

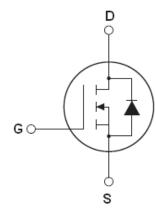
N-Channel Super Junction Power MOSFET III

General Description

The series of devices use advanced trench gate super junction technology and design to provide excellent Rds(ON) with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.

Features


- New technology for high voltage device
- Low on-resistance and low conduction losses
- small package
- Ultra Low Gate Charge cause lower driving requirements
- 100% Avalanche Tested
- ROHS compliant


Application

- Power factor correction (PFC)
- Switched mode power supplies(SMPS)
- Uninterruptible Power Supply (UPS)

Package Marking And Ordering Information

Device	Device Package	Marking
RM12N650HD	TO-263	12N650
RM12N650T2	TO-220	12N650
RM12N650TI	TO-220F	12N650

Schematic diagram

TO-263

TO-220

TO-220F

Table 1. Absolute Maximum Ratings ($T_c=25^{\circ}$ C)

Parameter	Symbol	RM12N650HD RM12N650T2	RM12N650TI	Unit
Drain-Source Voltage (V _{GS} =0V)	V _{DS}	65	50	V
Gate-Source Voltage (V _{DS} =0V), AC(f>1HZ)	V _G S	±30		V
Continuous Drain Current at T _C =25°C	I _{D (DC)}	11.5	11.5*	А
Continuous Drain Current at T _C =100°C	I _{D (DC)}	7	7*	А
Pulsed drain current (Note 1)	DM (pluse)	46	46*	А
Maximum Power Dissipation(T _C =25°C)	P_{D}	101	32.6	W
Derate above 25°C		0.81	0.26	w/°C
Single pulse avalanche energy (Note2)	Eas	144		mJ
Avalanche current ^(Note 1)	lanche current ^(Note 1) I _{AR} 6		5	А
Repetitive Avalanche energy , t_{AR} limited by T_{jmax} (Note 1)	E _{AR}	0.5		mJ

Parameter	Symbol	RM12N650HD RM12N650T2 RM12N650T	l Unit
Drain Source voltage slope, V _{DS} ≤480 V,	dv/dt	50	V/ns
Reverse diode dv/dt, $V_{DS} \le 480 \text{ V}, I_{SD} < I_{D}$	dv/dt	15	V/ns
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55+150	°C

^{*} limited by maximum junction temperature

Table 2. Thermal Characteristic

Parameter	Symbol	RM12N650HD RM12N650T2	RM12N650TI	Unit
Thermal Resistance, Junction-to-Case (Maximum)	R _{thJC}	1.24	3.83	°C /W
Thermal Resistance, Junction-to-Ambient (Maximum)	R _{thJA}	62	80	°C /W

 Table 3. Electrical Characteristics (TA=25℃ unless otherwise noted)

Table 3. Lieutiful Characteristics	ics (TA-23 Culless otherwise noted)					
Parameter	Symbol	Condition	Min	Тур	Max	Unit
On/off states						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	650			V
Zero Gate Voltage Drain Current(Tc=25℃)	I _{DSS}	V _{DS} =650V,V _{GS} =0V		0.05	1	μΑ
Zero Gate Voltage Drain Current(Tc=125℃)	I _{DSS}	V _{DS} =650V,V _{GS} =0V			100	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V			±100	nA
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	3	3.5	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =7A		300	360	mΩ
Dynamic Characteristics	•		•		•	
Input Capacitance	C _{Iss}	\/ F0\/\\ 0\/		870		pF
Output Capacitance	C _{oss}	V_{DS} =50V, V_{GS} =0V, F=1.0MHz		54		pF
Reverse Transfer Capacitance	C _{rss}	F=1.UMHZ		1.8		pF
Total Gate Charge	Qg	\/ 400\/ 44.54		19		nC
Gate-Source Charge	Q _{gs}	V _{DS} =480V,I _D =11.5A,		6		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V		6.5		nC
Switching times						
Turn-on Delay Time	t _{d(on)}			11		nS
Turn-on Rise Time	t _r	V _{DD} =380V,I _D =5.5A,		8		nS
Turn-Off Delay Time	t _{d(off)}	$R_G=3\Omega,V_{GS}=10V$		58	70	nS
Turn-Off Fall Time	t _f			9	14	nS
Source- Drain Diode Characteristics	•		•		•	
Source-drain current(Body Diode)	I _{SD}	T 05°0			11.5	Α
Pulsed Source-drain current(Body Diode)	I _{SDM}	T _C =25°C			46	Α
Forward on voltage	V _{SD}	Tj=25°C,I _{SD} =11.5A,V _{GS} =0V		0.9	1.2	V
Reverse Recovery Time	t _{rr}	T: 05°0 L 5 0A		220		nS
Reverse Recovery Charge	Q _{rr}	Tj=25°C,I _F =5.8A,		2.2		uC
Peak Reverse Recovery Current	I _{rrm}	di/dt=100A/µs		19		Α

