

FEATURES

RF 1 \times 1 transceiver with integrated 12-bit DACs and ADCs Band: 70 MHz to 6.0 GHz

Supports time division duplex (TDD) and frequency division duplex (FDD) operation

Tunable channel bandwidth (BW): <200 kHz to 56 MHz 3-band receiver: 3 differential or 6 single-ended inputs Superior receiver sensitivity with a noise figure of <2.5 dB Rx gain control

Real-time monitor and control signals for manual gain Independent automatic gain control

2-band differential output transmitter

Highly linear broadband transmitter

Tx EVM: ≤–40 dB

Tx noise: ≤-157 dBm/Hz noise floor

Tx monitor: ≥66 dB dynamic range with 1 dB accuracy Integrated fractional-N synthesizers

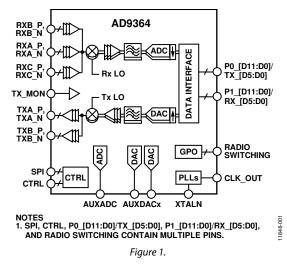
2.4 Hz maximum local oscillator (LO) step size Multichip synchronization CMOS/LVDS digital interface

APPLICATIONS

Point to point communication systems Femtocell/picocell/microcell base stations General-purpose radio systems

GENERAL DESCRIPTION

The AD9364 is a high performance, highly integrated radio frequency (RF) Agile Transceiver[™] designed for use in 3G and 4G base station applications. Its programmability and wideband capability make it ideal for a broad range of transceiver applications.


The device combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers, simplifying design-in by providing a configurable digital interface to a processor. The AD9364 operates in the 70 MHz to 6.0 GHz range, covering most licensed and unlicensed bands. Channel bandwidths from less than 200 kHz to 56 MHz are supported.

The direct conversion receiver has state-of-the-art noise figure and linearity. The receive (Rx) subsystem includes independent automatic gain control (AGC), dc offset correction, quadrature correction, and digital filtering, thereby eliminating the need for these functions in the digital baseband. The AD9364 also has flexible manual gain modes that can be externally controlled. Two high dynamic range ADCs digitize the received I and Q signals and pass them through configurable decimation filters

RF Agile Transceiver

AD9364

FUNCTIONAL BLOCK DIAGRAM

and 128-tap FIR filters to produce a 12-bit output signal at the appropriate sample rate.

The transmitter uses a direct conversion architecture that achieves high modulation accuracy with ultralow noise. This transmitter design produces a Tx EVM of \leq -40 dB, allowing significant system margin for the external power amplifier (PA) selection. The onboard transmit (Tx) power monitor can be used as a power detector, enabling highly accurate Tx power measurements.

The fully integrated phase-locked loops (PLLs) provide low power fractional-N frequency synthesis for all Rx and Tx channels. All VCO and loop filter components are integrated.

The core of the AD9364 can be powered directly from a 1.3 V regulator. The IC is controlled via a standard 4-wire serial port and four real-time input control pins. Comprehensive power-down modes are included to minimize power consumption during normal use. The AD9364 is packaged in a 10 mm \times 10 mm, 144-ball chip scale package ball grid array (CSP_BGA).

Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Powering the AD9364...... 30 Packaging and Ordering Information 31

REVISION HISTORY

7/14-Rev. B to Rev. C

Changed CMOS VDD_INTERFACE from	
1.2 V (min)/2.5 V (max) to 1.14 V (min)/2.625 V (max); and	
Changed LVDS VDD_INTERFACE from 1.8 V (min)/2.5 V	(max)
to 1.71 V (min)/2.625 V (max); Table 1	7
Added Powering the AD9364 Section	30

2/14—Revision B: Initial Version

SPECIFICATIONS

Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, and all other VDDx pins = 1.3 V, T_A = 25°C, unless otherwise noted.

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/Comment
RECEIVER, GENERAL						
Center Frequency		70		6000	MHz	
Gain						
Minimum			0		dB	
Maximum			74.5		dB	At 800 MHz
			73.0		dB	At 2300 MHz, RXA
			72.0		dB	At 2300 MHz, RXB, RXC
			65.5		dB	At 5500 MHz, RXA
Gain Step			1		dB	
Received Signal Strength	RSSI		I		чь	
Indicator	1/221					
Range			100		dB	
Accuracy			±2		dB	
RECEIVER, 800 MHz			<u>+</u> Z		ab	
	NF		2		dB	
Noise Figure			2			Maximum Rx gain
Third-Order Input Intermod- ulation Intercept Point	IIP3		-18		dBm	Maximum Rx gain
Second-Order Input Intermod- ulation Intercept Point	IIP2		40		dBm	Maximum Rx gain
Local Oscillator (LO) Leakage			-122		dBm	At Rx front-end input
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-42		dB	19.2 MHz reference clock
Input S ₁₁			-10		dB	
RECEIVER, 2.4 GHz			10		ab	
	NF		3		dB	
Noise Figure						Maximum Rx gain
Third-Order Input Intermod- ulation Intercept Point	IIP3		-14		dBm	Maximum Rx gain
Second-Order Input Intermod- ulation Intercept Point	IIP2		45		dBm	Maximum Rx gain
Local Oscillator (LO) Leakage			-110		dBm	At Rx front-end input
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-42		dB	40 MHz reference clock
Input S ₁₁			-10		dB	
RECEIVER, 5.5 GHz	1					
Noise Figure	NF		3.8		dB	Maximum Rx gain
Third-Order Input Intermod-	IIP3		-17		dBm	Maximum Rx gain
ulation Intercept Point						-
Second-Order Input Intermod- ulation Intercept Point	IIP2		42		dBm	Maximum Rx gain
Local Oscillator (LO) Leakage Quadrature			-95		dBm	At Rx front-end input
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-37		dB	40 MHz reference clock (doubled internally for RF
Input S ₁₁			-10		dB	synthesizer)
IRANSMITTER—GENERAL			10			
		70		6000		
Center Frequency		70	00	6000	MHz	
Power Control Range			90		dB	
Power Control Resolution	1	1	0.25		dB	

Parameter ¹	Symbol	Min Typ	Max	Unit	Test Conditions/Comments
TRANSMITTER, 800 MHz					
Output S ₂₂		-10		dB	
Maximum Output Power		8		dBm	1 MHz tone into 50 Ω load
Modulation Accuracy (EVM)		-40		dB	19.2 MHz reference clock
Third-Order Output Intermod-	OIP3	23		dBm	
ulation Intercept Point					
Carrier Leakage		-50		dBc	0 dB attenuation
5		-32		dBc	40 dB attenuation
Noise Floor		-157		dBm/Hz	90 MHz offset
TRANSMITTER, 2.4 GHz					
Output S ₂₂		-10		dB	
Maximum Output Power		7.5		dBm	1 MHz tone into 50 Ω load
Modulation Accuracy (EVM)		-40		dB	40 MHz reference clock
Third-Order Output Intermod-	OIP3	-40		dBm	
ulation Intercept Point	UPS	19		UDITI	
Carrier Leakage		-50		dBc	0 dB attenuation
currer Leakage		-32		dBc	40 dB attenuation
Noise Floor		-156		dBm/Hz	90 MHz offset
TRANSMITTER, 5.5 GHz		-130			
		10		dB	
Output S ₂₂		-10			7 Millsten - Sets FO.O.L.
Maximum Output Power		6.5		dBm	7 MHz tone into 50 Ω load
Modulation Accuracy (EVM)		-36		dB	40 MHz reference clock (doubled internally for RF
					synthesizer)
Third-Order Output Intermod-	OIP3	17		dBm	Synthesizery
ulation Intercept Point	011 5	17		dbiii	
Carrier Leakage		-50		dBc	0 dB attenuation
		-30		dBc	40 dB attenuation
Noise Floor		-151.5		dBm/Hz	90 MHz offset
TX MONITOR INPUT (TX_MON)		191.5		GDH/HZ	Jo Will 2 Offset
Maximum Input Level		4		dBm	
-		4 66		dB	
Dynamic Range					
Accuracy		1		dB	
LO SYNTHESIZER					
LO Frequency Step		2.4		Hz	2.4 GHz, 40 MHz reference
					clock
Integrated Phase Noise		0.12		0	10011 - 1001411 - 20721411
800 MHz		0.13		° rms	100 Hz to 100 MHz, 30.72 MHz reference clock (doubled
					internally for RF synthesizer)
2.4 GHz		0.37		° rms	100 Hz to 100 MHz, 40 MHz
2.4 0112		0.57		1115	reference clock
5.5 GHz		0.59		° rms	100 Hz to 100 MHz, 40 MHz
					reference clock (doubled
					internally for RF synthesizer)
REFERENCE CLOCK (REF_CLK)					REF_CLK is either the input to
					the XTALP/XTALN pins or a
					line directly to the XTALN pin
Input					
Frequency Range		19	50	MHz	Crystal input
		10	80	MHz	External oscillator
Signal Level		1.3		Vp-p	AC-coupled external oscillator
AUXILIARY CONVERTERS					
ADC					
Resolution		12		Bits	
Input Voltage					
Minimum		0.05		v	
Maximum		VDDA1P3_E	3B – 0.05	v	
DAC				1.	
Resolution		10		Bits	
nesolution		IU		DILS	l

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Output Voltage						
Minimum			0.5		V	
Maximum			VDD_GPO - 0.3		v	
Output Current			10		mA	
DIGITAL SPECIFICATIONS (CMOS)			10		11.0 (
Logic Inputs						
Input Voltage					V	
High		VDD_INTERFACE × 0.8		VDD_INTERFACE	V	
Low		0		VDD_INTERFACE × 0.2	V	
Input Current						
High		-10		+10	μA	
Low		-10		+10	μΑ	
Logic Outputs						
Output Voltage						
High		VDD_INTERFACE × 0.8			V	
Low				VDD_INTERFACE × 0.2	V	
DIGITAL SPECIFICATIONS (LVDS)						
Logic Inputs						
Input Voltage Range		825		1575	mV	Each differential input in the
input voltage hange		025		1575	1110	pair
Input Differential Voltage Threshold		-100		+100	mV	
Receiver Differential Input			100		Ω	
Impedance			100			
Logic Outputs						
Output Voltage						
High				1375	mV	
Low		1025		1373	mV	
		1025				
Output Differential Voltage		150			mV	Programmable in 75 mV steps
Output Offset Voltage			1200		mV	
GENERAL-PURPOSE OUTPUTS						
Output Voltage						
High		VDD_GPO × 0.8			v	
Low				VDD_GPO × 0.2	v	
			10	VDD_GF0 × 0.2		
Output Current			10		mA	
SPITIMING						VDD_INTERFACE = 1.8 V
SPI_CLK						
Period	t _{CP}	20			ns	
Pulse Width	t _{MP}	9			ns	
SPI_ENB Setup to First SPI_CLK Rising Edge	tsc	1			ns	
Last SPI_CLK Falling Edge to SPI_ENB Hold	t _{нс}	0			ns	
SPI_DI						
Data Input Setup to SPI_CLK	ts	2			ns	
Data Input Hold to SPI_CLK SPI_CLK Rising Edge to Output Data Delay	t _H	1			ns	
4-Wire Mode	tco	3		8	nc	
	t _{co}				ns	
3-Wire Mode	t _{co}	3		8	ns	After last 1
Bus Turnaround Time, Read	t _{нzм}	tH		tco (max)	ns	After baseband processor (BBP) drives the last addres bit
Bus Turnaround Time, Read	t _{HZS}	0		t co (mm)	ns	After the AD9364 drives the
	VIIZ3	ř		tco (max)	115	last data bit

