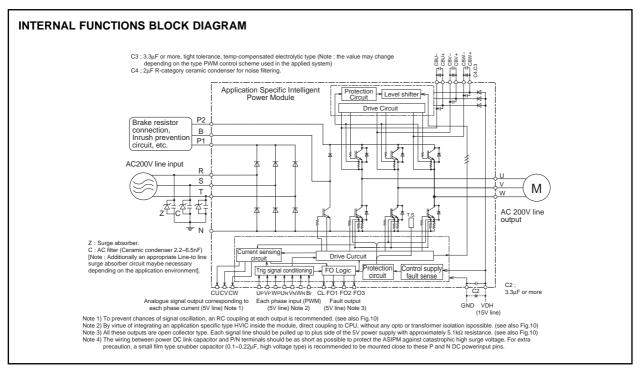

PS11013 FLAT-BASE TYPE INSULATED TYPE

APPLICATION

Acoustic noise-less 0.4kW/AC200V class 3 phase inverter and other motor control applications



(Fig. 1)

PS11013

FLAT-BASE TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25°C) INVERTER PART (Including Brake Part)

Symbol	Item	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P2-N	450	V
VCC(surge)	Supply voltage (surge)	Applied between P2-N, Surge-value	500	V
VP or VN	Each output IGBT collector-emitter static voltage	Applied between P-U, V, W, Br or U, V, W, Br-N	600	V
VP(S) or VN(S)	Each output IGBT collector-emitter switching surge voltage	Applied between P-U, V, W, Br or U, V, W, Br-N	600	V
±IC(±ICP)	Each output IGBT collector current	Tc = 25°C	±8 (±16)	Α
IC(ICP)	Brake IGBT collector current		3 (6)	Α
IF(IFP)	Brake diode anode current	Note: "()" means IC peak value	3 (6)	Α

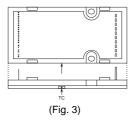
CONVERTER PART

Symbol	Item	Condition	Ratings	Unit
Vrrm	Repetitive peak reverse voltage		800	V
Ea	Recommended AC input voltage		220	V
lo	DC output current	3¢ rectifying circuit	25	A
IFSM	Surge (non-repetitive) forward current	1 cycle at 60Hz, peak value non-repetitive	138	А
l ² t	I ² t for fusing	Value for one cycle of surge current	80	A ² s

CONTROL PART

Symbol	Item	Condition	Ratings	Unit
Vdh, Vdb	Supply voltage	Applied between VDH-GND, CBU+-CBU–, CBV+-CBV–, CBW+-CBW–	20	V
VCIN	Input signal voltage	Applied between UP \cdot VP \cdot WP \cdot UN \cdot VN \cdot WN \cdot Br-GND	-0.5 ~ 7.5	V
Vfo	Fault output supply voltage	Applied between F01 · F02 · F03-GND	-0.5 ~ 7	V
IFO	Fault output current	Sink current of F01 · F02 · F03	15	mA
VCL	Current-limit warning (CL) output voltage	Applied between CL-GND	-0.5 ~ 7	V
ICL	CL output current	Sink current of CL	15	mA
Ico	Analogue current signal output current	Sink current of CU · CV · CW	±1	mA

PS11013


FLAT-BASE TYPE INSULATED TYPE

TOTAL SYSTEM

Symbol	Item	Condition	Ratings	Unit
Tj	Junction temperature	(Note 2)	-20 ~ +125	°C
Tstg	Storage temperature	—	-40 ~ +125	°C
Тс	Module case operating temperature	(Fig. 3)	-20 ~ +100	°C
Viso	Isolation voltage	60 Hz sinusoidal AC applied between all terminals and the base plate for 1 minute.	2500	Vrms
_	Mounting torque	Mounting screw: M3.5	0.78 ~ 1.27	kg∙cm

Note 2) The item defines the maximum junction temperature for the power elements (IGBT/Diode) of the ASIPM to ensure safe operation. However, these power elements can endure junction temperature as high as 150°C instantaneously. To make use of this additional temperature allowance, a detailed study of the exact application conditions is required and, accordingly, necessary information is requested to be provided before use.