Notes: 1.Repetitive Rating: Pulse width limited by maximum junction temperature

^{2.} Tj=25°C,VDD=50V,VG=10V, R_G=25 Ω

RATING AND CHARACTERISTICS CURVES (RM12N650HD/T2/TI)

Figure 1. Safe operating area

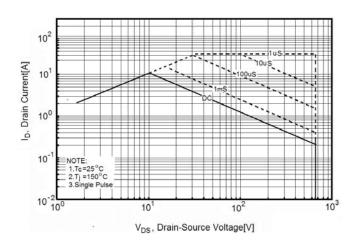


Figure 2. Safe operating area for TO-220F

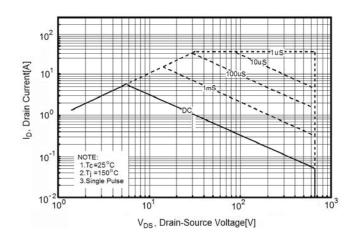


Figure 3. Source-Drain Diode Forward Voltage

Figure 4. Output characteristics

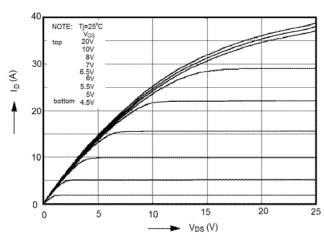


Figure 5. Transfer characteristics

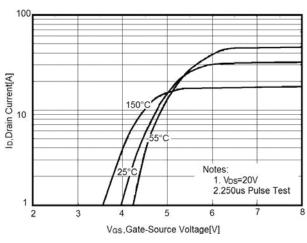
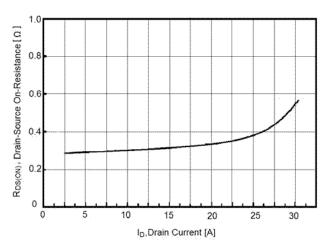



Figure 6. Static drain-source on resistance

RATING AND CHARACTERISTICS CURVES (RM12N650HD/T2/TI)