DiGRAL DATA TIMENS (2003), VOLD. NITERACCE 1 aV tr 15276 ns 61.44 MHz DATA, CLX dock Period tr 15276 ns 61.44 MHz Width tr 1 ns ns 61.44 MHz Stopp to FB, CLK trn 1 ns ns DATA, CLX and FL, CLK trn 1 ns ns DATA, CLX and FL, CLK trn 0 1.5 ns DATA, CLX and RLS, CALMAN true 0 1.5 ns DATA, CLX and RLS, CALMAN true 0 1.6 ns FDD independent ENSM mode DATA, CLX and RLS, CALMAN true tr ns TDD ENSM mode mode BMRLE true 2 xtr ns TDD ENSM mode mode mode DATA, CLX and RLS, CALMAN true 2 xtr ns TDD mode mode TOWRX true 2 xtr ns TDD mode mode mode DATA, CLX and RLS, CLK tus trr 1 ns <	Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
DATA_CLK and FPL_CLK Pulse tw 45% of tw 55% of tw ns FARME_PO_D, and PD_D To Data n n n n n n Setup to FPL_CLK tw 1 no n n DATA_CLK to DAB NO type troo 0 1.5 ns FOURDAME Data troo 0 1.0 ns FOURDAME Data troo 0 ns FOURDAME Data troo ns ToDindependent ENSM NNRX Statup to ENABLE troo ns TDDIndependent ENSM Buf Tronscrund Time v 2 x tv ns TDDIndependent ENSM Capacitive Inpat. tw 2 x tv ns TDDIndependent ENSM Capacitive Inpat. tw 3 pf TDO mode Capacitive Inpat. tw 4 5% of try ns TDD mode Capacitive Inpat. tw 1 6276 ns 61.44 MHz DATA_CLK Ko Data Buc Output tw 1 6276 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Width Image: Status Image: Status	DATA_CLK Clock Period	t _{CP}	16.276			ns	61.44 MHz
Tx Dua Schup 10 FB, CLK heid 10 FB, CLK DATA, CLK No Data Bus Output 	DATA_CLK and FB_CLK Pulse	t _{MP}	45% of t _₽		55% of t _{CP}	ns	
Setup to FB_CLK top 1 ns ns ns DATA_CLK to Data Bus Output toox 0 1.5 ns ns ns DATA_CLK to RX_FRAME toox 0 1.0 ns ns ns DATA_CLK to RX_FRAME toox 0 1.0 ns ns ns DATA_CLK to RX_FRAME toox tor ns ns TDD independent ENSM mode DATA_CLK to RX_FRAME toox 0 ns TDD independent ENSM mode But Immound Time tor 2 x tor ns TDD mode After Rx tor 2 x tor ns TDD mode Capacitive Input tor 3 pf TDD mode Capacitive Input tor 16276 ns 6144 MHz DATA_CLK CLK RAPE tor 16276 ns 6144 MHz DATA_CLK CLK RAPE tor 10 ns 17.4 ms DATA_CLK CLK RAPE Print ns ns 12.0 ms ms	Width						
Holito FB_CLKErr.0nsnsDATA_CKK to Data Bas Output Delaytoox01.5nsDATA_CKK to Data Bas Output Delaytoox01.0nsDATA_CKK to Data Bas Output Dulaytoox01.0nsPulse WathtooxKrrnsFDD Independent ENSM modePulse WathtooxKrToonsTDD Independent ENSM modeNNRX Setup to ENABLEtoox2×trnsTDD modeBas Turnacound Time Before Rktoo2×trnsTDD modeBas Turnacound Time Before Rktoo3pfTDD modeDATA_CK took FE_CKNtoo3pf1.0nsDATA_CK took FE_CKNtoo16.276ns1.44 MHzDATA_CK took FE_CKNtoo1.0ns1.44 MHzNUDD, INTERACHE_2SVtoo01.2nsDATA_CK took FE_CKNtoo01.2ns1.44 MHzNUDATA_CK took FE_CKNtoo01.2ns1.44 MHzNUDATA_CK took FE_CKNtoo01.2ns1.44 MHzDATA_CK took FE_CKNtoo01.2ns1.45	Tx Data						TX_FRAME, P0_D, and P1_D
DATA_CLK10 Data Bus Output Delaytoose01.5nssecDATA_CLK10 RX_FRAME Delaytoose01.0nsFDD independent ENSM modePAIse WidthtoosetoosensFDD independent ENSM modePARE Widthtoose0nsFDD independent ENSM modeDNRX Setup to ENABLE Bus Tumaround Timetoose0nsFDD independent ENSM modeBefore RK Capacitive Loadtorse2 × to-nsTDD modeAfter Rx Capacitive Loadtorse2 × to-nsTDD modeGapacitive Load3pFTDD modeCapacitive Load3pFTDD modeCapacitive Load3pFTDD modeCapacitive Load3pFTDD modeCapacitive Loadtors16,276ns61,44 MHzDATA_CLKCACkPetridtors16,276ns61,44 MHzDATA_CLKCACkPetridtors0nsFD independent ENSMWidthtors01.2nsFD independent ENSMDATA_CLKCACkPetridtors0nsFD independent ENSMDATA_CLKCACkPetridtors1.0nsFD independent ENSMDATA_CLKCACkPetridtors1.0nsFD independent ENSMDATA_CLKCACkPetridtors1.0nsFD independent ENSMDATA_CLKCACkPetridtors2×to-nsFD independent ENSMDATA_CLKCACkPetridtors2×to-nsFD indep	Setup to FB_CLK	t _{STX}	1			ns	
Delay Delay Delaytupy01.0nsFunction nsFormation nodePulse Wath NMRXtum tumeorytum tumeorytum tumeorynsFOD independent ENSM modeTNNEX Scup DENABLE Bus Turnaround Time Before Rxtum tum 2 × tupnsTDD modeBefore Rx After Rxtum tum 2 × tupnsTDD modeDidfAL DATA TIMMS (MOS), VOD_INTER KET ELS X Wathtum tup2 × tupnsTDD modeCapactive Load Wathtum tup16.276ns6.44 MHzDidfAL DATA TIMMS (MOS), Wathtum tup16.276ns6.44 MHzData (LS and FE (LK N) bit Wathtum tup16.276ns6.44 MHzData (LS and FE (LK N) bit Wathtum tup1.0ns1.44 MHzSetup to FE. CLK Wathtum tup1.0ns1.44 MHzData (LS and FE (LK N) bit Wathtum tup1.0ns1.44 MHzData (LS and FE (LK N) bit Wathtum tup1.2ns1.44 MHzData (LS and FE (LK N) bit Wathtum tup1.0ns1.44 MHzData (LS and FE (LK N) bit Wathtum tup1.0ns1.44 MHzSetup to FE (LK Wathtum tup1.0ns1.44 MHzData (LS and FE (LK N) bit Wathtum tup1.0ns1.44 MHzData (LS and FE (LK N) bit Wathtum tup1.2ns1.44 MHzData (LS and FE (LK N) bit <br< td=""><td></td><td>t_{HTX}</td><td>0</td><td></td><td></td><td>ns</td><td></td></br<>		t _{HTX}	0			ns	
Deby Inserved Low Low Res PDD independent ENSM mode DNRX towarr to ns ns PDD independent ENSM mode DNRX Setup to ENABLE towarr 0 ns TDD ENSM mode Bus Turnaround Time tever 2 x tor ns TDD mode Refore Rx tever 2 x tor ns TDD mode Capacitive Load 2 3 pF TDD mode Capacitive Load tor 16.276 ns 61.444 MHz DATA_CLK Clock Period tor 16.276 ns 61.444 MHz DATA_CLK Clock Period tor 16.276 ns 61.444 MHz DATA_CLK Clock Period tor 16.276 ns 61.444 MHz DATA_CLK Clock Clock Period tor 0 1.2 ns 61.444 MHz DATA_CLK Clock Period tor 0 1.2 ns 70.7644.764.764.764.764.764.764.764.764.76		t _{ddrx}	0		1.5	ns	
BNALE tawe to ns FDD independent ENSM mode TXNRX Setup to ENABLE to ns TDD independent ENSM mode Bus Turnaround Time test 2 x to ns TDD independent ENSM mode Bas Turnaround Time test 2 x to ns TDD mode Capacitive Load 2 x to ns TDD mode Capacitive Input - 3 pF DIATA_CLK Cack Pende to* 16.276 ns 61.444 MHz DATA_CLK Data Bus Output to* 1 ns 70.FRAME, PO_D, and PI_DE Data tow 0 1.2 ns 61.444 MHz DATA_CLK Data Bus Output tow 0 1.2 ns 70.FRAME, PO_D, and PI_DE Data tow 1 ns FDD independent ENSM mode DATA_CLK Data Bus Output tow 0 1.2 ns TDD mode DATA_CLK Data Bus Output tow 0 ns TDD mode TANRX	Delay	toddv	0		1.0	ns	
TXNRX Setup to ENABLE tos tos ns node node TXNRX Setup to ENABLE townsu 0 ns TDD Independent ENSM Bus Turnaround Time usrs 2 x tp ns TDD mode Before Rx usrs 2 x tp ns TDD mode After Rx usrs 2 x tp ns TDD mode Capacitive load usrs 3 pF TDD mode Disfinut DATA TIMINS (CMOS), VDD. INTERACE = 2.5 V ts f16276 ns f1.44 MHz DATA_CLK And RB_CLK Nets ts 16276 ns f1.44 MHz f1.44 MHz DATA_CLK And RB_CLK Nets ts 16276 ns f1.44 MHz f1.57 DATA_CLK And RB_CLK Nets ts 10 ns f1.44 MHz f1.57 DATA_CLK And RB_CLK Nets ts 0 ns f1.44 MHz f1.57 DATA_CLK And RB_CLK Nets ts 0 ns f1.57 f1.57 DATA_CLK And RB_CLK Nets ts 0 ns							
TXNRX Setup to ENABLE townsou node mode Bus Turnaround Time Even 2 x to ns TDD mode Before Rx ture 2 x to ns TDD mode Capacitive Load		t _{ENPW}	t _{CP}			ns	
Bus Turnaround Time Name Name </td <td></td> <td>t_{TXNRXPW}</td> <td></td> <td></td> <td></td> <td>ns</td> <td>mode</td>		t _{TXNRXPW}				ns	mode
Before Rxterm $2 \times tornsTDD modeTDD modeAfter Rxterm2 \times tornsTDD modeCapacitive Load3pFCapacitive Input3pFDiGTAL DATA TIMING (CMOS),VDD JNTERFACE = 2.5 Vtr16.276ns61.44 MHzDATA_CLK Ade RF_CLK Publictr16.276ns61.44 MHzDATA_CLK Ade RF_CLK VDBtr11ns61.44 MHzWidthtr11nsns61.44 MHzDATA_CLK Data Bus DutputDelaytor1nsnsns1DATA_CLK ND Data Bus DutputDelaytorx01.2nsFDD independent ENSMDATA_CLK ND RX_FRAMEDelaytorwtornsFDD independent ENSMmodeTNRKtorwtor1.0nsFDD independent ENSMTNRKtorse2×tornsTDD modeTDD modeBus Turnaround TimeBus Turnaround Timetr2×tornsTDD modeDATA_CLK ND RX_FRAMEDUTA_CLK ND RA BUS DUTPUtr4.069nsA100 modeDATA_CLK ND RA BUS DUTPUDATA_CLK ND RA BUS DUTPUDELAYnsA100 modeDATA_CLK ND RA BUS DUTPUDELAYtr4.069nsA55% of torns$	•	t txnrxsu	0			ns	TDD ENSM mode
After Rx tag: 2xtp ns TDD mode Gapactive Load 3 pf pf Capactive lenput 3 pf pf DIGTAL DATA TIMING (CMOS), VDD, ITERFACE -2.5 V rs 61.44 MHz DATA_CLK and FR_CLK Pulse tor 16.276 ns 61.44 MHz DATA_CLK and FR_CLK Pulse tor 16.276 ns 61.44 MHz Tx Data tor 16.276 ns 61.44 MHz Setup to FR_CLK tsrx 1 ns 7X, FRAME, P0_D, and P1_C Data Lock So Cutp 0 1.2 ns 7X, FRAME, P0_D, and P1_C Delay Delay 0 1.0 ns FOD independent ENSM mode Delay Pulse Widh tor ns FDD independent ENSM mode Bus Tumaround Time tore 3 pF TDD mode Diff. Data Sum 2004 tore ns TDD mode mode TXNRX Setup to ENABLE tore 3 pF TDD mode Data Cut Clock Period </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Capacitive Load Land 3 pF Capacitive Input 1 3 pF DIGITAL DATA TIMING (CMOS), VDD_UNTERFACE = 25 V ns 61.44 MHz DATA_CLK Cock Period tor 16276 ns 61.44 MHz DATA_CLK Cock Period tor 16276 ns 61.44 MHz Nota tor 1 ns 61.44 MHz Setup to FB_CLK torx 1 ns ns DATA_CLK to Data Bus Output torx 0 1.2 ns FDD Independent ENSM mode Delay torx torx tor ns TDD ENSM mode Delay torx torx tor ns TDD ENSM mode Bus Turanound Time torx 2x kr ns TDD ENSM mode Bus Turanound Time 2x kr <td< td=""><td></td><td>t_{RPRE}</td><td></td><td></td><td></td><td></td><td></td></td<>		t _{RPRE}					
Capacitive Input image of the second s		t _{RPST}	$2 \times t_{CP}$			ns	TDD mode
DIGITAL DATA TIMING (CMOS), VDD_NTERFACE = 2.5 V ns 61.44 MHz DATA_CLK Clock Period tor 16.276 ns 61.44 MHz DATA_CLK Clock Period tor 16.276 ns 61.44 MHz TX Data tor 1 ns ns 7X_FRAME_PO_D, and P1_E Width torx 1 ns ns TX_FRAME_PO_D, and P1_E Delay DATA_CLK to Data Bus Output Delay torx 0 1.2 ns DATA_CLK to RX_FRAME torx 0 1.0 ns FDD independent ENSM TXNRX tore ns rs FDD independent ENSM Delay DATA_CLK to RX_FRAME tor ns FDD independent ENSM Delay TXNRX tore ns TDD ENSM mode Bust Turnaround Time Before Rx tore 2 x tor ns TDD mode After Rx tars 2 x tor ns TDD mode TDD mode OIGITAL DATA TIMING (LVDS) tars 4.069 ns TDD mode DATA_CLK to RA FRAME tor 0 ns TDD mode After Rx tars 4.069 ns ns TDD mode DIGITAL DATA TIMING (LVDS) tars 0 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>	•					•	
