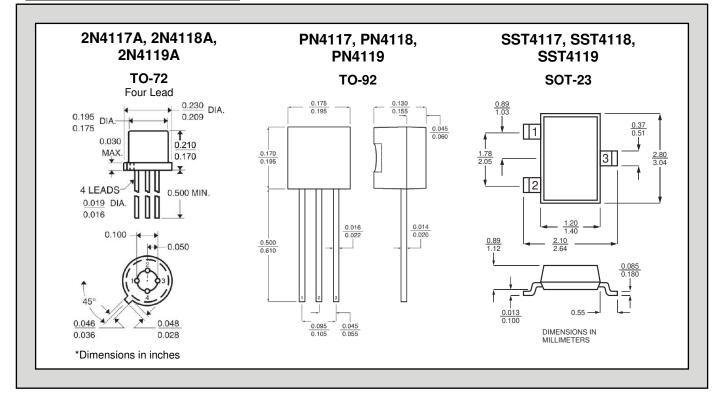

LINEAR SYSTEMS

Improved Standard Products[®]

FEATURES									
LOW POWER ID	ss<600 μA (2N4117A)								
MINIMUM CIRCUIT LOADING IG	ss<1 pA (2N4117A Series)								
ABSOLUTE MAXIMUM RATINGS (NOTE 3)									
@ 25°C (unless otherwise noted)									
Gate-Source or Gate-Drain Voltage	-40V								
Gate-Current	50mA								
Total Device Dissipation									
(Derate 2mW/ºC above 25ºC)	300mW								
Storage Temperature Range	-55⁰C to+150⁰C								
Lead Temperature									
(1/16" from case for 10 seconds)	300ºC								


<u>2N/PN/SST 4117,</u> <u>4118, 4119</u>

ULTRA-HIGH INPUT IMPEDANCE N-CHANNEL JFET AMPLIFIER

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

		4117		4118		4119				
SYMBOL	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	CONDITIONS	
BV _{GSS}	Gate-Source Breakdown Voltage	-40		-40		-40		v	$I_G = -1\mu A$ $V_{DS} = 0$	
V _{GS(off)}	Gate-Source Cutoff Voltage	-0.6	-1.8	-1	-3	-2	-6		V _{DS} =10V I _D =1nA	
IDSS	Saturation Drain Current (NOTE 2)	0.03	0.60	0.08	0.60	0.20	0.80	mA	V _{DS} =10V V _{GS} =0	
IGSS	Gate Reverse Current 2N4117A, 2N4118A, 2N4119A		-1		-1		-1	pA nA	$V_{GS} = -20V V_{DS} = 0$	
			-2.5		-2.5		-2.5			150ºC
	PN4117, PN4118, PN4119 SST4117, SST4118, SST4119		-10		-10		-10	pА	V _{GS} =-10V V _{DS} =0	
			-25		-25		-25	nA	$V_{\rm GS} = 10$ $V_{\rm DS} = 0$	150ºC
g fs	Common-Source Forward Transconductance	70	450	80	650	100	700	μS pF		f=1kHz
gos	Common-Source Output Conductance		3		5		10		VDS =10V VGS=0	
Ciss	Common-Source Input Capacitance (NOTE 4)		3		3		3			f=1MHz
C _{rss}	Common-Source Reverse Transfer Capacitance (NOTE 4)		1.5		1.5		1.5			

NOTES:

- 1. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
- 2. This parameter is measured during a 2 ms interval 100 ms after power is applied. (Not a JEDEC condition.)
- 3. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 4. Not production tested, guaranteed by design.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.

Linear Integrated Systems