Figure 7. R_{DS(ON)} vs Junction Temperature

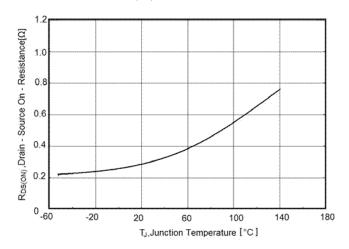


Figure 8. BV_{DSS} vs Junction Temperature

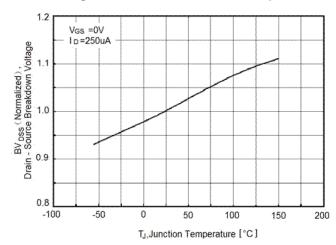


Figure 9. Maximum I_D vs Junction Temperature

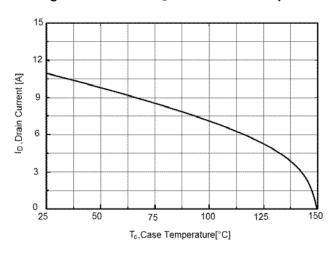


Figure 10. Gate charge waveforms

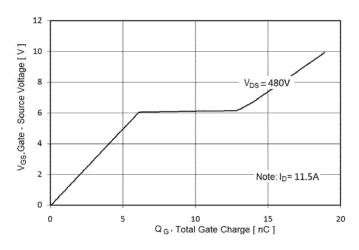
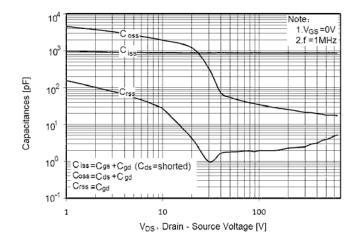
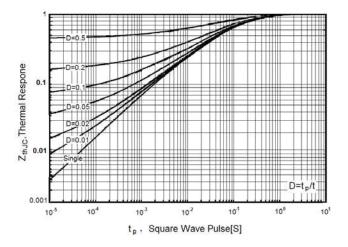
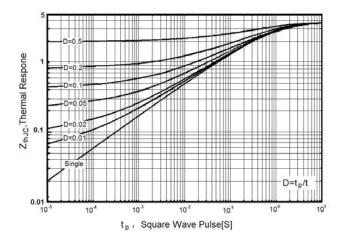
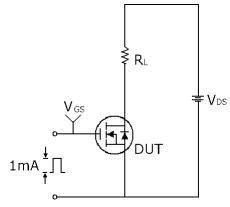


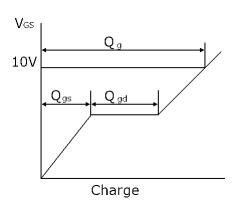
Figure11. Capacitance

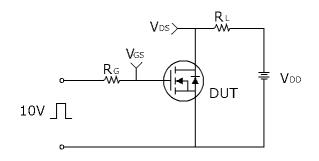



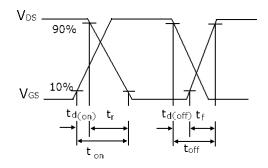

Figure 12. Transient Thermal Impedance

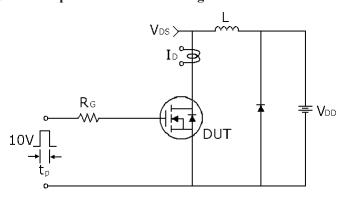
RATING AND CHARACTERISTICS CURVES (RM12N650HD/T2/TI)

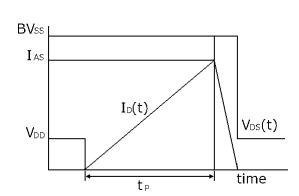

Figure 13. Transient Thermal Impedance for TO-220F

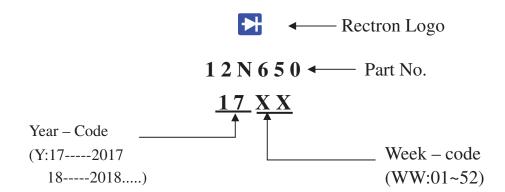


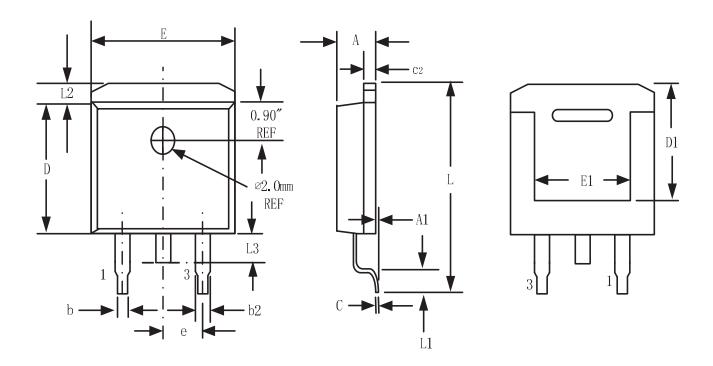

Test circuit


1) Gate charge test circuit & Waveform

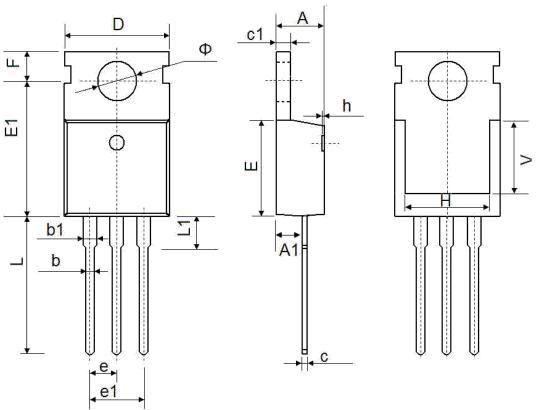



2) Switch Time Test Circuit:

