
General Specifications - SL

CAPACITORS - CLASS SL

These capacitors have wide temperature characteristics but still offer low loss and linear type TC's.

They are specially designed to be smaller alternative to standard Class I capacitors of linear temperature coefficient.

Typical application is RF tuning and decoupling.

DIMENSIONS

millimeters (inches)

Digit 9 of P.N. (ø)	D ± 2 (0.079)	T max.	Available Lead Spacing
Α	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
В	5.0 (0.197)	3.0 (0.118)	A,B,D,E,O,R,X
С	6.0 (0.236)	3.0 (0.118)	A,B,C,D,E,O,R,X
D	7.0 (0.276)	3.0 (0.118)	A,B,C,D,E,O,R,X
Е	8.0 (0.315)	3.0 (0.118)	A,B,C,D,E,O,R,X

millimeters (inches)

Lead Spacing	Digit 8 of P.N.	
F		*
2.5 (0.100)	D	_
5 (0.200)	А	0
6 (0.250)	Е	Х
7.5 (0.300)	В	R
10 (0.400)	С	W

PERFORMANCE CHARACTERISTICS

Measured at	$ m C_R \leq 100~pF ightarrow 1MHz/1.0~Vrms /~25 ^{o}C$ $ m C_R > 100~pF ightarrow 1kHz/0.3~Vrms /~25 ^{o}C$
Dissipation Factor	$C_R \le 100 \text{ pF} \dots 0.25\%$ 1MHz @1.0 Vrms $C_R > 100 \text{ pF} \dots 1.0\%$ 100kHz @0.3 Vrms $C_R > 100 \text{ pF} \dots 0.25\%$ 1kHz @0.3 Vrms
Tolerance	$C_{_{ m R}}$ < 10 pF $ ightarrow$ ±0.25 pF, ±0.5 pF $C_{_{ m R}}$ ≥ 10 pF $ ightarrow$ ±5%, ±10%, ±20%
Temperature Coefficient	+350 ppm1500 ppm (P350 N1500)
Insulation Resistance	$@V_R \rightarrow \ge 10 \text{ G}\Omega$
Dielectric Strength NOTE: Charging current limited to 50 mA	$V_R = 100V \rightarrow Vt = 250V (DC)$ $V_R = 500V \rightarrow Vt = 1.25kV (DC)$
Operating Temperature Range (°C)	-30 +85
Climatic Category	30 / 085 / 21

Note: Damp Heat Steady State: 90... 95% R.H. 40° C / 21 days. No voltage to be applied.

Dimension Table - SL

SL – CAPACITANCE VS. DISC DIAMETER PHENOLIC COATED

millimeters (inches)

Temp. Coefficient		
Digits 1,2,3 of P.N.	5KK	5KQ
Rated Voltage	100 VDC	500 VDC
C _R (pF)	50 VAC	100 VAC
1.0		
1.5		
2.2		
3.3		
4.7		
5.6		
8.2		
10		
12		
15	4.0 (0.157)	4.0 (0.157)
18		
22		
33		
47		
56		
68		
82		
100		
150		
180		
220		
270		
330	5.0 (0.197)	6.0 (0.236)
470		
560	6.0 (0.236)	
680		7.0 (0.276)
820	7.0 (0.276)	
1000		8.0 (0.315)