VDD_INTEFACE = 2.5VImage: state in the state				3		pF	
DATA_CLK and FB_CLK Pulse tage 45% of t ₂ p 55% of t ₂ p ns rs Notation Tx Data							
Width Image: Secure to FB_CLK Stry 1 ns Tx_FRAME_P0_D, and P1_C Secure to FB_CLK trix 0 ns ns ns DATA_CLK to Data Bus Output Delay topex 0 1.2 ns Image: Secure to the sec	DATA_CLK Clock Period	t CP	16.276			ns	61.44 MHz
Setup to FB_CLK trx 1 ns ns Hold to FB_CLK trx 0 ns ns DATA_CLK to Data Bus Output Delay topox 0 ns ns DATA_CLK to RX_FRAME Delay topox 0 ns ns DATA_CLK to RX_FRAME topox 0 ns ns Delay topox 0 ns ns ns Pulse Width - ns ns FDD independent ENSM mode TXNRX tonesou 0 ns TDD independent ENSM mode TXNRX Setup to ENABLE tonesou 0 ns TDD independent ENSM mode Before Rx term 2x top ns TDD mode After Rx term 3 pF D DATA_CLK Clock Period ter 45% of top ns 125.76 MHz DATA_CLK Clock Period ter 45% of top ns TDC mode Tx Data ru 45% of top 55% of top ns T		t _{MP}	45% of t_{CP}		55% of t_{CP}	ns	
Hold to FB_CLKtrn:0nsssDATA_CLK to Data Bus Output Delaytoors:01.2ns	Tx Data						TX_FRAME, P0_D, and P1_D
DATA_CLK to Data Bus Output Delaytotox01.2nsstate stateDATA_CLK to RX_FRAME Delaytotox01.0nsstatePulse WidthtotoxtotoxnsnsFDD independent ENSM modePulse WidthtotoxtotoxnsnsFDD independent ENSM modeTXNRXtotoxtotoxnsFDD independent ENSM modeTXNRX Setup to ENABLE Bus Tumaround TimetotoxnsTDD modeBefore Rx Capacitive Inputtarse2 x topnsTDD modeAfter Rx Capacitive Inputtarse2 x topnsTDD modeDIGITAL DATA TIMING (LVDS) DATA_CLK clock Periodtop4.069nsnsTX_FRAME and TX_DDATA_CLK Rot RF ECLKtop10nsTX_FRAME and TX_DTx Datatop10nsTX_FRAME and TX_DDATA_CLK to RX_FRAME Delaytop0.251.25nsTX_FRAME and TX_DDATA_CLK to RX_FRAME Delaytop0.251.25nsTX_FRAME and TX_DPulse Widthtop0.251.25nsNsNsDATA_CLK to RX_FRAME Delaytop0.251.25nsFDD independent ENSMPulse Widthtoptop0.251.25nsFDD independent ENSMPulse Widthtoptop1.25nsFDD independent ENSMPulse Widthtoptop0.251.25nsPulse Width <td>Setup to FB_CLK</td> <td>t_{STX}</td> <td>1</td> <td></td> <td></td> <td>ns</td> <td></td>	Setup to FB_CLK	t _{STX}	1			ns	
Delay DATA_CLK to RX_FRAME Delaytoor01.0nsstatistical statistical modePulse Width ENABLEtenwtopnsnsFDD independent ENSM modeTXNRXtenwtopnsFDD independent ENSM modeTXNRX Setup to ENABLE Bus Turnaround Timetranscou0nsTDD independent ENSM modeBefore Rxtene tene2 × topnsTDD modeAfter Rxtene tenes2 × topnsTDD modeCapacitive Load DATA_CLK Clock Periodtop3pFIDD modeDIGTAL DATA TIMING (LVDS)top45% of tops5% of topns245.76 MHzDATA_CLK And FB_CLK Pulse Widthtop45% of top55% of topnsandTX Datatorx1nsnsTX_FRAME and TX_DSetup to FB_CLKtorx1nsnsinterpendent X_DDATA_CLK to RX_FRAME Delaytop0.251.25nsinterpendent X_DPLee Widthtoptop0.251.25nsinterpendent ENSMPulse Widthtoptop1.25nsinterpendent ENSMPulse Widthtoptopnsinterpendent ENSMPulse Widthtoptopnsinterpendent ENSMPulse Widthtoptopnsinterpendent ENSMPulse Widthtoptopnsinterpendent ENSMPulse Widthtoptopnsinterpendent ENSM	Hold to FB_CLK	t _{HTX}	0			ns	
Delay Pulse WidthInIndependent ENSM Pulse WidthInInPAABLEtenwytopnsFDD independent ENSM modeTXNRXtronstorwytopnsFDD independent ENSM modeTXNRX Setup to ENABLEtronstorwytopnsTDD ENSM modeBus Turnaround Timetop2x topnsTDD modeBefore Rxtenst2x topnsTDD modeAfter Rxtenst2x topnsTDD modeCapacitive Inputtenst2x topnsTDD modeDIGITAL DATA TIMING (UVDS)tenst45% of toppF100 modeDATA_CLK Clock Periodtop45% of top55% of topns245.76 MHzDATA_CLK And FB_CLKtune1nsTA_FRAME and TX_DSetup to FB_CLKtsrx1nsTA_FRAME and TX_DMidthii0.251.25nsiDATA_CLK to RX_FRAMEtopow0.251.25nsiDATA_CLK to RX_FRAMEtopow0.251.25nsiDATA_CLK to RX_FRAMEtopow0.251.25nsiDATA_CLK to RX_FRAMEtopowtopow1.25nsiDATA_CLK to RX_FRAMEtopowtopow1.25nsiDATA_CLK to RX_FRAMEtopowtopownsiiDATA_CLK to RX_FRAMEtopowtopownsiiDATA_CLK to RX_FRAMEtopowtopowns <td< td=""><td></td><td>t_{DDRX}</td><td>0</td><td></td><td>1.2</td><td>ns</td><td></td></td<>		t _{DDRX}	0		1.2	ns	
ENABLEtenwtorownsnsSecondTXNRXtranscovetonsFDD independent ENSM modeTXNRX Setup to ENABLEtranscove0nsTDD ENSM modeBus Turnaround TimetranscovensTDD modensTDD modeBefore Rxtarset2×topnsTDD modensTDD modeAfter Rxtarset2×topnsTDD modensTDD modeCapacitive Loadtarset3pFTDD modeCapacitive Inputto3stopnstopDIGITAL DATA TIMING (LVDS)tostopns45% of topnstopDATA_CLK clock Periodtop45% of toptopns45% of HzTX Datatop11nstoptopTx Datatop0251.25nstoptopDATA_CLK top RA_FRAME Delaytopor0.251.25nstoptopDATA_CLK top X_FRAME DelaytoportopnstoptoptopDATA_CLK top X_FRAME DelaytoporvtoptopnstoptopDATA_CLK top X_FRAME DelaytoptoptoptoptoptopDATA_CLK top X_FRAME DelaytoptoptoptoptoptoptopDATA_CLK top X_FRAME DelaytoptoptoptoptoptoptopDATA_CLK top X_FRAME Delaytop <t< td=""><td>Delay</td><td>t_{DDDV}</td><td>0</td><td></td><td>1.0</td><td>ns</td><td></td></t<>	Delay	t _{DDDV}	0		1.0	ns	
TXNRXTXNRXSetup to ENABLE tromescupTXNRXSetup to ENABLE tromescupTromescupFDD independent ENSM modeBus Turnaround Time11RsTDD ENSM modeBus Turnaround Time12×tcpnsTDD modeBefore Rxtuppe2×tcpnsTDD modeAfter Rxtupst2×tcpnsTDD modeCapacitive Load13pF1Capacitive Load1111DIGITAL DATA TIMING (LVDS)145% of tcp55% of tcpnsDATA_CLK Clock Periodtcp45% of tcp55% of tcpnsDATA_CLK Clock Periodtup45% of tcp55% of tcpnsDATA_CLK Clock Periodtup21nsTx Data111nsSetup to FB_CLKtup0.251.25nsDATA_CLK to Data Bus Output Delaytupe0.251.25nsDATA_CLK to RX_FRAME Delaytupe0.251.25nsPulse Width11111ENABLEtupetupetupens1Pulse Width11111Pulse Width11111Pulse Width11111ENABLEtupetupe111Pulse Width1111ENABLEtupetupe11Data1	Pulse Width						
TXNRX Setup to ENABLE Bus Turnaround Timetrans0modeBus Turnaround Timetspre2× tcpnsTDD ENSM modeBefore Rxtspre2× tcpnsTDD modeAfter Rxtspre2× tcpnsTDD modeCapacitive Loadtspre2× tcpnsTDD modeCapacitive Input-3pF-DIGITAL DATA TIMING (LVDS)ns245.76 MHzDATA_CLK Clock Periodtcp4.069nsDATA_CLK Clock Periodtcp4.069ns245.76 MHzTX Datans-TX_FRAME and TX_DSetup to FB_CLKtrn0ns-TX_FRAME and TX_DMidd to FB_CLKtrnx0.nsDATA_CLK to Data Bus Output Delaytoorx0.251.25nsDATA_CLK to TAT_FRAME Delaytoorx0.251.25nsPulse WidthDATA_CLK to TAT_BRAME Delaytoorx0.251.25nsPulse WidthDATA_CLK to TAT_FRAME Delaytoorx1.25nsDATA_CLK to TAT_STAME DelaytoorxtoorxnsPulse Width <td></td> <td>tenpw</td> <td>t_{CP}</td> <td></td> <td></td> <td>ns</td> <td></td>		tenpw	t _{CP}			ns	
Bus Turnaround TimeKurnerSet or SectorKurnerSectorKurnerKurnerSectorKurner		t _{txnrxpw}	t _{CP}			ns	
After Rxt _{RPST} 2×t _{CP} nsTDD modeCapacitive Load69F9F9FCapacitive Input139F1000000000000000000000000000000000000		t txnrxsu	0			ns	TDD ENSM mode
Capacitive Load3pFCapacitive Input-3pFDIGITAL DATA TIMING (LVDS)-4.069nsDATA_CLK Clock Periodtcp4.069nsDATA_CLK and FB_CLK Pulsetmp45% of tcp55% of tcpnsWidthtx DatansSetup to FB_CLKtsTx1nsnsHold to FB_CLKtsTx0nsnsDATA_CLK to Data Bus OutputtopRx0.251.25nsDATA_CLK to RX_FRAMEtopDv0.251.25nsDelayPulse Width-ns-FNABLEtenpwtcptcpnsTXNRXtrxnerwytcpns-TXNRXtrxnerwytcpns-FDD independent ENSMtcp-ns	Before Rx	t _{RPRE}	$2 \times t_{CP}$			ns	TDD mode
Capacitive InputImage: constraint of the symbol	After Rx	t _{RPST}	$2 \times t_{CP}$			ns	TDD mode
DIGITAL DATA TIMING (LVDS) DATA_CLK Clock Periodt_CP4.069ns245.76 MHzDATA_CLK and FB_CLK Pulse Widtht_MP45% of t_CP55% of t_CPnsTX_FRAME and TX_DTx DataTX_T1nsTX_FRAME and TX_DSetup to FB_CLKt_STX1nsnsTX_FRAME and TX_DHold to FB_CLKt_STX1nsnsnsDATA_CLK to Data Bus Output Delayt_DDRX0.251.25nsnsPulse Widtht_DDDV0.251.25nsnsFNABLEt_ENPWt_CPnsnsFDD independent ENSM	Capacitive Load			3		pF	
DATA_CLK Clock Periodtcp4.069ns245.76 MHzDATA_CLK and FB_CLK Pulse Widthtmp45% of tcp55% of tcpnsnsTx DataTX_FRAME and TX_DSetup to FB_CLKtsrx1nsnsTX_FRAME and TX_DHold to FB_CLKtsrx0nsns-DATA_CLK to Data Bus Output DelaytoDRx0.251.25ns-DATA_CLK to RX_FRAME DelaytoDDv0.251.25ns-Pulse Widthns-FNABLEtenvetoptopnsTXNRXtruncetoptopnsTXNRXtruncetopnsDATA_CLX to RX_FRAME DelaytoptopnsPulse WidthtoptopnsFNABLEtenvetopnsTXNRXtruncetopnsTXNRXtruncetopns	Capacitive Input			3		pF	
DATA_CLK and FB_CLK Pulse Widthtmp45% of tcp55% of tcpnsrsTx DataIITX_FRAME and TX_DSetup to FB_CLKtsTx1nsHold to FB_CLKthTx0nsDATA_CLK to Data Bus Output DelaytoDRX0.251.25DATA_CLK to RX_FRAME Delay0.251.25nsPulse WidthIIIENABLEtENPWtcprepTXNRXtrxnrxpwtcpnsTXNRXtrxnrxpwtcp	DIGITAL DATA TIMING (LVDS)						
WidthIIITX_PRAME and TX_DTx DataIITX_FRAME and TX_DSetup to FB_CLKtsTx1nsHold to FB_CLKtHTX0nsDATA_CLK to Data Bus Output DelaytDDRX0.251.25DATA_CLK to RX_FRAME Delay0.251.25nsPulse WidthIIIENABLEtENPWtopnsTXNRXtrxnRXWtopnsTXNRXtrxnRXWtopns	DATA_CLK Clock Period	t _{CP}	4.069			ns	245.76 MHz
Setup to FB_CLKtsTx1nsHold to FB_CLKtHTX0nsDATA_CLK to Data Bus Output DelaytDDRX0.251.25DATA_CLK to RX_FRAME DelaytDDDV0.251.25NaTA_CLK to RX_FRAME DelaytDDDV0.251.25Pulse WidthENABLEtENPWtcPnsTXNRXtTXNRXWtcPns		t _{MP}	45% of t _{CP}		55% of t_{CP}	ns	
Setup to FB_CLKtstx1nsHold to FB_CLKthtx0nsDATA_CLK to Data Bus Output DelaytDDRX0.251.25DATA_CLK to RX_FRAME DelaytDDDV0.251.25Pulse WidthtDDV0.251.25FNABLEtENPWtoptoptTXNRXttxnrxpwtcptrxnrxpwttxnrxpwtcp	Tx Data						TX_FRAME and TX_D
DATA_CLK to Data Bus Output DelaytDDRx0.251.25nsDATA_CLK to RX_FRAME DelaytDDDv0.251.25nsPulse WidthENABLEtENPWtCPns-TXNRXtTXNRXWtCPnsFDD independent ENSM	Setup to FB_CLK	t _{STX}	1			ns	
DelayDelayLDDV0.251.25nsData_CLK to RX_FRAME DelayLDDV0.251.25nsPulse WidthLNSNSNSENABLEtenpwtcpnsNSTXNRXtxnRXPWtcpnsFDD independent ENSM	Hold to FB_CLK	t _{HTX}	0			ns	
Delay Image: Constraint of the symbol Image: Consthe symbol I		t _{ddrx}	0.25		1.25	ns	
ENABLE t _{ENPW} t _C ns TXNRX t _{TXNRXPW} t _C ns FDD independent ENSM	Delay	t _{DDDV}	0.25		1.25	ns	
TXNRX t _{TXNRXPW} t _{CP} ns FDD independent ENSM		tenpw/	tcp			ns	
							EDD independent ENSM
TXNRX Setup to ENABLE t _{TXNRXSU} 0 ns TDD ENSM mode							mode

AD9364

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Bus Turnaround Time						
Before Rx	t _{RPRE}	2×t _{CP}			ns	
After Rx	t _{RPST}	2×t _{CP}			ns	
Capacitive Load			3		pF	
Capacitive Input			3		pF	
SUPPLY CHARACTERISTICS						
1.3 V Main Supply Voltage		1.267	1.3	1.33	V	
VDD_INTERFACE Supply Nominal Settings						
CMOS		1.14		2.625	V	
LVDS		1.71		2.625	V	
VDD_INTERFACE Tolerance		-5		+5	%	Tolerance is applicable to any voltage setting
VDD_GPO Supply Nominal Setting		1.3		3.3	V	When unused, must be set to 1.3 V
VDD_GPO Tolerance		-5		+5	%	Tolerance is applicable to any voltage setting
Current Consumption						
VDDx, Sleep Mode			180		μA	Sum of all input currents
VDD_GPO			50		μA	No load

¹ When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

CURRENT CONSUMPTION—VDD_INTERFACE

Table 2. VDD_INTERFACE = 1.2 V

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SLEEP MODE		45		μA	Power applied, device disabled
RX AND TX, DOUBLE DATA RATE (DDR)					
LTE 10 MHz					
Single Port		2.9		mA	30.72 MHz data clock, CMOS
Dual Port		2.7		mA	15.36 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		5.2		mA	30.72 MHz data clock, CMOS

Table 3. VDD_INTERFACE = 1.8 V

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SLEEP MODE		84		μA	Power applied, device disabled
RX AND TX, DDR					
LTE 10 MHz					
Single Port		4.5		mA	30.72 MHz data clock, CMOS
Dual Port		4.1		mA	15.36 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		8.0		mA	30.72 MHz data clock, CMOS

Table 4. VDD_INTERFACE = 2.5 V

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments	
SLEEP MODE		150		μA	Power applied, device disabled	
RX AND TX, DDR						
LTE 10 MHz						
Single Port		6.5		mA	30.72 MHz data clock, CMOS	
Dual Port		6.0		mA	15.36 MHz data clock, CMOS	
LTE 20 MHz						
Dual Port		11.5		mA	30.72 MHz data clock, CMOS	

CURRENT CONSUMPTION—VDDD1P3_DIG AND VDDAx (COMBINATION OF ALL 1.3 V SUPPLIES)

Table 5. 800 MHz, TDD Mode

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
RX					
5 MHz Bandwidth		180		mA	Continuous Rx
10 MHz Bandwidth		210		mA	Continuous Rx
20 MHz Bandwidth		260		mA	Continuous Rx
TX					
5 MHz Bandwidth					
7 dBm		340		mA	Continuous Tx
–27 dBm		190		mA	Continuous Tx
10 MHz Bandwidth					
7 dBm		360		mA	Continuous Tx
–27 dBm		220		mA	Continuous Tx
20 MHz Bandwidth					
7 dBm		400		mA	Continuous Tx
–27 dBm		250		mA	Continuous Tx

Table 6. TDD Mode, 2.4 GHz

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
RX					
5 MHz Bandwidth		175		mA	Continuous Rx
10 MHz Bandwidth		200		mA	Continuous Rx
20 MHz Bandwidth		240		mA	Continuous Rx
ТХ					
5 MHz Bandwidth					
7 dBm		350		mA	Continuous Tx
–27 dBm		160		mA	Continuous Tx
10 MHz Bandwidth					
7 dBm		380		mA	Continuous Tx
–27 dBm		220		mA	Continuous Tx
20 MHz Bandwidth					
7 dBm		410		mA	Continuous Tx
–27 dBm		260		mA	Continuous Tx

Table 7. TDD Mode, 5.5 GHz

Parameter	Min	Тур	Max Unit		Test Conditions/Comments	
RX						
5 MHz Bandwidth		175		mA	Continuous Rx	
40 MHz Bandwidth		275		mA	Continuous Rx	
ТХ						
5 MHz Bandwidth						
7 dBm		400		mA	Continuous Tx	
–27 dBm		240		mA	Continuous Tx	
40 MHz Bandwidth						
7 dBm		490		mA	Continuous Tx	
–27 dBm		385		mA	Continuous Tx	

Table 8. FDD Mode, 800 MHz

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
RX AND TX					
5 MHz Bandwidth					
7 dBm		490		mA	
–27 dBm		345		mA	
10 MHz Bandwidth					
7 dBm		540		mA	
–27 dBm		395		mA	
20 MHz Bandwidth					
7 dBm		615		mA	
–27 dBm		470		mA	

Table 9. FDD Mode, 2.4 GHz

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
RX AND TX					
5 MHz Bandwidth					
7 dBm		500		mA	
–27 dBm		350		mA	
10 MHz Bandwidth					
7 dBm		540		mA	
–27 dBm		390		mA	
20 MHz Bandwidth					
7 dBm		620		mA	
–27 dBm		475		mA	

Table 10. FDD Mode, 5.5 GHz

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
RX AND TX					
5 MHz Bandwidth					
7 dBm		550		mA	
–27 dBm		385		mA	

ABSOLUTE MAXIMUM RATINGS

Table 11.

14010 11.	
Parameter	Rating
VDDx to VSSx	–0.3 V to +1.4 V
VDD_INTERFACE to VSSx	–0.3 V to +3.0 V
VDD_GPO to VSSx	–0.3 V to +3.9 V
Logic Inputs and Outputs to VSSx	-0.3 V to VDD_INTERFACE + 0.3 V
Input Current to Any Pin Except Supplies	±10 mA
RF Inputs (Peak Power)	2.5 dBm
Tx Monitor Input Power (Peak Power)	9 dBm
Package Power Dissipation	$(T_{A} - T_{A})/(A - T_{A})$
Maximum Junction Temperature (T _{JMAX})	110°C
Operating Temperature Range	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

REFLOW PROFILE

The AD9364 reflow profile is in accordance with the JEDEC JESD20 criteria for Pb-free devices. The maximum reflow temperature is 260°C.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 12. Thermal Resistance

Package Type	Airflow Velocity (m/sec)	θ _{JA} ^{1, 2}	θ _{JC} ^{1, 3}	θ _{JB} ^{1, 4}	Ψл ^{1, 2}	Unit
144-Ball	0	32.3	9.6	20.2	0.27	°C/W
CSP_BGA	1.0	29.6			0.43	°C/W
	2.5	27.8			0.57	°C/W

¹ Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.

² Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).

³ Per MIL-STD 883, Method 1012.1.

⁴ Per JEDEC JESD51-8 (still air).

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

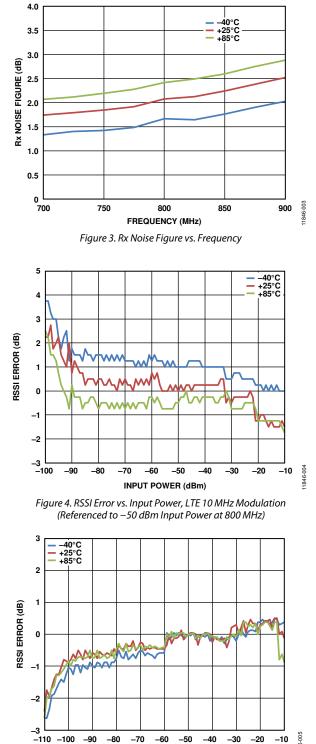
_	1	2	3	4	5	6	7	8	9	10	11	12
A	VSSA	VSSA	NC	VSSA	VSSA	VSSA	VDDA1P3_ RX_TX	VDDA1P3_ RX_TX	VDDA1P3_ RX_TX	VDDA1P3_ RX_TX	VDDA1P1_ TX_VCO	TX_EXT_ LO_IN
в	VSSA	VSSA	AUXDAC1	GPO_3	GPO_2	GPO_1	GPO_0	VDD_GPO	VDDA1P3_ TX_LO	VDDA1P3_ TX_VCO_ LDO	TX_VCO_ LDO_OUT	VSSA
с	VSSA	VSSA	AUXDAC2	TEST/ ENABLE	CTRL_IN0	CTRL_IN1	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
D	VSSA	VDDA1P3_ RX_RF	VDDA1P3_ RX_TX	CTRL_OUT0	CTRL_IN3	CTRL_IN2	P0_D9/ TX_D4_P	P0_D7/ TX_D3_P	P0_D5/ TX_D2_P	P0_D3/ TX_D1_P	P0_D1/ TX_D0_P	VSSD
Е	VSSA	VDDA1P3_ RX_LO	VDDA1P3_ TX_LO_ BUFFER	CTRL_OUT1	CTRL_OUT2	CTRL_OUT3	P0_D11/ TX_D5_P	P0_D8/ TX_D4_N	P0_D6/ TX_D3_N	P0_D4/ TX_D2_N	P0_D2/ TX_D1_N	P0_D0/ TX_D0_N
F	VSSA	VDDA1P3_ RX_VCO_ LDO	VSSA	CTRL_OUT6	CTRL_OUT5	CTRL_OUT4	VSSD	P0_D10/ TX_D5_N	VSSD	FB_CLK_P	VSSD	VDDD1P3_ DIG
G	RX_EXT_ LO_IN	RX_VCO_ LDO_OUT	VDDA1P1_ RX_VCO	CTRL_OUT7	EN_AGC	ENABLE	RX_ FRAME_N	RX_ FRAME_P	TX_ FRAME_P	FB_CLK_N	DATA_ CLK_P	VSSD
н	RXB_P	VSSA	VSSA	TXNRX	SYNC_IN	VSSA	VSSD	P1_D11/ RX_D5_P	TX_ FRAME_N	VSSD	DATA_ CLK_N	VDD_ INTERFACE
J	RXB_N	VSSA	VDDA1P3_ RX_SYNTH	SPI_DI	SPI_CLK	CLK_OUT	P1_D10/ RX_D5_N	P1_D9/ RX_D4_P	P1_D7/ RX_D3_P	P1_D5/ RX_D2_P	P1_D3/ RX_D1_P	P1_D1/ RX_D0_P
к	RXC_P	VSSA	VDDA1P3_ TX_SYNTH	VDDA1P3_ BB	RESETB	SPI_ENB	P1_D8/ RX_D4_N	P1_D6/ RX_D3_N	P1_D4/ RX_D2_N	P1_D2/ RX_D1_N	P1_D0/ RX_D0_N	VSSD
L	RXC_N	VSSA	VSSA	RBIAS	AUXADC	SPI_DO	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
м	RXA_P	RXA_N	NC	VSSA	TX_MON	VSSA	TXA_P	TXA_N	TXB_P	TXB_N	XTALP	XTALN
[[[ANALOG I/O DC POWER DIGITAL I/O GROUND NO CONNECT											

Figure 2. Pin Configuration, Top View

Table 13. Pin Function Descriptions

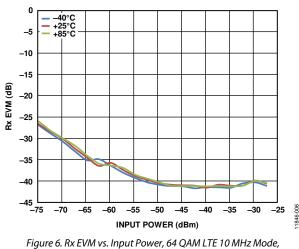
Pin No.	Type ¹	Mnemonic	Description
A1, A2, A4 to	I	VSSA	Analog Ground. Tie these pins directly to the VSSD digital ground on the printed
A6, B1, B2,			circuit board (one ground plane).
B12, C1, C2,			
C7 to C12, D1, E1, F1, F3, H2,			
H3, H6, J2, K2,			
L2, L3, L7 to			
L12, M4, M6			
A3, M3	NC	NC	No Connect. Do not connect to these pins.
A7 to A10, D3	1	VDDA1P3_RX_TX	1.3 V Supply Input.
A11	1	VDDA1P1_TX_VCO	Transmit VCO Supply Input. Connect to B11.
A12	1	TX_EXT_LO_IN	External Transmit Local Oscillator (LO) Input. When this pin is unused, tie it to
			ground.
B3	0	AUXDAC1	Auxiliary DAC 1 Output.
B4 to B7	0	GPO_3 to GPO_0	3.3 V Capable General-Purpose Outputs.
B8	I	VDD_GPO	2.5 V to 3.3 V Supply for the Auxiliary DAC and General-Purpose Output Pins.
			When the VDD_GPO supply is not used, this supply must be set to 1.3 V.
B9	I	VDDA1P3_TX_LO	Transmit LO 1.3 V Supply Input.
B10	1	VDDA1P3_TX_VCO_LDO	Transmit VCO LDO 1.3 V Supply Input. Connect to B9.
B11	0	TX_VCO_LDO_OUT	Transmit VCO LDO Output. Connect B11 to A11 and a 1 μ F bypass capacitor in
			series with a 1 Ω resistor to ground.
C3	0	AUXDAC2	Auxiliary DAC 2 Output.
C4	Ι	TEST/ENABLE	Test Input. Ground this pin for normal operation.

