3276.17	3583.7			
PU.0	72	3047.17	3565.2	3111.17	3630.2			
N/C	73	2907.17	3565.2	2971.17	3630.2			
PU.1	74	2767.17	3565.2	2831.17	3630.2			
DOI	75	2652.17	3565.2	2716.17	3630.2			
DOI	76	2537.17	3565.2	2601.17	3630.2			
DOO	77	2405.67	3565.2	2469.67	3630.2			
LDOO	78	2290.67	3565.2	2354.67	3630.2			
N/C	79	2160.67	3518.7	2224.67	3583.7			
AVSS2	80	2045.67	3518.7	2109.67	3583.7			
P5.2/XT2IN	81	1673	3565.2	1737	3630.2			
P5.3/XT2OUT	82	1553	3565.2	1617	3630.2			
TEST/SBWTCK	83	1270.5	3518.7	1334.5	3583.7			
PJ.0/TDO	84	1128	3565.2	1192	3630.2			
PJ.1/TDI/TCLK	85	1028	3565.2	1092	3630.2			
62.PJ.2/TMS	86	928	3565.2	992	3630.2			
63.PJ.3/TCK	87	828	3565.2	892	3630.2			
64.RST/NMI/SBWTDIO	88	660.5	3565.2	724.5	3630.2			
N/C	89	563	3565.2	627	3630.2			

www.ti.com

SLAS890-AUGUST 2012

Table 1. Bond Pad Coordinates in Microns⁽¹⁾ (continued)

DESCRIPTION	PAD NUMBER	X MIN	Y MIN	X MAX	Y MAX
N/C	90	453	3565.2	517	3630.2
N/C	91	343	3565.2	407	3630.2
N/C	92	233	3565.2	297	3630.2

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾ Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
MSP430F5326TDF1	ACTIVE		0	49	TBD	Call TI	N / A for Pkg Type	
MSP430F5326TDF2	ACTIVE		0	10	TBD	Call TI	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated