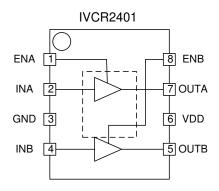


IVCR2401 25V 4A Sink and Source Dual-Channel Driver

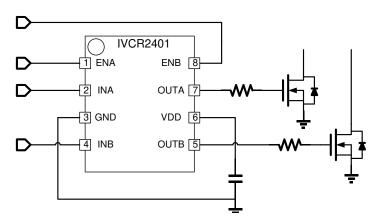
1. Features

- Industry standard SOIC-8 pinout
- · Two independent gate drive channels
- 4A sink and source peak drive current
- Wide VDD range up to 25V
- Separated enable inputs
- Two channels in parallel for high current driving
- Enhanced parallel accuracy with floating one enable pin
- VDD UVLO protection
- TTL and CMOS compatible input
- Low propagation delays (45ns typical) with buildin de-glitch filter
- 1ns typical delay matching between two channels
- Outputs held low when floating inputs
- SOIC-8 with exposed pad for high frequency and power applications
- Operating temperature range -40°C to 125°C

2. Applications


- AC/DC and DC/DC converters
- Server and Telecom rectifiers
- EV/HEV inverters and DC/DC converters
- PV boosters and inverters
- UPS

The IVCR2401 is a 4A dual-channel, high-speed. low-side gate driver, capable of effectively and safely driving MOSFETs and IGBTs. Low propagation delay and mismatch with an optional exposed pad SOIC-8 package enables MOSFETs to switch at hundreds of kHz. It is very suitable for server and telecom power supply's synchronous rectification driving, where synchronous MOSFET's dead time accuracy directly impacts converter's efficiency. The driver is capable to parallel two channels to increase output driving current. When only one enable pin is tied to logic high, both channel's output stages are driven by the same logic signal. This unique feature reduces two channels' mismatch significantly and makes the driver very suitable for paralleled switches driving. The input thresholds are based on TTL with voltage tolerance up to 20V.


Device Information

PART	PACKAGE	PACKING
NUMBER		
IVCR2401DR	SOIC-8	Tape and Reel
IVCR2401D	SOIC-8	Tube
IVCR2401DPR	SOIC-8 (EP)	Tape and Reel
IVCR2401DP	SOIC-8 (EP)	Tube

3. Description

Pinout SOIC-8

Typical Application Diagram

Table of Contents

1	Features	1
2	Applications	1
3	Description	1
4	Pin Configuration and Functions	2
5	Specifications	3
6	Typical Characteristics	Ę
7	Detailed Description	7
8	Application and Implementation	8
9	Layout	ξ
10	Packaging Information	10

4. Pin Configuration and Functions

PIN	NAME	I/O	DESCRIPTION	
1	ENA	I	Channel A enable input	
2	INA	I	Channel A input	
3	GND	G	Driver ground	
4	INB	I	Channel B input	
5	OUTB	0	Channel B driver output	
6	VDD	Р	Positive bias supply	
7	OUTA	0	Channel A driver output	
8	ENB	I	Channel B enable input	
	Exposed pad		Bottom exposed pad is often tied to GND on layout.	
			SOIC-8 (EP) only	

5. Specifications

5.1 Absolute Maximum Ratings

Over free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V_{DD}	Total supply voltage (reference to GND)	-0.3	25	V
OUTA, B	Gate driver output voltage	-0.3	$V_{DD}+0.3$	V
Іоитн	Gate driver output source current (at max pulse width 10us and 0.2% duty cycle)		6.6	Α
loutl	Gate driver output sink current (at max pulse width 10us and 0.2% duty cycle)		6.6	Α
INA, INB,	Signal input voltage	-5.0	20	V
ENA, ENB,	Enable input voltage	-0.3	20	V
T_J	Junction temperature	-40	150	°C
T _{STG}	Storage temperature	-65	150	°C

⁽¹⁾ Operating beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended period may affect device reliability.

5.2 ESD Rating

		Value	UNIT
V _(ESD) Electrostation	Human body model (HBM), per ANSI/ESDA/JEDEC JS-	+/-2000	
discharge	001(1)		V
	Charged-device model (CDM), per JEDEC specification	+/-500	1
	JESD22-C101 ⁽²⁾		

⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operation Conditions

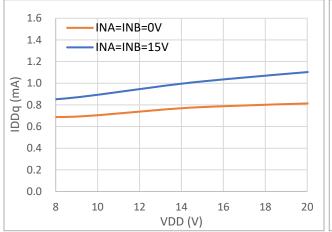
		MIN	MAX	UNIT
V_{DD}	Total supply voltage	8	20	V
V _{INx} , ENx	Signal input voltage	0	18	V
T _A	Operating ambient temperature range	-40	125	°C

5.4 Thermal Information

		IVCR2401D	IVCR2401DP	UNIT
Reja	Junction-to-Ambient	112	39	°C/W
Rejb	Junction-to-PCB	53	11	°C/W
Rejp	Junction-to-exposed pad		5.1	°C/W

⁽²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.5 Electrical Specifications


Unless otherwise noted, $V_{DD} = 15 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $125 ^{\circ}\text{C}$ Currents are positive into and negative out of the specified terminal. Typical condition specifications are at $25 ^{\circ}\text{C}$.