Print W Type Minimum Description CS, C6, D6, DS I CTRL INSt to CTRL. INS Control Inputs: Use CS, C6, D5, and D6 for manual Rx gain and Tx attenuation control. CS, C6, D6, C5 I CTRL DUT0, CTRL_OUT1 to CTRL_OUT3, CTRL_OUT0 Control Outputs: These pins are multipurpose outputs that have programmable functionality. D7 I/O P0_D9/TX, D4_P Digital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D9, it functions as part of the 12-bit, bid/rectional, parallel CMOS level Data Port O. D8 I/O P0_D7/TX, D3_P Digital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D7, it functions as part of the 12-bit bid/rectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D_2, P) can function as part of the LVDS 6-bit TX differential Input Bus with Internal LVDS termination. D9 I/O P0_D5/TX_D2_P Digital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, it functions as part of the LVDS 6-bit TX differential Input Bus with Internal LVDS termination. D10 I/O P0_D3/TX_D1_P Digital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, it functions as part of the L2 bit, bidrectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D) P. C0 can function as part of the LVDS 6-bit TX differential Input Bus with Internal LVDS termination. D10 I/O		True al	Maamania	Description
D2 I VDDA1P3_RX_RF Receiver 13V Supply Input. Connect to D3. D4_E10_E6_0 CTRL_OUTIQ_TRL_OUTI to CTRL_OUTIA_CTRL_OUTY Control Outputs These pins are multipurpose outputs that have programmable functionality. D7 I/O P0_D9/TX_D4_P Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D9, it functions as part of the 12-bit, bidirectional parallel CMOS level Data Port O. Alternatively, this pin (TX_D4_P) Can function as part of the LVD5 6- bit TA differential Input bus with internal LVD5 termination. D8 I/O P0_D7/TX_D3_P Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D7. It functions as part of the LVD5 6-bit TX differential Input bus with internal LVD5 termination. D9 I/O P0_D5/TX_D2_P Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D5, it functions as part of the LVD5 6-bit TX differential input bus with internal LVD5 termination. D10 I/O P0_D3/TX_D1_P Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, it functions as part of the LVD5 6-bit TX differential Input Bus with Internal LVD5 termination. D11 I/O P0_D1/TX_D0_P Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, it functions as part of the LVD5 for the LVD5 bit TX differential Input Bus with Internal LVD5 termination. D12, F7, F9, F1, G1, H7, F1, G1, H7, F	Pin No.	Type ¹	Mnemonic	Description
D4, E4 to E6, F4 to F6, G4 O CTRL_OUTD, CTRL_OUT1 to CTRL_OUT4, CTRL_OUT5 Control Outputs, These pins are multipurpose outputs that have programmable functionality. D7 V0 P0_D9/TX_D4_P Digital Data Port PO/Tansmit Differential Input Bus, This is a dual function pin. As P0_D9, if functions as part of the 12-bit. Differential nput Bus, This is a dual function pin. As P0_D9, if functions as part of the 12-bit. Differential nput Bus, This is a dual function pin. As P0_D7, if functions as part of the 12-bit. Differential nput Bus, This is a dual function pin. As P0_D7, if functions as part of the 12-bit. Differential nput Bus, This is a dual function pin. As P0_D7, if functions as part of the 12-bit. Differential input Bus, This is a dual function pin. As P0_D7, if functions as part of the 12-bit. Differential input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D5, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D1, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D1, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D1, if functions as part of the 12-bit. Bidferential Input Bus, This is a dual function pin. As P0_D1, if functions as part of the	C5, C6, D6, D5			control.
F4 to F6, G4 CTRL_OUT3, CTRL_OUT3 functionality. D7 I/O P0_D9/TX_D4_P Digital Data Port P0/Tansmit Differential Input Bus. This is a dual function pin. As P0_D9, if functions as part of the LVD5 for bit Microson parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_P) can function as part of the LVD5 for bit TX differential input Bus. This is a dual function pin. As P0_D7, TX_D3_P D8 I/O P0_D7/TX_D3_P Digital Data Port P0/Tansmit Differential Input Bus. This is a dual function pin. As P0_D7, If functions as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for the LVD5 for Alternatively, this pin (TX_D3_P) can function as part of the LVD5 for Alternatively, this pin (TX_D3_P) can	D2		VDDA1P3_RX_RF	
As P0_D9, If functions as part of the 12-bit bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX, D4_P) can function as part of the LVDS 6- bit Tx differential input bus with internal LVDS termination.D8V/0P0_D7/TX_D3_PDigital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, If functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, this pin (TX, D3_P) can function as part of the LVDS 6- bit Tx differential input bus with internal LVDS termination.D9V/0P0_D5/TX_D2_PDigital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, if functions as part of the 12-bit bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX, D2_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.D10V/0P0_D3/TX_D1_PDigital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, if functions as part of the LVDS 6-bit TX differential input bus. This is a dual function pin. AS P0_D3, if functions as part of the LVDS 6-bit TX differential input bus. This is a dual function pin. AS P0_D1, if functions as part of the LVDS fervinitation.D11V/0P0_D1/TX_D0_PDigital Ground. Tie these pins directly to the VSA analog ground on the printed circuit board (none ground plane).D12, F7, F9, E10, K12IVDDA1P3_RX_LOReceive LO 1.3V Supply Input.E3IVDA1P3_TX_LO_BVFRDigital Ground. Tie these pins directly to the VSA analog ground on the printed circuit board (none ground plane).E4V/0P0_D11/TX_D5_PDigital Data Port P0/Transmit Differential Input Bus. Thi		0	CTRL_OUT3, CTRL_OUT6 to	
As P0_D7, If functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.D9I/OP0_D5/TX_D2_PDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D5, If functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_P) can function as part of the LVDS 6-bit TX differential input Bus with internal LVDS termination.D10I/OP0_D3/TX_D1_PDigital Data PORT P0/Transmit Differential Input Bus. This is a dual function pin. As PO_D3, If functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS 6-bit TX differential input Bus with internal LVDS termination.D11I/OP0_D1/TX_D0_PDigital Data PORT P0/Transmit Differential Input Bus. This is a dual function pin. As PO_D1, It functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit TX differential input Bus. With internal LVDS termination.D12, F7, F9, F11, G12, H7, H10, K12IVDDAIP3_RX_LOReceive LO 1.3 V Supply Input.E31VDDAIP3_RX_LDReceive LO 1.3 V Supply Input.E4VDDAIP3_RX_LD_SPReceive P0/Transmit Differential Input Bus. This is a dual function pin. As PO_D11, It functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_P). Not chi LVDS S-bit TX differential input Bus. This is a dual function pin. As PO_D1, It functions as part of the 12-bit, bidirectional, parallel CMOS lev	D7	I/O	P0_D9/TX_D4_P	As P0_D9, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_P) can function as part of the LVDS 6-
As PD_DS, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX, D2, P) can function as part of the 1VDS 6-bit TX differential input bus with internal LVDS termination.D10I/OP0_D3/TX_D1_PDigital Data Port 0./Transmit Differential Input Bus. This is a dual function pin. As P0_D3, if functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.D11I/OP0_D1/TX_D0_PDigital Data Port 0./Transmit Differential Input Bus. This is a dual function pin. As P0_D, 11 functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.D12, F7, F9, F11, G12, H7, H10, K12VSSDReceive LO 1.3 V Supply Input.E21VDDA1P3_RX_LOReceive LO 1.3 V Supply Input.E31VDDA1P3_TX_LO_BUFFER1.3 V Supply Input.E4V/OP0_D8/TX_D4_NDigital Jota Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, It functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS 6-bit TX differential Input Bus. This is a dual function pin. As P0_D8, It functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P)E8I/OP0_D8/TX_D4_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D8, It functions as part of the 12-bit, bidirectional, parallel CMO	D8	I/O	P0_D7/TX_D3_P	As P0_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_P) can function as part of the LVDS 6-bit Tx
D11I/OP0_D1/TX_D0_PA: F0_D3, if functions as part of the 12-bit, bidrectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS 6-bit TX differential Input bus. This is a dual function pin. A: F0_D1, if functions as part of the 12-bit bidrectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.D12, F7, F9, F11, G12, H7, H10, K12IVSSDDigital Ground. Tie these pins directly to the VSSA analog ground on the printed circuit board (one ground plane).E2IVDDA1P3_TX_L0Receive LO 1.3 V Supply Input.E3IVDDA1P3_TX_L0_BUFFER1.3 V Supply Input.E4VP0_D11/TX_D5_PDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. 	D9	I/O	P0_D5/TX_D2_P	As P0_D5, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_P) can function as part of the LVDS
As PO_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.D12, F7, F9, H10, K12IVSSDDigital Ground. Tie these pins directly to the VSSA analog ground on the printed circuit board (one ground plane).E2IVDDA1P3_RX_L0_BUFFRReceive L0 1.3 V Supply Input.E3IVDDA1P3_TX_L0_BUFFR1.3V Supply Input.E7I/OP0_D11/TX_D5_PDigital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. A S P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E8I/OP0_D8/TX_D4_NDigital Data Port PO/Transmit Differential Input Bus. This is a dual function pin. A S P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E9I/OP0_D6/TX_D3_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. A S P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E10I/OP0_D6/TX_D3_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. A S P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin	D10	I/O	P0_D3/TX_D1_P	As P0_D3, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_P) can function as part of the LVDS
F11, G12, H7, H10, K12VDDA1P3_RX_LOcircuit board (one ground plane).E2IVDDA1P3_TX_LO_BUFFER1.3 V Supply Input.E3IVDDA1P3_TX_LO_BUFFER1.3 V Supply Input.E7I/OP0_D11/TX_D5_PDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E8I/OP0_D8/TX_D4_NDigital Data Port 0.Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E9I/OP0_D6/TX_D3_NDigital Data Port 0.Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E10I/OP0_D6/TX_D2_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E10I/OP0_D4/TX_D2_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E10I/OP0_D4/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part	D11	I/O	P0_D1/TX_D0_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_P) can function as part of the LVDS 6-bit Tx
E3IVDDA1P3_TX_L0_BUFFER1.3 V Supply Input.E7I/OP0_D11/TX_D5_PDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E8I/OP0_D8/TX_D4_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E9I/OP0_D6/TX_D3_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. 	F11, G12, H7,	I	VSSD	Digital Ground. Tie these pins directly to the VSSA analog ground on the printed
E7I/OP0_D11/TX_D5_PDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port O. Alternatively, this pin (TX_D5_P) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E8I/OP0_D8/TX_D4_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port O. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E9I/OP0_D6/TX_D3_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port O. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E10I/OP0_D4/TX_D2_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port O. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E11I/OP0_D2/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port O. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.E11I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual f		1	VDDA1P3_RX_LO	Receive LO 1.3 V Supply Input.
E7I/OP0_D11/TX_D5_PDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E8I/OP0_D8/TX_D4_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E9I/OP0_D6/TX_D3_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E10I/OP0_D4/TX_D2_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D2/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual f	E3	I		
As P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E9I/OP0_D6/TX_D3_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E10I/OP0_D4/TX_D2_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D2/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D2/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, thi	E7	I/O		Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_P) can function as part of the LVDS
E10I/OP0_D4/TX_D2_NAs P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E10I/OP0_D4/TX_D2_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D2/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level 	E8	I/O	P0_D8/TX_D4_N	As P0_D8, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D4_N) can function as part of the LVDS
E11I/OP0_D2/TX_D1_NAs P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E11I/OP0_D2/TX_D1_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E12I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D0, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E12I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D0, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.	E9	I/O	P0_D6/TX_D3_N	As P0_D6, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D3_N) can function as part of the LVDS
E12I/OP0_D0/TX_D0_NAs P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.E12I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D0, it functions as part of the 12-bit, bidirectional, parallel CMOS level 	E10	I/O	P0_D4/TX_D2_N	As P0_D4, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D2_N) can function as part of the LVDS
E12I/OP0_D0/TX_D0_NDigital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D0, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.	E11	I/O	P0_D2/TX_D1_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D1_N) can function as part of the LVDS
	E12	I/O	P0_D0/TX_D0_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D0, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D0_N) can function as part of the LVDS
	F2	1	VDDA1P3_RX_VCO_LDO	•


Pin No.	Type ¹	Mnemonic	Description
F8	I/O	P0_D10/TX_D5_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D10, it functions as part of the 12-bit, bidirectional, parallel CMOS level Data Port 0. Alternatively, this pin (TX_D5_N) can function as part of the LVDS 6-bit Tx differential input bus with internal LVDS termination.
F10, G10	I	FB_CLK_P, FB_CLK_N	Feedback Clock. These pins receive the FB_CLK signal that clocks in Tx data. In CMOS mode, use FB_CLK_P as the input and tie FB_CLK_N to ground.
F12	1	VDDD1P3_DIG	1.3 V Digital Supply Input.
G1	1	RX_EXT_LO_IN	External Receive LO Input. When this pin is unused, tie it to ground.
G2	0	RX_VCO_LDO_OUT	Receive VCO LDO Output. Connect this pin directly to G3 and a 1 μ F bypass capacitor in series with a 1 Ω resistor to ground.
G3	1	VDDA1P1_RX_VCO	Receive VCO Supply Input. Connect this pin directly to G2 only.
G5	1	EN_AGC	Manual Control Input for Automatic Gain Control (AGC).
G6	1	ENABLE	Control Input. This pin moves the device through various operational states.
G7, G8	0	RX_FRAME_N, RX_FRAME_P	Receive Digital Data Framing Output Signal. These pins transmit the RX_FRAME signal that indicates whether the Rx output data is valid. In CMOS mode, use RX_FRAME_P as the output and leave RX_FRAME_N unconnected.
G9, H9	I	TX_FRAME_P, TX_FRAME_N	Transmit Digital Data Framing Input Signal. These pins receive the TX_FRAME signal that indicates when Tx data is valid. In CMOS mode, use TX_FRAME_P as the input and tie TX_FRAME_N to ground.
G11, H11	0	DATA_CLK_P, DATA_CLK_N	Receive Data Clock Output. These pins transmit the DATA_CLK signal that is used by the BBP to clock Rx data. In CMOS mode, use DATA_CLK_P as the output and leave DATA_CLK_N unconnected.
H1, J1	Ι	RXB_P, RXB_N	Receive Channel Differential Input B. Alternatively, each pin can be used as a single-ended input. These inputs experience degraded performance above 3 GHz. Unused pins must be tied to ground.
H4	I	TXNRX	Enable State Machine Control Signal. This pin controls the data port bus direction. Logic low selects the Rx direction; logic high selects the Tx direction.
H5	I	SYNC_IN	Input to Synchronize Digital Clocks Between Multiple AD9364 Devices. If this pin is unused, it must be tied to ground.
H8	I/O	P1_D11/RX_D5_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D11, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D5_P) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
H12		VDD_INTERFACE	1.2 V to 2.5 V Supply for Digital I/O Pins (1.8 V to 2.5 V in LVDS Mode).
J3		VDDA1P3_RX_SYNTH	1.3 V Supply Input.
J5 J4		SPI_DI	SPI Serial Data Input.
J5		SPI_CLK	SPI Clock Input.
J2	0	CLK_OUT	Output Clock. This pin can be configured to output either a buffered version of the
			external input clock, the DCXO, or a divided-down version of the internal ADC_CLK.
J7	I/O	P1_D10/RX_D5_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D10, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D5_N) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
8L	I/O	P1_D9/RX_D4_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D4_P) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
9	I/O	P1_D7/RX_D3_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D3_P) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
J10	I/O	P1_D5/RX_D2_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D2_P) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
J11	I/O	P1_D3/RX_D1_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D1_P) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.