CASE TEMPERATURE MEASUREMENT POINT (3mm from the base surface)

THERMAL RESISTANCE

Symbol	ltere	Condition	Ratings		Unit	
	Item	Condition	Min.	Тур.	Max.	Unit
Rth(j-c)Q	Junction to case Thermal Resistance	Inverter IGBT (1/6)	—	—	4.1	°C/W
Rth(j-c)F		Inverter FWDi (1/6)	—	—	6.1	°C/W
Rth(j-c)QB		Brake IGBT	—	—	6.1	°C/W
Rth(j-c)FB		Brake FWDi	—	—	6.1	°C/W
Rth(j-c)FR		Converter Di (1/6)	_	—	4.8	°C/W
Rth(c-f)	Contact Thermal Resistance	Case to fin, thermal grease applied (1 Module)	_	_	0.053	°C/W

ELECTRICAL CHARACTERISTICS (Tj = 25°C, VDH = 15V, VDB = 15V unless otherwise noted)

O wash at	Item	Quanditian	Ratings			Unit
Symbol		Condition	Min.	Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation voltage	VDH = VDB = 15V, Input = ON, Tj = 25°C, IC = 8A	-	—	2.9	V
VEC	FWDi forward voltage	Tj = 25° C, IC = $-8A$, Input = OFF	—	—	2.9	V
VCE(sat)Br	Brake IGBT Collector-emitter saturation voltage	$V_{DH} = 15V$, Input = ON, Tj = 25°C, IC = 3A	_	_	3.5	V
VFBr	Brake diode forward voltage	Tj = 25°C, IF = 3A, Input = OFF	-	—	2.9	V
IRRM	Converter diode reverse current	VR = VRRM, Tj = 125°C	—	—	8	mA
Vfr	Converter diode voltage	Tj = 25°C, IF = 5A	-	-	1.5	V
ton		1/2 Bridge inductive load, Input = ON	0.3	0.6	1.5	μs
tc(on)	Switching times	Vcc = 300V, lc = 8A, Tj = 125°C	—	0.2	0.6	μs
toff	Switching lines	VDH = 15V, VDB = 15V	—	1.1	1.8	μs
tc(off)		Note : ton, toff include delay time of the internal control	_	0.35	1.0	μs
trr	FWD reverse recovery time	circuit	—	0.1	—	μs
	Short circuit endurance	Vcc \leq 400V, Input = ON (one-shot)	• No dest	truction		
	(Output, Arm, and Load,	Tj = 125°C start	Fo output by protection operation		ration	
	Short Circuit Modes)	$13.5V \le VDH = VDB \le 16.5V$				
		$VCC \le 400V$, $Tj \le 125^{\circ}C$,	 No destruction No protecting operation 			
	Switching SOA	Ic < IOL(CL) operation level, Input = ON				
		$13.5V \le VDH = VDB \le 16.5V$	No Fo output			

PS11013

FLAT-BASE TYPE INSULATED TYPE

ELECTRICAL CHARACTERISTICS (Tj = 25°C, VDH = 15V, VDB = 15V unless otherwise noted)

Item		Condition			Ratings		
Item		Con	Condition		Тур.	Max.	Unit
Circuit current		VDH = 15V, VCIN = 5V		—	—	150	mA
Input on threshold voltage		0.8	1.4	-	V		
				2.5		4.0	V
Input pull-up resistor		0 1		—		—	kΩ
PWM input frequency					—	-	kHz
			· · · /	1	—	500	μs
blocking arm shoot-through				2.2	_	_	μs
Input inter-lock sensing		Relates to corresponding	input (Except brake part)	—	65	100	ns
		Ic = 0A	VDH = 15V	1.87	2.27	2.57	V
Analogue signal linearity wi	th	Ic = IOP(200%)	Tc = -20°C ~ +100°C	0.77	1.17	1.47	V
output current		Ic = -IOP(200%)	(Fig. 4)	2.97	3.37	3.67	V
Offset change area vs temp	perature	VDH = 15V, TC = -20°C ~ +100°C		—	15		mV
		Ic > IOP(200%), VDH =	15V	—	_	0.7	V
Analogue signal output voltage limit		(Fig. 4)	4.0	_	_	V	
Analogue signal over all line	near variation VCO-VC±(200%)		—	1.1	_	V	
Analogue signal data hold accuracy		Correspond to max. 50 only, Ic = IOP(200%)	0μs data hold period (Fig. 5)	-5	_	5	%
Analogue signal reading tin	ne	After input signal trigge	er point (Fig. 8)	—	3	_	μs
Current limit warning (CL) op	eration level	VDH =15V, TC = -20°C	~ +100°C (Note 4)	7.93	10.80	13.90	A
Signal output current of	Idle		· · ·	—	_	1	μΑ
CL operation	Active	Open collector output		_	1	_	mA
Short circuit over current tri	p level	Tj = 25°C	(Fig. 7) (Note 5)	13.2	24.0	34.3	A
	Trip level			100	110	120	°C
Over temperature protection	Reset level	1 VDH =15V		—	90	_	°C
	Trip level			11.05	12.00	12.75	V
	Reset level	-		11.55	12.50	13.25	V
	Trip level	1		18.00	19.20	20.15	V
Supply circuit under &	Reset level	$TC = -20^{\circ}C \sim +100^{\circ}C$		16.50	17.50	18.65	V
over voltage protection	Trip level	Tj ≤ 125°C		10.0	11.0	12.0	V
	Reset level	1		10.5	11.5	12.5	V
	Filter time	1		_	10		μs
	Idle			_	_	1	μA
Fault output current	Active	Open collector output		_	1		mA
	Input on threshold voltage Input off threshold voltage Input pull-up resistor PWM input frequency Allowable input on-pulse wi Allowable input signal dead blocking arm shoot-through Input inter-lock sensing Analogue signal linearity wi output current Offset change area vs temp Analogue signal output volt Analogue signal output volt Analogue signal over all line Analogue signal data hold a Analogue signal reading tin Current limit warning (CL) op Signal output current of CL operation Short circuit over current tri Over temperature protection Supply circuit under & over voltage protection	Circuit current Input on threshold voltage Input off threshold voltage Input pull-up resistor PWM input frequency Allowable input on-pulse width Allowable input signal dead time for blocking arm shoot-through Input inter-lock sensing Analogue signal linearity with output current Offset change area vs temperature Analogue signal output voltage limit Analogue signal over all linear variation Analogue signal reading time Current limit warning (CL) operation level Signal output current of CL operation Short circuit over current trip level Over temperature protection Supply circuit under & over voltage protection Eault output current	Circuit currentVDH = 15V, VCIN = 5VInput on threshold voltageInput off threshold voltageInput off threshold voltageIntegrated between inputPWM input frequencyTc $\leq 100^{\circ}$ C, Tj $\leq 125^{\circ}$ CAllowable input on-pulse widthVDH = 15V, Tc = -20^{\circ}CAllowable input signal dead time for blocking arm shoot-throughRelates to corresponding (Except brake part) Tc =: Input inter-lock sensingAnalogue signal linearity with output currentIc = 0AAnalogue signal output voltage limitIc = IOP(200%) Ic = -OP(200%)Analogue signal output voltage limitIc > IOP(200%)Analogue signal over all linear variationIVCO-VC±(200%) Correspond to max. 50 only, Ic = IOP(200%)Analogue signal over all linear variationIVCO-VC±(200%) Correspond to max. 50 only, Ic = IOP(200%)Analogue signal reading timeAfter input signal triggeCurrent limit warning (CL) operation levelVDH = 15V, Tc = -20^{\circ}CSignal output current of CL operationIdle Reset levelOver temperature protectionTrip level Reset levelTj = 25^{\circ}COver temperature protectionTrip level Reset levelTc = -20^{\circ}C ~ +100^{\circ}CSupply circuit under & over voltage protectionTrip level Reset levelTc = -20^{\circ}C ~ +100^{\circ}CTrip level Reset levelTrip level Reset levelTc = -20^{\circ}C ~ +100^{\circ}CFault output currentIdleOpen collector output	Circuit currentVDH = 15V, VCIN = 5VInput on threshold voltageIntegrated between input terminal-VDHInput off threshold voltageIntegrated between input terminal-VDHPVWM input frequencyTc < 100°C, Tj < 125°C	Min.Circuit currentMin.Circuit currentInput on threshold voltage	ConditionMin.Typ.Circuit currentVDH = 15V, VcIN = 5VInput on threshold voltageIntegrated between input terminal-VDH150Input pull-up resistorIntegrated between input terminal-VDH150PVM input frequencyTc $\leq 100^{\circ}$ C, Tj $\leq 125^{\circ}$ C2Allowable input on-pulse widthVDH = 15V, Tc = -20° C $\sim +100^{\circ}$ C1Allowable input signal dead time for 	$\begin{tabular}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $

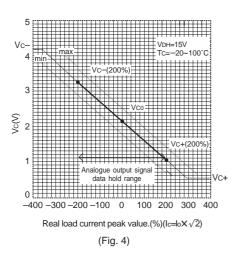
(Note 3) : (a) Allowable minimum input on-pulse width : This item applies to P-side circuit only.

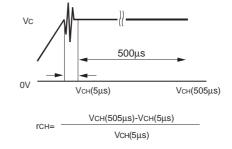
(b) Allowable maximum input on-pulse width : This item applies to both P-side and N-side circuits excluding the brake circuit. (Note4) : CL output : The "current limit warning (CL) operation circuit outputs warning signal whenever the arm current exceeds this limit. The

circuit is reset automatically by the next input signal and thus, it operates on a pulse-by-pulse scheme.

(Note5): The short circuit protection works instantaneously when a high short circuit current flows through an internal IGBT rising up momentarily. The protection function is, thus meant primarily to protect the ASIPM against short circuit distraction. Therefore, this function is not recommended to be used for any system load current regulation or any over load control as this might, cause a failure due to excessive temperature rise. Instead, the analogue current output feature or the over load warning feature (CL) should be appropriately used for such current regulation or over load control operation. In other words, the PWM signals to the ASIPM should be shut down, in principle, and not to be restarted before the junction temperature would recover to normal, as soon as a fault is feed back from its Fo1 pin of the ASIPM indicating a short circuit situation.

RECOMMENDED CONDITIONS


Symbol	Item	Condition	Ratings	Unit
Vcc	Supply voltage	Applied across P2-N terminals	400 (max.)	V
Vdh, Vdb	Control supply voltage	Applied between VDH-GND, CBU+-CBU-, CBV+-CBV-, CBW+-CBW-	15±1.5	V
ΔV dh, ΔV db	Supply voltage ripple		±1 (max.)	V/µs
VCIN(on)	Input on voltage		0 ~ 0.3	V
VCIN(off)	Input off voltage		4.8 ~ 5.0	V
fpwm	PWM Input frequency	Using application circuit	2 ~ 20	kHz
tdead	Arm shoot-through blocking time	Using application circuit	2.2 (min.)	μs


