

Data brief

# 100W 5V/20A active clamp forward converter based on PM8804 for telecom systems



#### **Features**

DC-DC forward converter based on PM8804

Input voltage range: 42 – 56 V<sub>DC</sub>
Switching frequency: 250 kHz

Output:

Power: 100 WVoltage: 5 V<sub>DC</sub>Current: up to 20 A

- Peak efficiency > 94%
- · Open circuit protection
- RoHS complaint
- WEEE compliant

#### **Description**

The STEVAL-ISA204V1 evaluation board is designed to demonstrate high efficiency DC-DC conversion, able to output 100 W (5 V/20 A) from 42 to 56 V DC input, which is especially suitable for telecom applications.

The power conversion stage is based on an active clamp forward topology managed by a PM8804 PWM controller featuring all the integrated circuitry necessary for a compact and efficient 48 V converter. The highly configurable controller includes a programmable oscillator for switching frequency regulation up to 1 Mhz, adjustable slope compensation, dual complementary low-side drivers with programmable dead time, programmable soft start, soft turn off and a programmable current sense blanking time.

|  | Product summary                                                    |                           |  |
|--|--------------------------------------------------------------------|---------------------------|--|
|  | 100W 5V/20A forward<br>converter based on<br>PM8804 PWM controller | STEVAL-<br>ISA204V1       |  |
|  | PWM peak current<br>mode controller for PoE<br>and telecom systems | PM8804                    |  |
|  | Application                                                        | Server &<br>Telecom Power |  |



### 1 Application overview

The STEVAL-ISA204V1 represents a forward converter application with synchronous rectification for 48 V auxiliary power supplies destined for server and telecommunications equipment. The board can supply an output current up to 20 A.

The PM8804 integrates two MOSFET drivers with up to 1 A peak sink current capability. The GAT1 signal drives the main switching MOSFET, while the GAT2 signal controls a P-channel MOSFET referred to PGND in active clamp forward topology.

The synchronous rectification stage can be paralleled by mounting two further STL160N4F7 N-channel MOSFETs (Q2 and Q8), which can significantly reduce the operating temperatures of the mounted synchronous rectifier MOSFETs.

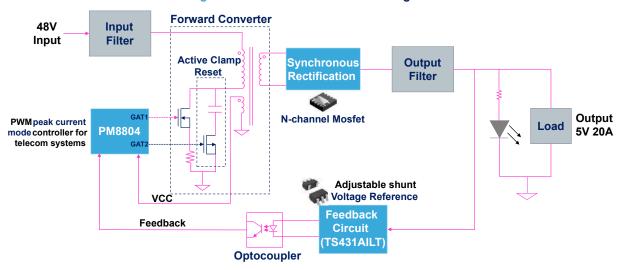



Figure 1. STEVAL-ISA204V1 block diagram

RELATED LINKS

Visit the Server & Telecom application page for more information on relevant power supply and conversion strategies

DB3958 - Rev 1 page 2/7



## **Electrical and efficiency characteristics**

Table 1. Electrical specifications of STEVAL-ISA204V1

| Electrical specifications | Range / Value |
|---------------------------|---------------|
| Input voltage range       | 42 – 56 V DC  |
| Output voltage 5 V        |               |
| Output current            | 20 A          |
| Total output power        | 100 W         |
| Maximum efficiency        | > 94 %        |

The STEVAL-ISA204V1 evaluation board attains a maximum efficiency of 94%. The figure below shows the efficiency of the board at different input voltages and load conditions.

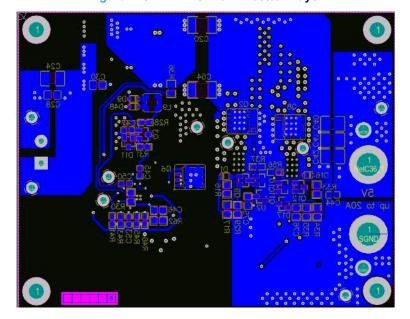
96 94 92 Efficiency % 48 V 56 V 90 88 86 84 100 10 20 30 40 50 60 70 80 90 Load %

Figure 2. Efficiency at different load conditions

Table 2. STEVAL-ISA204V1 MOSFET temperatures at maximum load (20 A)

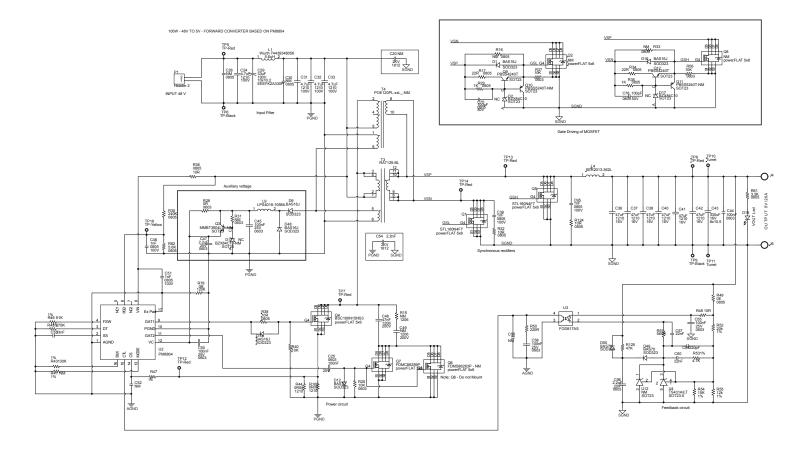
| Optional Q2 and Q8 | Synchronous rectifier Q1 | Synchronous rectifier Q5 | Forward Converter Q4 |  |
|--------------------|--------------------------|--------------------------|----------------------|--|
| unmounted          | 84 °C                    | 94.4°C                   | 74 °C                |  |
| mounted 74 °C      |                          | 77.8 °C                  | 73 °C                |  |

DB3958 - Rev 1 page 3/7




# Board layout




Figure 3. STEVAL-ISA204V1 top layer





DB3958 - Rev 1 page 4/7

# 4 Schematic diagram







## **Revision history**

Table 3. Document revision history

| Date        | Version | Changes          |
|-------------|---------|------------------|
| 14-Jun-2019 | 1       | Initial release. |

DB3958 - Rev 1 page 6/7



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to <a href="https://www.st.com/trademarks">www.st.com/trademarks</a>. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DB3958 - Rev 1 page 7/7