Pin No.	Type ¹	Mnemonic	Description
J12	I/O	P1_D1/RX_D0_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D0_P) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
K1, L1	I	RXC_P, RXC_N	Receive Channel Differential Input C. Alternatively, each pin can be used as a single-ended input. These inputs experience degraded performance above 3 GHz. Unused pins must be tied to ground.
K3	I	VDDA1P3_TX_SYNTH	1.3 V Supply Input.
K4	I	VDDA1P3_BB	1.3 V Supply Input.
K5	I	RESETB	Asynchronous Reset. Logic low resets the device.
K6	I	SPI_ENB	SPI Enable Input. Set this pin to logic low to enable the SPI bus.
К7	I/O	P1_D8/RX_D4_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D4_N) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
K8	I/O	P1_D6/RX_D3_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D3_N) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
К9	I/O	P1_D4/RX_D2_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D2_N) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
K10	I/O	P1_D2/RX_D1_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D1_N) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
K11	I/O	P1_D0/RX_D0_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, this pin (RX_D0_N) can function as part of the LVDS 6-bit Rx differential output bus with internal LVDS termination.
L4	I	RBIAS	Bias Input Reference. Connect this pin through a 14.3 k Ω (1% tolerance) resistor to ground.
L5	I	AUXADC	Auxiliary ADC Input. If this pin is unused, tie it to ground.
L6	0	SPI_DO	SPI Serial Data Output in 4-Wire Mode, High-Z in 3-Wire Mode.
M1, M2	I	RXA_P, RXA_N	Receive Channel Differential Input A. Alternatively, each pin can be used as a single-ended input. Unused pins must be tied to ground.
M5	I	TX_MON	Transmit Channel Power Monitor Input. If this pin is unused, tie it to ground.
M7, M8	0	TXA_P, TXA_N	Transmit Channel Differential Output A. Unused pins must be tied to 1.3 V.
M9, M10	0	TXB_P, TXB_N	Transmit Channel Differential Output B. Unused pins must be tied to 1.3 V.
M11, M12	I	XTALP, XTALN	Reference Frequency Crystal Connections. When a crystal is used, connect it between these two pins. When an external clock source is used, connect it to XTALN and leave XTALP unconnected.

 $^{1}\,\text{I}$ is input, O is output, I/O is input/output, NC is not connected.


TYPICAL PERFORMANCE CHARACTERISTICS

800 MHZ FREQUENCY BAND

INPUT POWER (dBm) Figure 5. RSSI Error vs. Input Power, EDGE Modulation (Referenced to -50 dBm Input Power at 800 MHz)

-90 -80 -70 -60 -50 -40 -30 -20 -10 1846-005

19.2 MHz REF_CLK

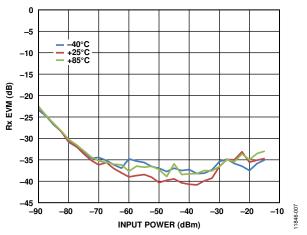


Figure 7. Rx EVM vs. Input Power, GSM Mode, 30.72 MHz REF_CLK (Doubled Internally for RF Synthesizer)

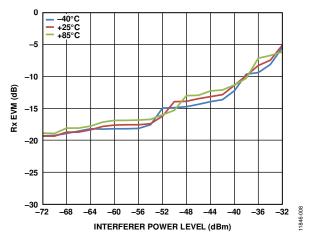
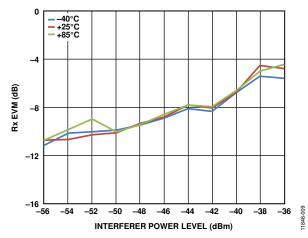
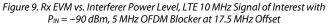




Figure 8. Rx EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with $P_{IN} = -82 \, dBm$, 5 MHz OFDM Blocker at 7.5 MHz Offset

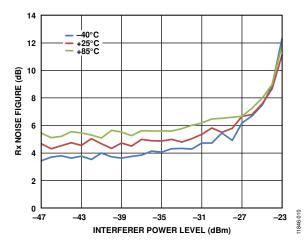


Figure 10. Rx Noise Figure vs. Interferer Power Level, EDGE Signal of Interest with $P_{IN} = -90$ dBm, CW Blocker at 3 MHz Offset, Gain Index = 64

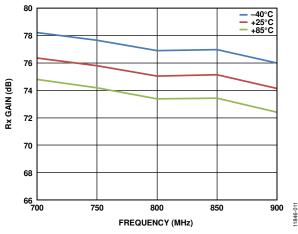


Figure 11. Rx Gain vs. Frequency, Gain Index = 76 (Maximum Setting)

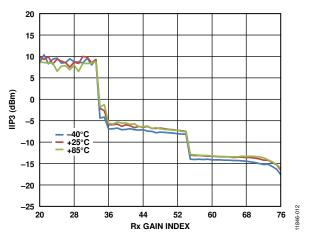


Figure 12. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index, f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode

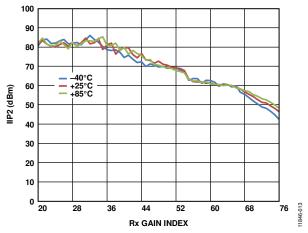


Figure 13. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index, f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode

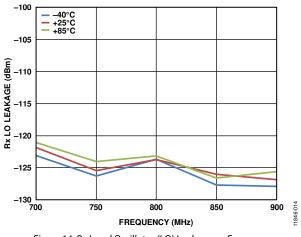


Figure 14. Rx Local Oscillator (LO) Leakage vs. Frequency

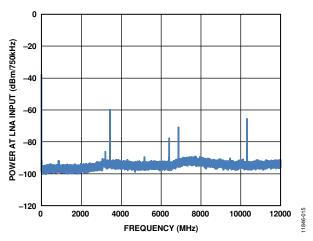


Figure 15. Rx Emission at LNA Input, DC to 12 GHz, f_{LO_RX} = 800 MHz, LTE 10 MHz, f_{LO_TX} = 860 MHz

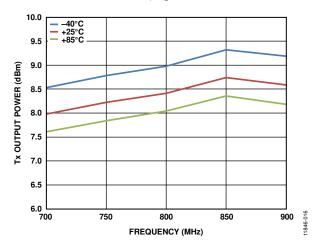


Figure 16. Tx Output Power vs. Frequency, Attenuation Setting = 0 dB, Single Tone Output

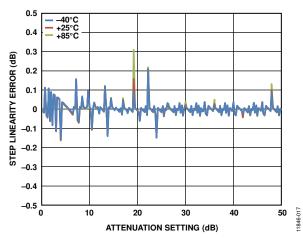


Figure 17. Tx Power Control Linearity Error vs. Attenuation Setting

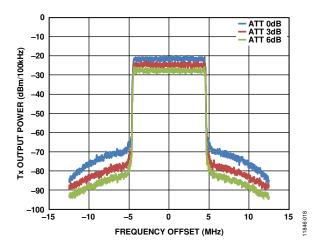


Figure 18. Tx Spectrum vs. Frequency Offset from Carrier Frequency, $f_{LO_TX} = 800$ MHz, LTE 10 MHz Downlink (Digital Attenuation Variations Shown)

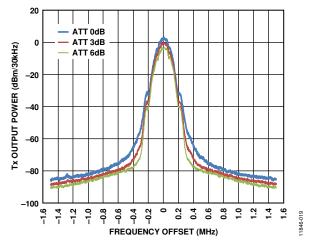


Figure 19. Tx Spectrum vs. Frequency Offset from Carrier Frequency, fLo_TX = 800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 3 MHz Range

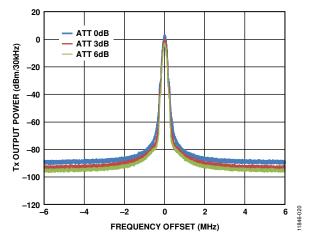


Figure 20. Tx Spectrum vs. Frequency Offset from Carrier Frequency, $f_{LO_TX} = 800$ MHz, GSM Downlink (Digital Attenuation Variations Shown), 12 MHz Range

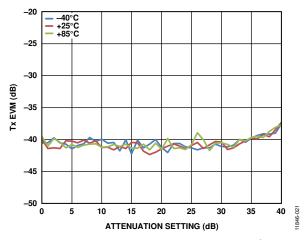


Figure 21. Tx EVM vs. Transmitter Attenuation Setting, fi_{Q_TX} = 800 MHz, LTE 10 MHz, 64 QAM Modulation, 19.2 MHz REF_CLK

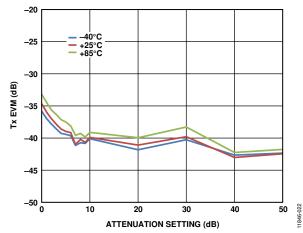


Figure 22. Tx EVM vs. Transmitter Attenuation Setting, $f_{LO_TX} = 800 \text{ MHz}$, GSM Modulation, 30.72 MHz REF_CLK (Doubled Internally for RF Synthesizer)

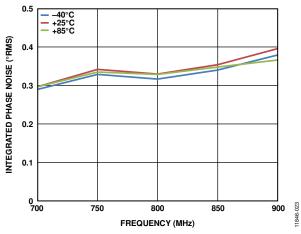


Figure 23. Integrated Tx LO Phase Noise vs. Frequency, 19.2 MHz REF_CLK

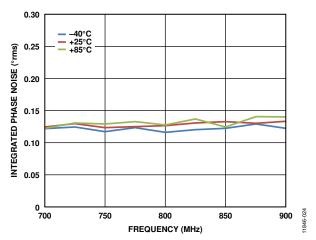
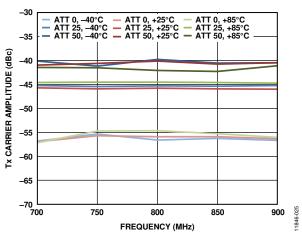
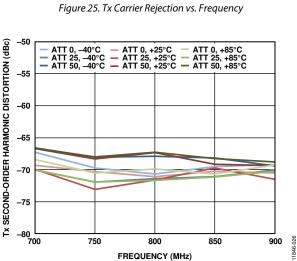




Figure 24. Integrated Tx LO Phase Noise vs. Frequency, 30.72 MHz REF_CLK (Doubled Internally for RF Synthesizer)

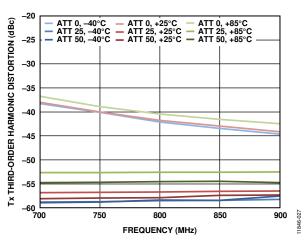
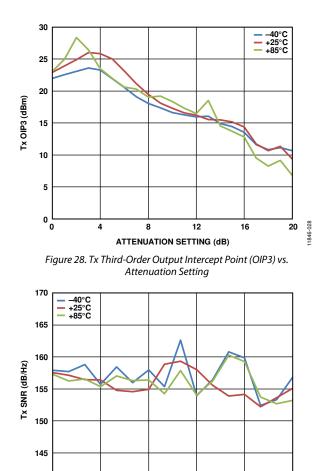
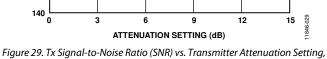




Figure 27. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency

LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset

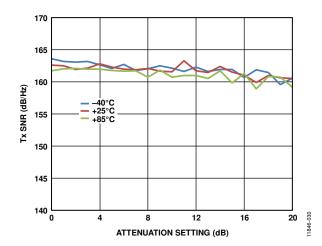


Figure 30. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting, GSM Signal of Interest with Noise Measured at 20 MHz Offset

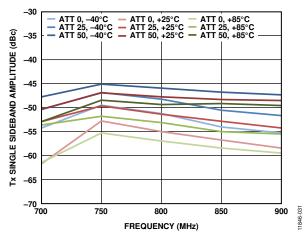
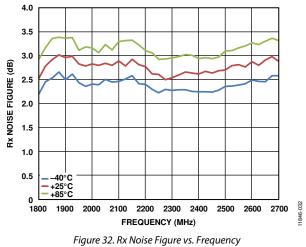



Figure 31. Tx Single Sideband (SSB) Rejection vs. Frequency, 1.5375 MHz Offset

2.4 GHZ FREQUENCY BAND

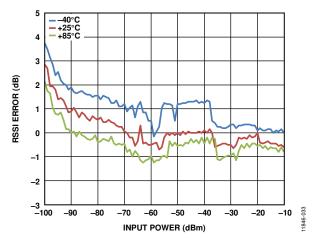


Figure 33. RSSI Error vs. Input Power, Referenced to -50 dBm Input Power at 2.4 GHz