Diameter (ϕ) = 9th Part Number Digit

Ordering Code

HOW TO ORDER 5 0 Q 222 **General Purpose Professional Switch Mode** Rated Voltage (dc) Capacitance Safety 222 = 2.2 nFD = 16V5A = NP0 / I6A = NP0 / I*5B = P100 / I F = 25V*6B = P100 / I H = 50V*5C = N150 / I *6C = N150 / I K = 100V*5D = N220 / I *5E = N330 / I *6D = N220 / IN = SAFETY Capacitance = TPC code Capacitance = TPC code *6E = N330 / IO = SAFETY *5F = N470 / I100pF = 101 1 pF = 1R0*6F = N470 / I 5G = N750 / IQ = 500V1.2pF = 1R2120pF = 1216G = N750 / IR = 1000V1.5pF = 1R5 1.8pF = 1R8 150pF = 151 180pF = 181 5H = N1500 / I*6H = N1500 / I S = 2000V*5I = N2200 / I *6I = N2200 / I T = 3000V*5J = N4700 / I 220pF = 221 2.2pF = 2R26J = N4700 / I U = 4000V270pF = 271 330pF = 331 5K = SL2.7pF = 2R73.9pF = 3R961 = SAFETY 5M = Y5E / II V = SAFETY 62 = SAFETY W = 5000V5N = Y5F / II4.7pF = 4R7390pF = 391 65 = SAFETY 50 = Y5P / II *5P = Y5R / II *X = 6000V5.6pF = 5R6470pF = 471 67 = Y5U / SM*Y = 7500V560pF = 561 680pF = 681 6.8pF = 6R868 = Y5V / SM*5Q = Y5T / II 8.2pF = 8R2 5S = Y5U / II 5T = Y5V / II 6L = Y5P / SM10pF = 100820pF = 821 6M = X5E/II12pF = 120 15pF = 150 18pF = 180 1nF = 102 6N = X5F/II5U = Z5V / II1.2nF = 12260 = X5P / II*5V = Z4V / III1.8nF = 182*6P = X5R / II 22pF = 220 27pF = 270 5W = Y5P / III2.2nF = 222 *6Q = X5T / II5Y = Y5U / III 2.7nF = 2726S = X5U / II5Z = Y5V / III33pF = 3303.3nF = 3326T = X5V / II39pF = 3903.9nF = 3926U = Z5V / II47pF = 470 56pF = 560 4.7nF = 472 5.6nF = 562 *6V = Z4V / III 6W = Y5P / III68pF = 6806.8nF = 6826Y = Y5U / III 8.2nF = 822 10nF = 103 82pF = 820 6Z = Y5V / III15nF = 15322nF = 223 33nF = 33347nF = 473 *Upon Request 100nF = 104200nF = 204

M

D = ± 0.50 pF J = $\pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$ S = -20+50%Z = -20+80%

P = 0+100%

A

E

Capacitor Diameter

± 2 (0.079)

A = 4 (0.157)

B = 5 (0.197)

C = 6 (0.236)

D = 7 (0.276)

E = 8 (0.315)

F = 9 (0.354)

G = 10 (0.394)

H = 11 (0.433)

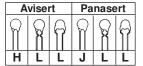
J = 13 (0.512)

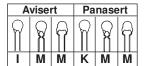
K = 15 (0.591)

M* = 19 (0.748)

*Wire 0.8 (0.031) recommended

Lead Forming		\bigcap	\bigcirc	\cap
mm inches				
2.5 ±0.5	.1 ± .025	D	_	_
5 +0.6 5 -0.2	.2 ± .025	Α	0	N
6 ^{+0.6} _{-0.2}	.25 ± .025	E	Х	_
7.5 ⁺¹ -0.5	.3 ± .05	В	R	Q
10 ^{+0.5} _{-1.0}	.4 ± .05	С	W	_
12.5 +1 10.5 -0.5	.5 ± .05	Р	_	_


Cardboard Strips


 $f E = 5~(0.197) \pm 1~(0.039)$ free wire length $f C = 10~(0.394) \pm 1~(0.039)$ free wire length $f D = 25~(0.984) \pm 1~(0.039)$ free wire length

Taping

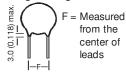
Ammo Pack

Finishing

Diam \leq 9 (0.354) and F = 5.00 (0.197)

- 1.5 (0.058) max.

For every other:


Low Voltage

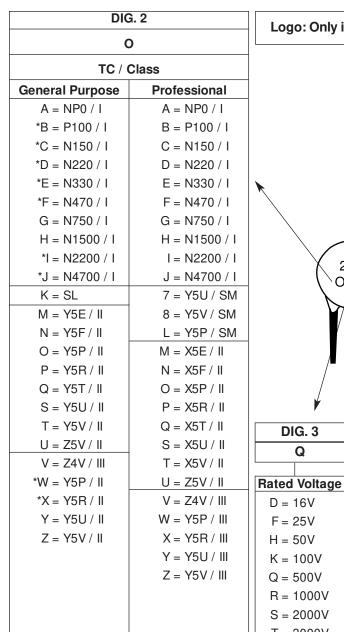
 $A = Phenolic \quad \begin{pmatrix} General \\ Purpose \end{pmatrix} Q = Waxed phenolic$

S = Epoxy (Professional) cap. diameter $\leq 8 \text{ (0.315)}$

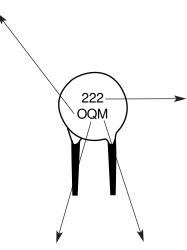
D = Epoxy (Professional) cap. diameter > 8 (0.315)