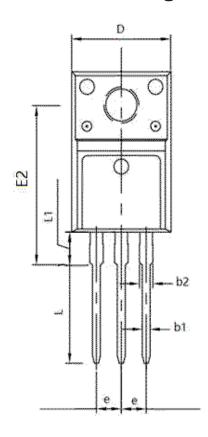

3) Unclamped Inductive Switching Test Circuit & Waveforms

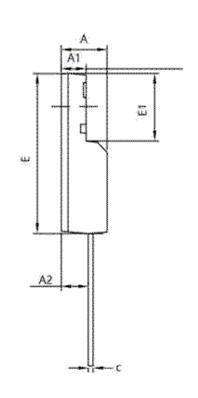


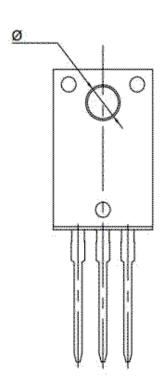
Marking on the body


TO-263-3L Package Information

Symbol	Dimensions	Dimensions In Millimeters		In Inches
Symbol	Min.	Max.	Min.	Max.
А	4.32	4.57	0.170	0.180
A1	-	0.25		0.010
b	0.71	0.94	0.028	0.037
b2	1.15	1.40	0.045	0.055
С	0.46	0.61	0.018	0.024
c2	1.22	1.40	0.048	0.055
D	8.89	9.40	0.350	0.370
D1	8.01	8.23	0.315	0.324
Е	10.04	10.28	0.395	0.405
E1	7.88	8.08	0.310	0.318
е	2.54	BSC	0.100	BSC
L	14.73	15.75	0.580	0.620
L1	2.29	2.79	0.090	0.110
L2	1.15	1.39	0.045	0.055
L3	1.27	1.77	0.050	0.070


TO-220-3L-C Package Information




0	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.400	4.600	0.173	0.181
A1	2.250	2.550	0.089	0.100
b	0.710	0.910	0.028	0.036
b1	1.170	1.370	0.046	0.054
С	0.330	0.650	0.013	0.026
c1	1.200	1.400	0.047	0.055
D	9.910	10.250	0.390	0.404
E	8.9500	9.750	0.352	0.384
E1	12.650	12.950	0.498	0.510
е	2.540 TYP.		0.100 TYP.	
e1	4.980	5.180	0.196	0.204
F	2.650	2.950	0.104	0.116
Н	7.900	8.100	0.311	0.319
h	0.000	0.300	0.000	0.012
L	12.900	13.400	0.508	0.528
L1	2.850	3.250	0.112	0.128
V	7.500	REF.	0.295	REF.
Ф	3.400	3.800	0.134	0.150

TO-220F Package Information

Symbol	Dimensions In Millimeters		Dimension	s In Inches
	Min.	Max.	Min.	Max.
A	4.500	4.900	0.177	0.193
A1	2.340	2.740	0.092	0.108
A2	2.560	2.960	0.101	0.117
b1	0.700	0.900	0.028	0.035
b2	1.180	1.580	0.046	0.062
С	0.400	0.600	0.016	0.024
D	9.960	10.360	0.392	0.408
E	15.670	15.970	0.617	0.629
E1	6.500	6.900	0.256	0.272
E2	15.500	16.100	0.610	0.634
е	2.540	2.540 TYP) TYP
Ф	3.080	3.280	0.121	0.129
L	12.640	13.240	0.498	0.521
L1	3.030	3.430	0.119	0.135

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