	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BIAS C	URRENT					
I_{DDq}	Quiescent current	IN=0V		0.75	1.5	mA
UVLO			•			
Von	Under voltage	Rising threshold	6.2	6.7	7.2	V
Voff	thresholds	Falling threshold	5.7	6.2	6.7	V
INPUT (INA, INB)	-				
VINH	Input rising		1.6	1.86	2.1	٧
1/	threshold		•			
VINL	Input falling threshold		1.1	1.4	1.7	V
VINHYS	Input hysteresis			0.4		V
VINNS	Input negative voltage capability		-5			V
	E INPUT (ENA,		I			
ENB)	English to a restrict		1			
VENH	Enable input rising threshold		1.6	1.86	2.1	V
V _{ENL}	Enable input signal threshold		1.1	1.4	1.7	٧
VINHYS	Enable input hysteresis			0.4		V
OUTDU	TS (OUTA, OUTB)					
lo (1)	Peak source and	CLOAD =0.22uF,				
10	sink currents	with external current limiting resistors, 1kHz switching frequency		4.0		Α
V _{OH}	Output high voltage	I _{OUTH} = -100mA	V _{DD} -0.3	V _{DD} -0.13		V
V _{OL}	Output low voltage	I _{OUTL} = 100mA		0.08	0.2	V
Rон	Output pull-up resistance			1.3	3	Ω
R _{OL}	Output pull-down resistance			0.8	2	Ω
Timing		•	•			
TD _{ff}	Falling delay Rising delay	Cload = 1.8nF	30 30	45 45	80 80	ns
T _f	Fall time	Cload = 1.8nF	6	13	20	
T _r	Rise time	01044 - 1.0111	6	13	20	ns
T _{dm} (1)	Delay mismatch	INA=INB, ENA=5V, ENB floating		1		ns

⁽¹⁾ Ensured by design and characterization, not 100% tested in production.

6. Typical Characteristics

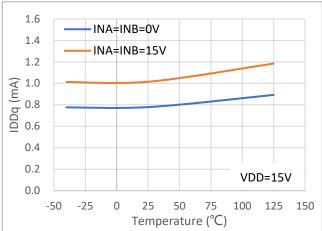
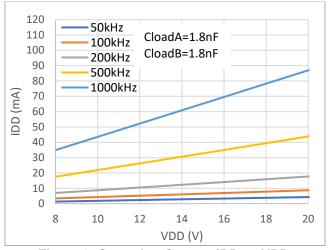



Figure 1. Quiescent Current IDDq vs VDD

Figure 2. Quiescent Current IDDq vs Temperature

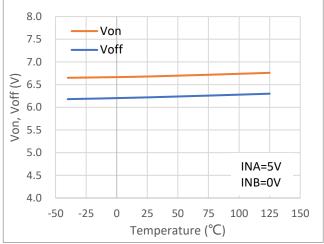
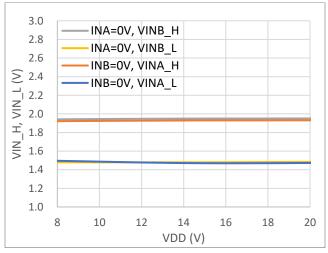



Figure 3. Operating Current IDD vs VDD

Figure 4. UVLO vs Temperature

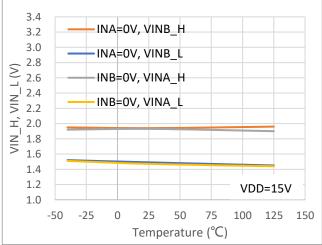
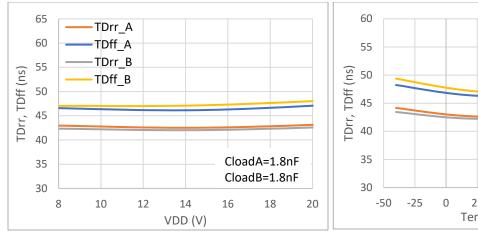



Figure 5. Input Threshold Voltage vs VDD

Figure 6. Input Threshold Voltage vs Temperature

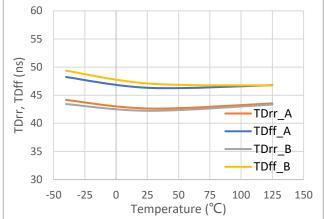
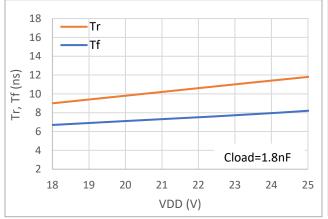