High Voltage

C = Epoxy wire diameter $\begin{pmatrix} 0.6 \\ (0.024) \end{pmatrix} \pm \begin{pmatrix} 0.1 \\ (0.004) \end{pmatrix}$


I = Epoxy wire diameter $\begin{pmatrix} 0.8 & 0.1 \\ (0.031) & (0.004) \end{pmatrix}$

L = Phenolic wire diameter $\begin{pmatrix} 0.6 \\ (0.024) \end{pmatrix} \pm \begin{pmatrix} 0.1 \\ (0.004) \end{pmatrix}$


Please note that not all code combinations are either possible or available.

Marking

Logo: Only in diam. ≥ 6mm

DIG. 3

Q

D = 16V

F = 25V

H = 50V

K = 100V

Q = 500VR = 1000V

S = 2000V

T = 3000V

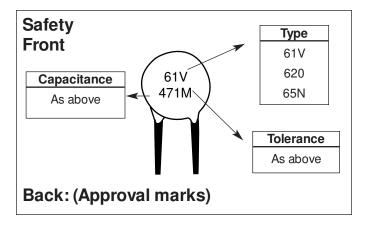
U = 4000VW = 5000V

X = 6000V

Y = 7500V

M **Tolerance** $C = \pm 0.25pF$ $D = \pm 0.5pF$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ S = -20 + 50%Z = -20 + 80%

P = 0 + 100%

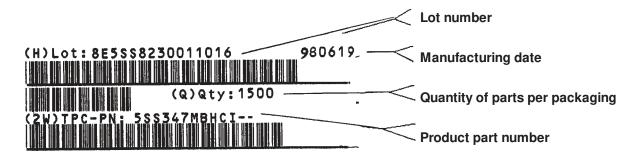

DIG. 7

Capacitance	EIA
1pF = 109	100pF = 101
1.2pF = 129	120pF = 121
1.5pF = 159	150pF = 151
1.8pF = 189	180pF = 181
2.2pF = 229	220pF = 221
2.7pF = 279	270pF = 271
3.9pF = 399	390pF = 391
4.7pF = 479	470pF = 471
5.6pF = 569	560pF = 561
6.8pF = 689	680pF = 681
8.2pF = 829	820pF = 821
10pF = 100	1nF = 102
12pF = 120	1.2nF = 122
15pF = 150	1.8nF = 182
18pF = 180	2.2nF = 222
22pF = 220	2.7nF = 272
27pF = 270	3.9nF = 392
39pF = 390	4.7nF = 472
47pF = 470	5.6nF = 562
56pF = 560	6.8nF = 682
68pF = 680	8.2nF = 822
82pF = 820	10nF = 103
	15nF = 153
	22nF = 223
	33nF = 333
	47nF = 473
	100nF = 104
	200nF = 204

*Upon Request

TC - Temperature coefficient.

DIG – for better understanding, check pages 3 and 4.



Packaging

IDENTIFICATION AND TRACEABILITY

On all TPC ceramic capacitors packages, you will find a bar code label with the following information:

TAPED PARTS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Diameter	Quantities	
(Vr)	D	Ammopack	Reel
Vr <= 500V	D ≦ 7 (0.276)	2000	2500
	7 < D ≦ 11 (0.433)	2000	2000
500V <vr<=2kv< th=""><th>D ≦ 11 (0.433)</th><th>1500</th><th>2000</th></vr<=2kv<>	D ≦ 11 (0.433)	1500	2000
2KV <vr=5kv< th=""><th>D ≦ 11 (0.433)</th><th>1000</th><th>1500</th></vr=5kv<>	D ≦ 11 (0.433)	1000	1500

