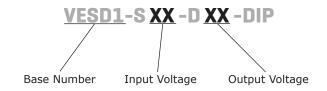

date 07/11/2013

page 1 of 5

SERIES: VESD1-DIP | **DESCRIPTION:** DC-DC CONVERTER

FEATURES


- 1 W isolated output
- industry standard 7 pin DIP package
- dual unregulated outputs
- 3,000 V isolation
- short circuit protection
- UL safety approvals (some models)
- wide temperature (-40~85°C)
- efficiency up to 81%

MODEL		input oltage	output voltage		put rent	output power	ripple and noise ¹	efficiency	UL 60950
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)	
VESD1-S5-D5-DIP	5	4.5 ~ 5.5	±5	±10	±100	1	150	72	YES
VESD1-S5-D9-DIP	5	4.5 ~ 5.5	±9	±6	±56	1	150	75	YES
VESD1-S5-D12-DIP	5	4.5 ~ 5.5	±12	±5	±42	1	150	78	YES
VESD1-S5-D15-DIP	5	4.5 ~ 5.5	±15	±4	±33	1	150	79	YES
VESD1-S12-D5-DIP	12	10.8 ~ 13.2	±5	±10	±100	1	150	74	YES
VESD1-S12-D9-DIP	12	10.8 ~ 13.2	±9	±6	±56	1	150	76	YES
VESD1-S12-D12-DIP	12	10.8 ~ 13.2	±12	±5	±42	1	150	79	YES
VESD1-S12-D15-DIP	12	10.8 ~ 13.2	±15	±4	±33	1	150	80	YES
VESD1-S15-D5-DIP	15	13.5 ~ 16.5	±5	±10	±100	1	150	74	NO
VESD1-S15-D9-DIP	15	13.5 ~ 16.5	±9	±6	±56	1	150	75	NO
VESD1-S15-D12-DIP	15	13.5 ~ 16.5	±12	±5	±42	1	150	79	NO
VESD1-S15-D15-DIP	15	13.5 ~ 16.5	±15	±4	±33	1	150	79	NO
VESD1-S24-D5-DIP	24	21.6 ~ 26.4	±5	±10	±100	1	150	74	YES
VESD1-S24-D9-DIP	24	21.6 ~ 26.4	±9	±6	±56	1	150	76	YES
VESD1-S24-D12-DIP	24	21.6 ~ 26.4	±12	±5	±42	1	150	80	YES
VESD1-S24-D15-DIP	24	21.6 ~ 26.4	±15	±4	±33	1	150	81	YES

Notes: 1. ripple and noise are measured at 20 MHz BW

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage	5 V model	4.5	5	5.5	Vdc
	12 V model	10.8	12	13.2	Vdc
	15 V model	13.5	15	16.5	Vdc
	24 V model	21.6	24	26.4	Vdc

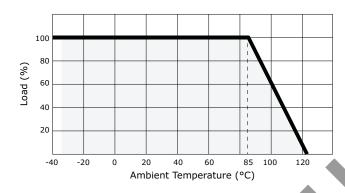
OUTPUT

parameter	conditions/description	min	typ	7	max	units
line regulation	for Vin change of 1%				1.2	%
load regulation	measured from 10% to full load		10		15	%
voltage accuracy	see tolerance envelope graph					
switching frequency	100% load, input voltage range	83	100		200	kHz
temperature coefficient					±0.03	%/°C

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection				1	S

SAFETY AND COMPLIANCE

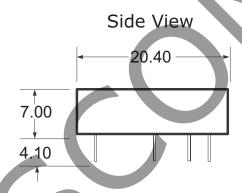

parameter	conditions/description	min ty	p max units
isolation voltage	tested for 1 minute	3,000	Vdc
insulation resistance	at 500 Vdc	1,000	ΜΩ
safety approvals	UL60950-1 (E222736)		
RoHS compliant	yes		
MTBF		3,500,000	hours

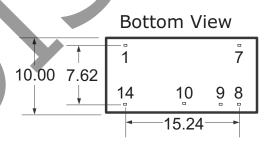
ENVIRONMENTAL

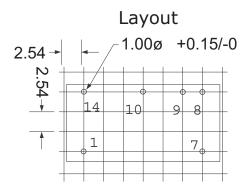
parameter	conditions/description	min	typ	max	units
operating temperature		-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing			95	%
temperature rise	at full load		15	25	°C
lead temperature	1.5 mm from case for 10 seconds			300	°C

CUI Inc | SERIES: VESD1-DIP | DESCRIPTION: DC-DC CONVERTER

DERATING CURVES


MECHANICAL


parameter	conditions/description	_	min	typ	max	units
dimensions	20.40 x 10.00 x 7.0 (0.803 x 0.	394 x 0.276 inch)				mm
case material	plastic UL94-V0					
weight				2.1		g


MECHANICAL DRAWING

units: mm tolerance: ± 0.25

pin section tolerance: ±0.10 mm

PIN CONN	PIN CONNECTIONS				
1	-Vin				
7	NC				
8	COM				
9	+Vout				
11	-Vout				
14	+Vin				

APPLICATION NOTES

1. Input filtering

To reduce the reflected ripple current and minimize EMI, especially when the converter input is more than 2" away from the DC source, it is recommended to connect a low ESR electrolytic capacitor between Vin and Gnd. The values suggested are as shown in Table 1. If additional filtering is required, the capacitance may be increased, or expanded to an LC network as shown in Figure 1.

Table 1

Input Voltage	External Input Capacitance
5 V	4.7 μF
12 V	2.2 μF
15 V	2.2 μF
24 V	1.0 μF



2. Output filtering

An output capacitor is needed to meet output ripple requirements as shown in Table 2. Output capacitance may be increased for additional filtering, but should not exceed 10µF or expanded to an LC network as in Figure 1.

Table 2

External Input Capacitance
4.7 μF
2.2 μF
1.0 μF
0.47 μF
0.33 μϜ

3. Minimum loading

The converter needs a minimum of 10% loading to maintain output regulation. Operation under no-load conditions will not cause immediate damages but may reduce reliability, and cause performance not to meet specifications.

4. Regulation

With a semi-regulated design, the converter's output voltage varies with load current and will change proportionally to the input voltage. If regulated output is needed, an external regulator can be used as shown in Figure 2.

5 Protection

The converter has minimal protection against input over-voltage or output over-load, and may be permanently damaged if exposed to these conditions. An input clamping device can be used for input voltage limiting. An input fuse or an output fuse can also be used to protect against over-loading.

6. Dual outputs used as a single output

The +Vout and -Vout can be used to obtain a single output that is the sum of the two outputs. In this case, the COM pin shouldn't be used.

7. External Regulator

An external 3-terminal regulator can be connected to the output of the converter to achieve full regulation. Make sure the converter's output voltage provides sufficient head room for the regulator. An additional benefit is that the built-in protection features in the regulator, such as OCP, OTP, etc, will protect the converter also. In a complimentory supply, a negative output regulator must be used to achieve the negative regulated output.

REVISION HISTORY

rev.	description	date
1.0	initial release	10/06/2009
1.01	template update	12/09/2010
1.02	new template applied, V-Infinity branding removed	09/07/2012
1.03	updated spec	07/11/2013

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.