PS11013 FLAT-BASE TYPE

FLAT-BASE TYPE INSULATED TYPE

Fig. 4 OUTPUT CURRENT ANALOGUE SIG-NALING LINEARITY

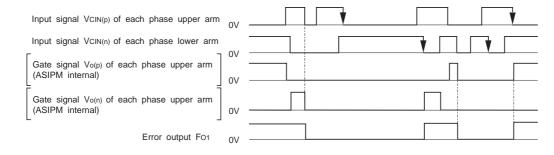
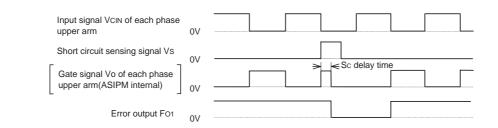


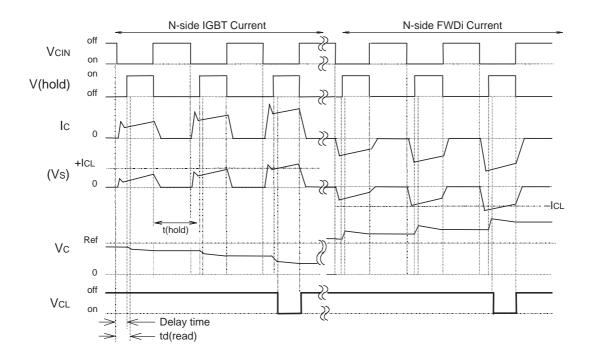
Fig. 5 OUTPUT CURRENT ANALOGUE SIGNALING "DATA HOLD" DEFINITION

Note ; Ringing happens around the point where the signal output voltage changes state from "analogue" to "data hold" due to test circuit arrangement and instrumentational trouble. Therefore, the rate of change is measured at a 5 µs delayed point.


Fig. 6 INPUT INTERLOCK OPERATION TIMING CHART

Note : Input interlock protection circuit ; It is operated when the input signals for any upper-arm / lower-arm pair of a phase are simultaneously in "LOW" level.

By this interlocking, both upper and lower IGBTs of this mal-triggered phase are cut off, and "Fo" signal is outputted. After an "input interlock" operation the circuit is latched. The "Fo" is reset by the high-to-low going edge of either an upper-leg, or a lower-leg input, whichever comes in later.


Fig. 7 TIMING CHART AND SHORT CIRCUIT PROTECTION OPERATION

Note : Short circuit protection operation. The protection operates with "Fo" flag and reset on a pulse-by-pulse scheme. The protection by gate shutdown is given only to the IGBT that senses an overload (excluding the IGBT for the "Brake").

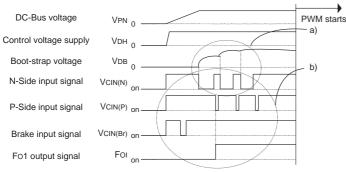
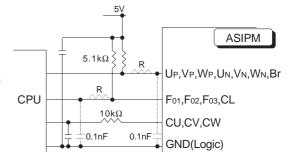

PS11013 FLAT-BASE TYPE INSULATED TYPE

Fig. 8 INVERTER OUTPUT ANALOGUE CURRENT SENSING AND SIGNALING TIMING CHART

Fig. 9 START-UP SEQUENCE

Normally at start-up, Fo and CL output signals will be pulled-up High to Supply voltage (OFF level); however, Fo1 output may fall to Low (ON) level at the instant of the first ON input pulse to an N-Side IGBT. This can happen particularly when the boot-strap capacitor is of large size. Fo1 resetting sequence (together with the boot-strap charging sequence) is explained in the following graph

a) Boot-strap charging scheme :


Apply a train of short ON pulses at all N-IGBT input pins for adequate charging (pulse width = approx. 20µs number of pulses =10 ~ 500 depending on the boot-strap capacitor size)

b) Fo1 resetting sequence:

Apply ON signals to the following input pins : Br \rightarrow Un/Vn/Wn \rightarrow Up/Vp/Wp in that order.

Fig. 10 RECOMMENDED I/O INTERFACE CIRCUIT