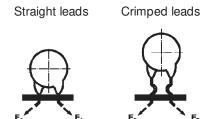
CARDBOARD STRIPS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Diameter	Lead Space	
(Vr)	D	< = 5 (0.197)	> 5 (0.197)
Vr <= 500V	D ≤ 8 (0.315)	2500	1500
	8 (0.315) ≦ D≦ 11 (0.433)	1500	-
	8 (0.315) ≦ D≦ 13 (0.512)	-	1000
	11 (0.433) ≦ D≦ 15 (0.591)	1000	-
	13 (0.512) ≦ D≦ 19 (0.748)	-	500
	D ≦ 19 (0.748)	500	-
500V <vr<=2kv< td=""><td>D ≦ 9 (0.354)</td><td>1500</td><td>1000</td></vr<=2kv<>	D ≦ 9 (0.354)	1500	1000
	9 (0.354) ≦ D ≦ 11 (0.433)	-	1000
	9 (0.354) ≦ D ≦ 13 (0.512)	1000	-
	11 (0.433) ≦ D ≦ 19 (0.748)	-	500
	13 (0.512) ≦ D ≦ 19 (0.748)	500	-
2KV <vr<=5kv< td=""><td>D ≦ 9 (0.354)</td><td>1500</td><td>-</td></vr<=5kv<>	D ≦ 9 (0.354)	1500	-
Safety 65N 62O	D ≦ 11 (0.433)	-	1000
	D ≤ 13 (0.512)	500	500
Safety	D ≤ 6 (0.236)	1500	1500
61V	7 (0.275) ≤ D ≤ 9 (0.354)	1000	1000
	9 (0.354) ≦ D	500	500

Quantities for other package alternative, upon request.

Tape and Reel Specifications


There are two types of taped disc ceramic capacitors: Straight or crimped leads.

Both types can be shipped on reels or ammopack.

The standard packaging quantities are shown bellow:

millimeters (inches)

Maximum pull force during insertion and lead cut

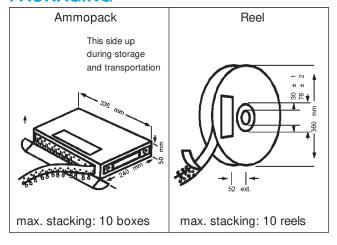
	F,	F_2
4 (0.157) ≤ D < 6 (0.236)	12N	20N
$D \ge 6 \ (0.236)$	20N	25N

Digit 11	Available Tapings	Digit 9
L M	Sizes 4 (0.157) ≤ D ≤ 11 (0.433)	A H
J H K I	Sizes 6 (0.236) ≤ D ≤ 11 (0.433)	C H

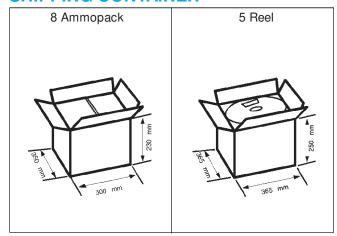
TPC Code Digit 11

Packaging	Avisert	Panasert
Reel	H L L L FIGURE 1 FIGURE 2 FIGURE 3	FIGURE 1 FIGURE 2 FIGURE 3
Ammopack	FIGURE 1 FIGURE 2 FIGURE 3	K M M M FIGURE 1 FIGURE 2 FIGURE 3

Figure 2: Inside Crimp 100V... 1000V Figure 3: Outside Crimp 1000V



Tape and Reel Specifications


millimeters (inches)

		Straight	Straight Leads	
		Figure 1		Figure 2 & 3
Description of Symbols		A (Avisert)	P (Panasert)	Avisert & Panasert
Crimp angle	∞	_	_	20º45º
Crimp length	С	_	_	1.7 min.
Lead diameter	d		0.60 ± 0.1	
Disc diameter	D		11 max.	
Lead hole diameter	Do		4.0 ± 0.2	
Disc thickness	Т		See Catalog	
Lead spacing	F		$5.0^{+0.6}_{-0.2}$	
Component alignment, front-rear	Δh		0 ± 1	
Height of component from tape center	Н	19.5 ± 0.5	16.5 ± 0.5 - 0	_
Height from tape center to crimp	Но	_	_	16 + 0.5 - 0
Component height	H1	32.25 max.	>23.5 <32.25	32.25 max.
Distance from component leads to tape bottom	ℓ ₁		12 max.	
Tape width	W		18 +1 -0.5	
Bonding tape width	W ₃		5.5 min.	
Feed hole position	W ₁		9.0 ± 0.5	
Pitch between discs	Р		12.7 ± 1	
Feed hole pitch	Po	12.7 ± 0.3		
Hole center to lead	P1	3.85 ± 0.7		
Feed hole center to component center	P2	6.35 ± 1		
Tape + bonding tape thickness	t	0.7 ± 0.2		
Total tape thickness. including lead	t ₂	1.5 max.		

PACKAGING

SHIPPING CONTAINER