Figure 7. Propagation Delay vs VDD

Figure 8. Propagation Delay vs Temperature

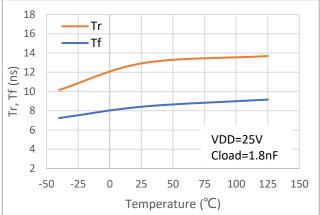
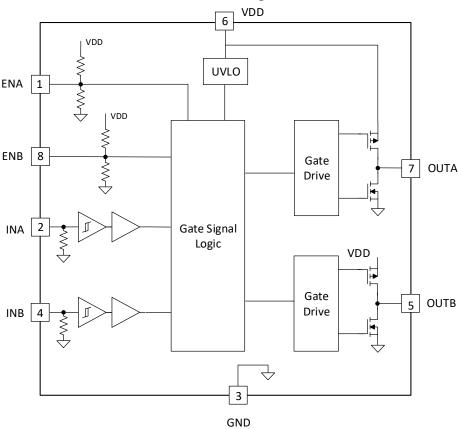


Figure 9. Rise Time and Fall time vs VDD

Figure 10. Rise Time and Fall time vs Temperature


7. Detail Descriptions

IVCR2401 driver provides dual-channel high-speed low-side gate drive. It features three-level enable signal inputs for tight mismatching outputs when two channels are paralleled to drive large or paralleled power switches.

7.1 Input Signal

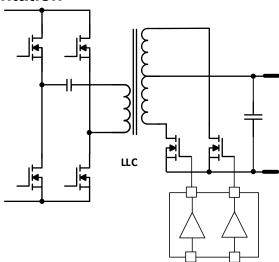
INA and INB are non-inverting logic gate driver inputs. The pins have a weak pulldown. When left floating, outputs are pulled to GND. The input is a TTL and CMOS logic level with maximum 20V input tolerance.

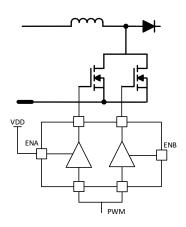
Function Block Diagram

7.2 ENA and ENB

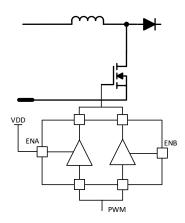
ENA and ENB are three-level inputs. When grounded, their corresponding channels are disabled. When they are logic HIGH, or floating, both channels are enabled. When one of them is floating while the other is logic HIGH, its output stage will be driven by the other channel's input signal. This unique feature ensures the two channels have very tight delay mismatch.

7.3 OUTA and OUTB


OUTA and OUTB are totem-pole outputs, which consist of a P-channel MOSFET for pullup and an N-channel MOSFET for pulldown. Each output stage in IVCR2401 can supply 4A peak source and 4A peak sink current pulses. The output voltage swings between VDD and GND providing rail-to-rail operation. The presence of the MOSFET body diodes also offers voltage clamping paths to limit overshoot and undershoot. That means that in many cases, external Schottky diode clamps may not be necessary.


7.4 VDD and Under Voltage Protection

IVCR2401 maximum voltage rating is 25V. It is suitable for Si MOSFET, IGBT and SiC MOSFET gate drive. The driver has internal under voltage lockout (UVLO) protection feature. When VDD level is below UVLO threshold, this circuit holds the output LOW, regardless of the status of the inputs.

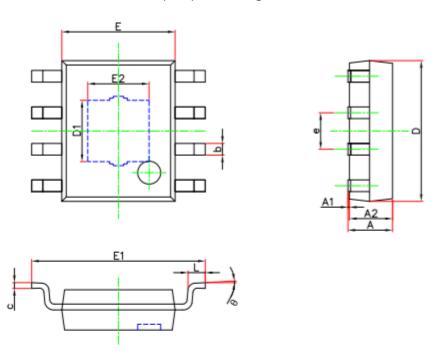

8. Application Implementation

Two channels driven separately

Two paralleled switches driven by two outputs with minimized mismatch

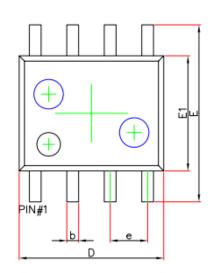
A large switch driven by two paralleled outputs with minimized mismatch

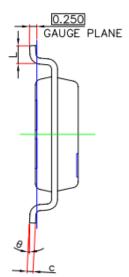
9. Layout



Layout Example for IVCR2401

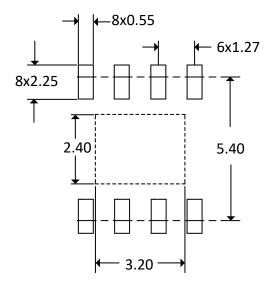
10. Package Information

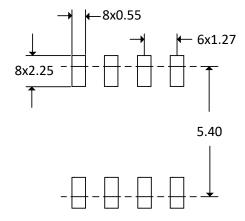

SOIC-8 (EP) Package Dimensions



Symbol	Dimensions Ir	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.300	1.700	0.051	0.067
A1	0.000	0.100	0.000	0.004
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
D1	2.034	2.234	0.080	0.088
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.034	2.234	0.080	0.088
е	1.270(BSC)	0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

SOIC-8 Package Dimensions





Symbol	Dimensions Ir	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.450	1.750	0.057	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
е	1.270(BSC)	0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

IVCR1401DP Recommended Soldering Dimensions

IVCR1401D Recommended Soldering Dimensions