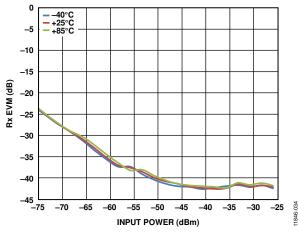


Figure 34. Rx EVM vs. Input Power, 64 QAM LTE 20 MHz Mode, 40 MHz REF_CLK

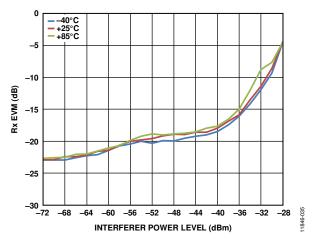


Figure 35. Rx EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest with $P_{IN} = -75$ dBm, LTE 20 MHz Blocker at 20 MHz Offset

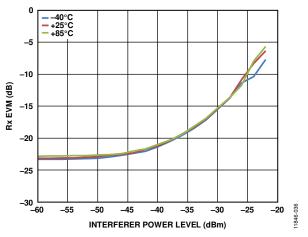


Figure 36. Rx EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest with $P_{IN} = -75$ dBm, LTE 20 MHz Blocker at 40 MHz Offset

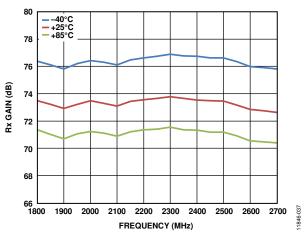


Figure 37. Rx Gain vs. Frequency, Gain Index = 76 (Maximum Setting)

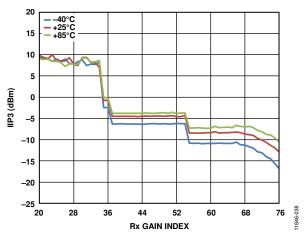


Figure 38. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index, f1 = 30 MHz, f2 = 61 MHz

Figure 39. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index, f1 = 60 MHz, f2 = 61 MHz

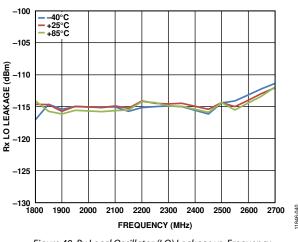


Figure 40. Rx Local Oscillator (LO) Leakage vs. Frequency

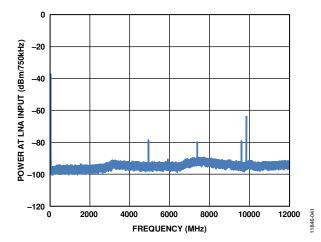


Figure 41. Rx Emission at LNA Input, DC to 12 GHz, $f_{LO_{RX}}$ = 2.4 GHz, LTE 20 MHz, $f_{LO_{TX}}$ = 2.46 GHz

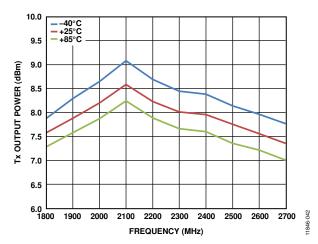


Figure 42. Tx Output Power vs. Frequency, Attenuation Setting = 0 dB, Single Tone Output

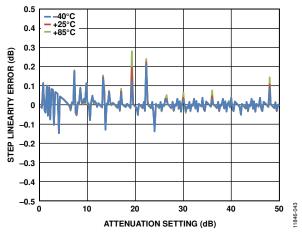
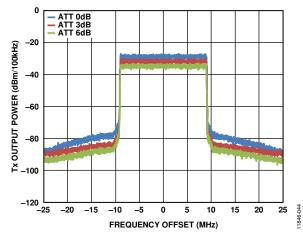



Figure 43. Tx Power Control Linearity Error vs. Attenuation Setting

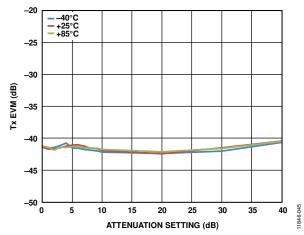


Figure 45. Tx EVM vs. Transmitter Attenuation Setting, 40 MHz REF_CLK, LTE 20 MHz, 64 QAM Modulation

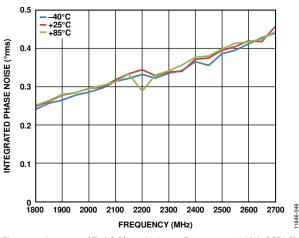
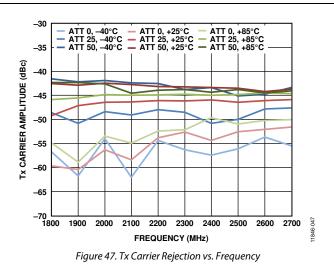
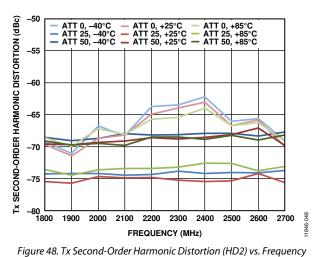





Figure 46. Integrated Tx LO Phase Noise vs. Frequency, 40 MHz REF_CLK

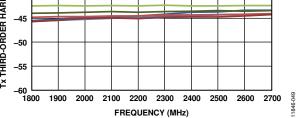


Figure 49. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency

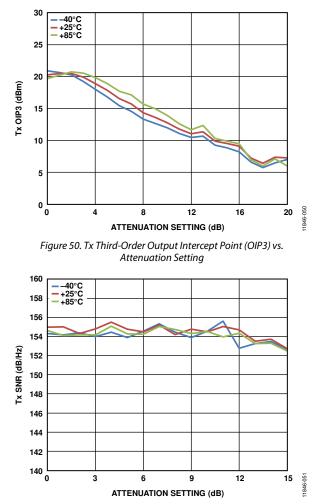


Figure 51. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting, LTE 20 MHz Signal of Interest with Noise Measured at 90 MHz Offset

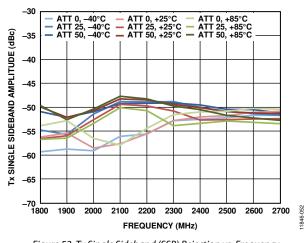
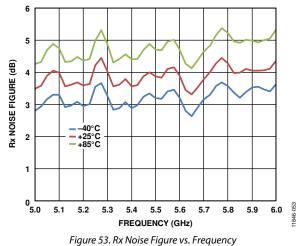



Figure 52. Tx Single Sideband (SSB) Rejection vs. Frequency, 3.075 MHz Offset

5.5 GHZ FREQUENCY BAND

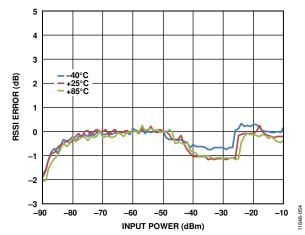


Figure 54. RSSI Error vs. Input Power, Referenced to -50 dBm Input Power at 5.8 GHz

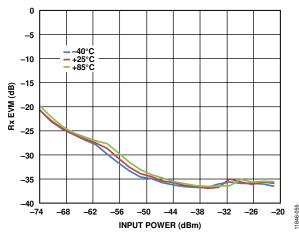


Figure 55. Rx EVM vs. Input Power, 64 QAM WiMAX 40 MHz Mode, 40 MHz REF_CLK (Doubled Internally for RF Synthesizer)

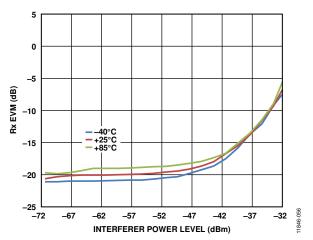


Figure 56. Rx EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of Interest with $P_{IN} = -74$ dBm, WiMAX 40 MHz Blocker at 40 MHz Offset

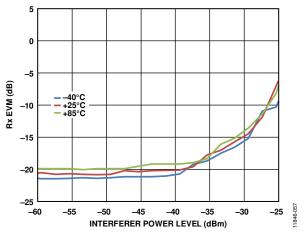


Figure 57. Rx EVM vs. Interferer Power Level, WiMAX 40 MHz Signal of Interest with $P_{IN} = -74$ dBm, WiMAX 40 MHz Blocker at 80 MHz Offset

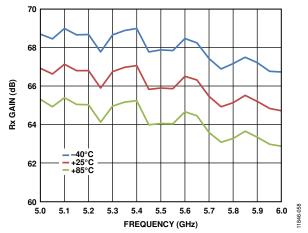


Figure 58. Rx Gain vs. Frequency, Gain Index = 76 (Maximum Setting)

20 15 10 5 IIP3 (dBm) – –40°C – +25°C – +85°C 0 -5 -10 -15 -20 6 16 26 36 46 56 66 76 11846-059 **Rx GAIN INDEX**

Figure 59. Third-Order Input Intercept Point (IIP3) vs. Rx Gain Index, f1 = 50 MHz, f2 = 101 MHz

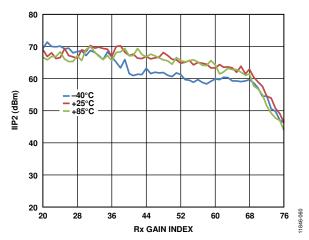


Figure 60. Second-Order Input Intercept Point (IIP2) vs. Rx Gain Index, f1 = 70 MHz, f2 = 71 MHz

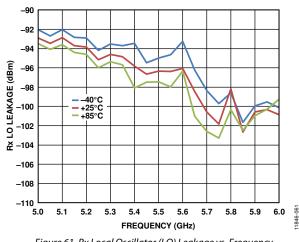


Figure 61. Rx Local Oscillator (LO) Leakage vs. Frequency

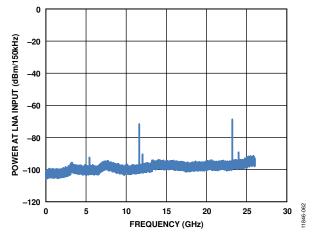


Figure 62. Rx Emission at LNA Input, DC to 26 GHz, f_{LO_RX} = 5.8 GHz, WiMAX 40 MHz

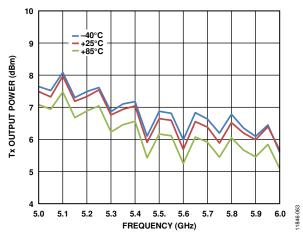


Figure 63. Tx Output Power vs. Frequency, Attenuation Setting = 0 dB, Single Tone

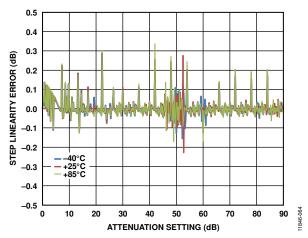
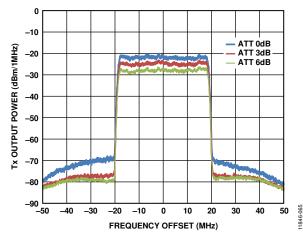
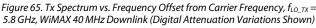




Figure 64. Tx Power Control Linearity Error vs. Attenuation Setting

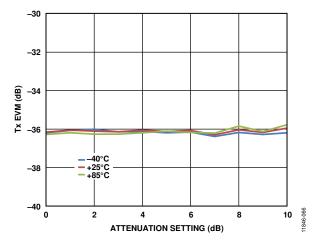


Figure 66. Tx EVM vs. Transmitter Attenuation Setting, WiMAX 40 MHz, 64 QAM Modulation, $f_{LO_TX} = 5.495$ GHz, 40 MHz REF_CLK (Doubled Internally for RF Synthesizer)

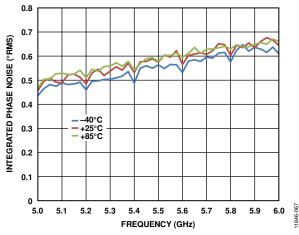
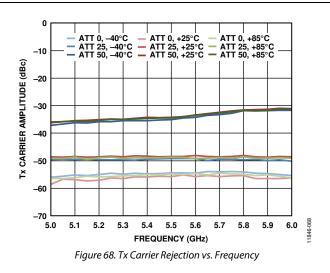
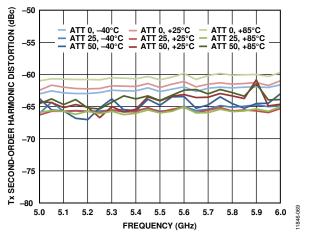




Figure 67. Integrated Tx LO Phase Noise vs. Frequency, 40 MHz REF_CLK (Doubled Internally for RF Synthesizer)

Figure 69. Tx Second-Order Harmonic Distortion (HD2) vs. Frequency

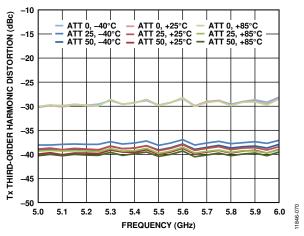


Figure 70. Tx Third-Order Harmonic Distortion (HD3) vs. Frequency

20 16 12 Tx OIP3 (dBm) — –40°C — +25°C — +85°C 8 4 0 -4 0 4 8 12 16 20 11846-071 ATTENUATION SETTING (dB)

Figure 71. Tx Third-Order Output Intercept Point (OIP3) vs. Attenuation Setting, $f_{LO_TX} = 5.8$ GHz

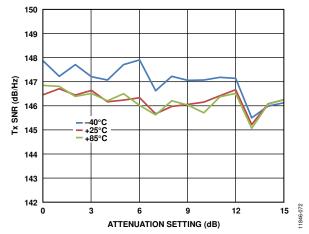


Figure 72. Tx Signal-to-Noise Ratio (SNR) vs. Transmitter Attenuation Setting, WiMAX 40 MHz Signal of Interest with Noise Measured at 90 MHz Offset, $f_{LO_TX} = 5.745$ GHz

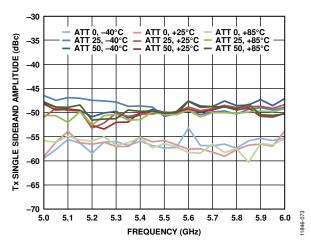


Figure 73. Tx Single Sideband (SSB) Rejection vs. Frequency, 7 MHz Offset

THEORY OF OPERATION general

The AD9364 is a highly integrated radio frequency (RF) transceiver capable of being configured for a wide range of applications. The device integrates all RF, mixed signal, and digital blocks necessary to provide all transceiver functions in a single device. Programmability allows this broadband transceiver to be adapted for use with multiple communication standards, including frequency division duplex (FDD) and time division duplex (TDD) systems. This programmability also allows the device to be interfaced to various baseband processors (BBPs) using a single 12-bit parallel data port, dual 12-bit parallel data ports, or a 12-bit low voltage differential signaling (LVDS) interface.

The AD9364 also provides self calibration and automatic gain control (AGC) systems to maintain a high performance level under varying temperatures and input signal conditions. In addition, the device includes several test modes that allow system designers to insert test tones and create internal loopback modes that can be used by designers to debug their designs during prototyping and optimize their radio configuration for a specific application.

RECEIVER

The receiver section contains all blocks necessary to receive RF signals and convert them to digital data that is usable by a BBP. It has three inputs that can be multiplexed to the signal chain, making the AD9364 suitable for use in multiband systems with multiple antenna inputs. The receiver is a direct conversion system that contains a low noise amplifier (LNA), followed by matched in-phase (I) and quadrature (Q) amplifiers, mixers, and band shaping filters that downconvert received signals to baseband for digitization. External LNAs can also be interfaced to the device, allowing designers the flexibility to customize the receiver front end for their specific application.

Gain control is achieved by following a preprogrammed gain index map that distributes gain among the blocks for optimal performance at each level. This can be achieved by enabling the internal AGC in either fast or slow mode or by using manual gain control, allowing the BBP to make the gain adjustments as needed. Additionally, each channel contains independent RSSI measurement capability, dc offset tracking, and all circuitry necessary for self calibration.

The receiver includes 12-bit, Σ - Δ ADCs and adjustable sample rates that produce data streams from the received signals. The digitized signals can be conditioned further by a series of decimation filters and a fully programmable 128-tap FIR filter with additional decimation settings. The sample rate of each digital filter block is adjustable by changing decimation factors to produce the desired output data rate.

TRANSMITTER

The transmitter section consists of two differential output stages that can be multiplexed to the transmit channel. The transmit channel provides all digital processing, mixed signal, and RF blocks necessary to implement a direct conversion system. The digital data received from the BBP passes through a fully programmable 128-tap FIR filter with interpolation options. The FIR output is sent to a series of interpolation filters that provide additional filtering and data rate interpolation prior to reaching the DAC. Each 12-bit DAC has an adjustable sampling rate. Both the I and Q channels are fed to the RF block for upconversion.

When converted to baseband analog signals, the I and Q signals are filtered to remove sampling artifacts and fed to the upconversion mixers. At this point, the I and Q signals are recombined and modulated on the carrier frequency for transmission to the output stage. The combined signal also passes through analog filters that provide additional band shaping, and then the signal is transmitted to the output amplifier. The transmit channel provides a wide attenuation adjustment range with fine granularity to help designers optimize signal-to-noise ratio (SNR).

Self calibration circuitry is built into each transmit channel to provide automatic real-time adjustment. The transmitter block also provides a Tx monitor block. This block monitors the transmitter output and routes it back through the receiver channel to the BBP for signal monitoring. The Tx monitor block is available only in TDD mode operation while the receiver is idle.

CLOCK INPUT OPTIONS

The AD9364 operates using a reference clock that can be provided by two different sources. The first option is to use a dedicated crystal with a frequency between 19 MHz and 50 MHz connected between the XTALP and XTALN pins. The second option is to connect an external oscillator or clock distribution device (such as the AD9548) to the XTALN pin (with the XTALP pin remaining unconnected). If an external oscillator is used, the frequency can vary between 10 MHz and 80 MHz. This reference clock is used to supply the synthesizer blocks that generate all data clocks, sample clocks, and local oscillators inside the device.

Errors in the crystal frequency can be removed by using the digitally programmable digitally controlled crystal oscillator (DCXO) function to adjust an on-chip variable capacitor. This capacitor can tune the crystal frequency variance out of the system, resulting in a more accurate reference clock from which all other frequency signals are generated. This function can also be used with on-chip temperature sensing to provide oscillator frequency temperature compensation during normal operation.

SYNTHESIZERS

RF PLLs

The AD9364 contains two identical synthesizers to generate the required LO signals for the RF signal paths—one for the receiver and one for the transmitter. Phase-locked loop (PLL) synthesizers are fractional-N designs incorporating completely integrated voltage controlled oscillators (VCOs) and loop filters. In TDD mode, the synthesizers turn on and off as appropriate for the Rx and Tx frames. In FDD mode, the Tx PLL and the Rx PLL can be activated at the same time. These PLLs require no external components.

BB PLL

The AD9364 also contains a baseband PLL (BB PLL) synthesizer that is used to generate all baseband related clock signals. These include the ADC and DAC sampling clocks, the DATA_CLK signal (see the Digital Data Interface section), and all data framing signals. This PLL is programmed from 700 MHz to 1400 MHz based on the data rate and sample rate requirements of the system.

DIGITAL DATA INTERFACE

The AD9364 data interface uses parallel data ports (P0 and P1) to transfer data between the device and the BBP. The data ports can be configured in either single-ended CMOS format or differential LVDS format. Both formats can be configured in multiple arrangements to match system requirements for data ordering and data port connections. These arrangements include single port data bus, dual port data bus, single data rate, and double data rate.

Bus transfers are controlled using simple hardware handshake signaling. The two ports can be operated in either bidirectional (half-duplex) mode or in full duplex mode where half the bits are used for transmitting data and half are used for receiving data. The interface can also be configured to use only one of the data ports for applications that do not require high data rates and prefer to use fewer interface pins.

DATA_CLK Signal

The AD9364 supplies the DATA_CLK signal that the BBP uses when receiving the data. The DATA_CLK signal can be set to a rate that provides single data rate (SDR) timing where data is sampled on each rising clock edge, or it can be set to provide double data rate (DDR) timing where data is captured on both rising and falling edges. SDR or DDR timing applies to operation using either a single port or both ports.

FB_CLK Signal

For transmit data, the interface uses the FB_CLK signal as the timing reference. FB_CLK allows source synchronous timing with rising edge capture for burst control signals and either rising edge (SDR mode) or both edge capture (DDR mode) for transmit signal bursts. The FB_CLK signal must have the same frequency and duty cycle as DATA_CLK.

RX_FRAME Signal

The device generates an RX_FRAME output signal whenever the receiver outputs valid data. This signal has two modes: level mode (RX_FRAME stays high as long as the data is valid) and pulse mode (RX_FRAME pulses with a 50% duty cycle). Similarly, the BBP must provide a TX_FRAME signal that indicates the beginning of a valid data transmission with a rising edge. Similar to the RX_FRAME signal, the TX_FRAME signal can remain high throughout the burst or it can be pulsed with a 50% duty cycle.

ENABLE STATE MACHINE

The AD9364 transceiver includes an enable state machine (ENSM) that allows real-time control over the current state of the device. The device can be placed in several different states during normal operation, including

- Wait—power save, synthesizers disabled
- Sleep-wait with all clocks/BB PLL disabled
- Tx—Tx signal chain enabled
- Rx—Rx signal chain enabled
- FDD—Tx and Rx signal chains enabled
- Alert—synthesizers enabled

The ENSM has two possible control methods: SPI control and pin control.

SPI Control Mode

In SPI control mode, the ENSM is controlled asynchronously by writing SPI registers to advance the current state to the next state. SPI control is considered asynchronous to the DATA_CLK because the SPI_CLK can be derived from a different clock reference and can still function properly. The SPI control ENSM method is recommended when real-time control of the synthesizers is not necessary. SPI control can be used for realtime control as long as the BBP has the ability to perform timed SPI writes accurately.

Pin Control Mode

In pin control mode, the enable function of the ENABLE pin and the TXNRX pin allow real-time control of the current state. The ENSM allows TDD or FDD operation depending on the configuration of the corresponding SPI register. The ENABLE and TXNRX pin control method is recommended if the BBP has extra control outputs that can be controlled in real time, allowing a simple 2-wire interface to control the state of the device. To advance the current state of the ENSM to the next state, the enable function of the ENABLE pin can be driven by either a pulse (edge detected internally) or a level.

When a pulse is used, it must have a minimum pulse width of one FB_CLK cycle. In level mode, the ENABLE and TXNRX pins are also edge detected by the AD9364 and must meet the same minimum pulse width requirement of one FB_CLK cycle.

In FDD mode, the ENABLE and TXNRX pins can be remapped to serve as real-time Rx and Tx data transfer control signals. In this mode, the enable function of the ENABLE pin assumes the RXON function (controlling when the Rx path is enabled and disabled), and the TXNRX pin assumes the TXON function (controlling when the Tx path is enabled and disabled). In this mode, the ENSM is removed from the system for control of all data flow by these pins.

SPI INTERFACE

The AD9364 uses a serial peripheral interface (SPI) to communicate with the BBP. The SPI can be configured as a 4-wire interface with dedicated receive and transmit ports, or it can be configured as a 3-wire interface with a bidirectional data communication port. This bus allows the BBP to set all device control parameters using a simple address data serial bus protocol.

Write commands follow a 24-bit format. The first six bits are used to set the bus direction and number of bytes to transfer. The next 10 bits set the address where data is to be written. The final eight bits are the data to be transferred to the specified register address (MSB to LSB). The AD9364 also supports an LSB-first format that allows the commands to be written in LSB to MSB format. In this mode, the register addresses are incremented for multibyte writes.

Read commands follow a similar format with the exception that the first 16 bits are transferred on the SPI_DI pin and the final eight bits are read from the AD9364, either on the SPI_DO pin in 4-wire mode or on the SPI_DI pin in 3-wire mode.

CONTROL PINS

Control Outputs (CTRL_OUT7 to CTRL_OUT0)

The AD9364 provides eight simultaneous real-time output signals for use as interrupts to the BBP. These outputs can be configured to output a number of internal settings and measurements that the BBP can use when monitoring transceiver performance in different situations. The control output pointer register selects what information is output to these pins, and the control output enable register determines which signals are activated for monitoring by the BBP. Signals used for manual gain mode, calibration flags, state machine states, and the ADC output are among the outputs that can be monitored on these pins.

Control Inputs (CTRL_IN3 to CTRL_IN0)

The AD9364 provides four edge detected control input pins. In manual gain mode, the BBP can use these pins to change the gain table index in real time. In transmit mode, the BBP can use two of the pins to change the transmit gain in real time.

GPO PINS (GPO_3 TO GPO_0)

The AD9364 provides four, 3.3 V capable general-purpose logic output pins: GPO_3, GPO_2, GPO_1, and GPO_0. These pins can be used to control other peripheral devices such as regulators and switches via the AD9364 SPI bus, or they can function as slaves for the internal AD9364 state machine.

AUXILIARY CONVERTERS

The AD9364 contains an auxiliary ADC that can be used to monitor system functions such as temperature or power output. The converter is 12 bits wide and has an input range of 0.05 V to VDDA1P3_BB – 0.05 V. When enabled, the ADC is free running. SPI reads provide the last value latched at the ADC output. A multiplexer in front of the ADC allows the user to select between the AUXADC input pin and a built-in temperature sensor.

AUXDAC1 and AUXDAC2

The AD9364 contains two identical auxiliary DACs that can provide power amplifier (PA) bias or other system functionality. The auxiliary DACs are 10 bits wide, have an output voltage range of 0.5 V to VDD_GPO – 0.3 V, a current drive of 10 mA, and can be directly controlled by the internal enable state machine.

POWERING THE AD9364

The AD9364 must be powered by the following three supplies: the analog supply (VDDD1P3_DIG/VDDAx = 1.3 V), the interface supply (VDD_INTERFACE = 1.8 V), and the GPO supply (VDD_GPO = 3.3 V).

For applications requiring optimal noise performance, it is recommended that the 1.3 V analog supply be split and sourced from low noise, low dropout (LDO) regulators. Figure 74 shows the recommended method.

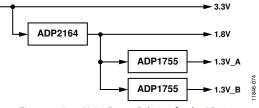


Figure 74. Low Noise Power Solution for the AD9364

For applications where board space is at a premium, and optimal noise performance is not an absolute requirement, the 1.3 V analog rail can be provided directly from a switcher, and a more integrated power management unit (PMU) approach can be adopted. Figure 75 shows this approach.

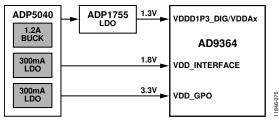


Figure 75. Space-Optimized Power Solution for the AD9364

PACKAGING AND ORDERING INFORMATION OUTLINE DIMENSIONS

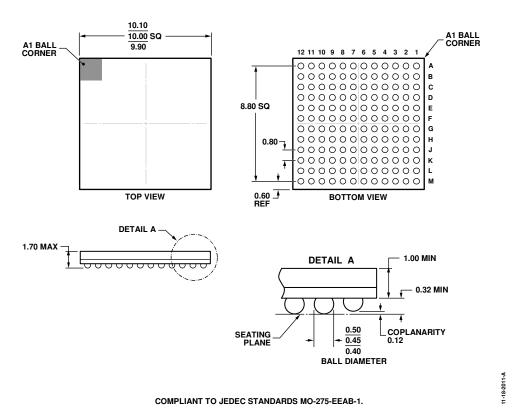


Figure 76. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-144-7) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD9364BBCZ	-40°C to +85°C	144-Ball CSP_BGA	BC-144-7
AD9364BBCZREEL	-40°C to +85°C	144-Ball CSP_BGA	BC-144-7

 1 Z = RoHS Compliant Part.

NOTES

www.analog.com

©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11846-0-7/14(C)