

General Description

The MAX4751/MAX4752/MAX4753 are low on-resistance, low-voltage, quad, single-pole/single-throw (SPST) analog switches that operate from a single +1.6V to +3.6V supply. These devices have fast switching speeds (ton = 30ns, toff = 25ns), handle Rail-to-Rail® analog signals, and consume less than 1µW of quiescent power. The MAX4753 has break-before-make switching.

When powered from a +3V supply, the MAX4751/ MAX4752/MAX4753 feature low 0.9Ω (max) on-resistance (R_{ON}), with 0.12 Ω (max) R_{ON} matching and 0.1 Ω (max) RON flatness. The digital input is 1.8V CMOS compatible when using a single +3V supply.

The MAX4751 has four normally open (NO) switches, the MAX4752 has four normally closed (NC) switches, and the MAX4753 has two NO and two NC switches. The MAX4751/MAX4752/MAX4753 are available in 3mm × 3mm, 16-pin QFN and 14-pin TSSOP packages.

Applications

Power Routing

Battery-Powered Systems

Audio and Video Signal Routing

Low-Voltage Data-Acquisition Systems

Communications Circuits

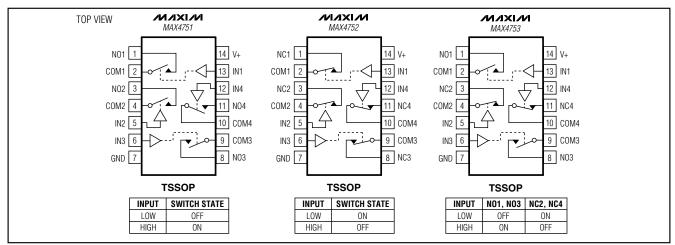
PCMCIA Cards

Cellular Phones

Modems

Hard Drives

Features


- **♦ Low Ron**
 - 0.9Ω max (+3V Supply) 2.5Ω max (+1.8V Supply)
- ♦ On-Resistance Flatness: 0.1Ω max (+3V)
- Ron Matching 0.12Ω max (+3V Supply) 0.25Ω max (+1.8V Supply)
- ♦ +1.6V to +3.6V Single-Supply Operation
- Available in 16-Pin QFN and 3mm × 3mm **Packages**
- ♦ 1.8V CMOS Logic Compatible (+3V Supply)
- High Current-Handling Capacity (100mA Continuous)
- ♦ Fast Switching: toN = 30ns, toFF = 25ns

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX4751EUD	-40°C to +85°C	14 TSSOP	_
MAX4751EGE	-40°C to +85°C	16 QFN (3mm × 3mm)	AAC
MAX4752EUD	-40°C to +85°C	14 TSSOP	_
MAX4752EGE	-40°C to +85°C	16 QFN (3mm × 3mm)	AAD
MAX4753EUD	-40°C to +85°C	14 TSSOP	_
MAX4753EGE	-40°C to +85°C	16 QFN (3mm × 3mm)	AAE

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Pin Configurations/Functional Diagrams/Truth Tables

Pin Configurations/Functional Diagrams/Truth Tables continued at end of data sheet.

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND	
V+, IN	0.3V to +4V
COM_, NO_, NC_ (Note 1)0.3V to	
Continuous Current (COM_, NO_, NC_)	±100mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms 10% duty cycle)	±200mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
14-Pin TSSOP (derate 9.1W/°C above +70°C)	727mW
16-Pin QFN (derate 16.9W/°C above +70°C)	1349mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}_=+1.4V, V_{IL}_=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+=+3.0V, T_A=+25^{\circ}C.$) (Notes 2, 3)

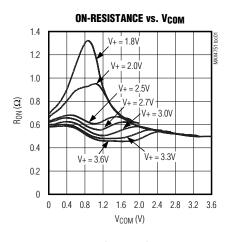
PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V	
On Registenes (Note 4)	Davi	V+ = 2.7V,	+25°C		0.6	0.9	0	
On-Resistance (Note 4)	Ron	I _{COM} _ = 100mA, V _{NO} _ or V _{NC} _ = 1.5V	T _{MIN} to T _{MAX}			1	Ω	
On-Resistance Match Between	4D	V+ = 2.7V,	+25°C		0.03	0.12		
Channels (Notes 4, 5)	ΔRon	ICOM_ = 100mA, V _{NO_} or V _{NC_} = 1.5V	T _{MIN} to T _{MAX}			0.15	Ω	
On-Resistance Flatness	R _{FLAT} (ON)	V+ = 2.7V,	+25°C		0.04	0.1	Ω	
(Note 6)		ICOM_ = 100mA, V _{NO_} or V _{NC_} = 1V, 1.5V, 2V	T _{MIN} to T _{MAX}			0.12		
NO_ or NC_ Off-Leakage Current	I _{NO_(OFF)} ,	V+ = 3.6V, VCOM = 0.3V, 3.6V,	+25°C	-2.5	0.002	+2.5	A	
(Note 7)	I _{NC} (OFF)	V_{NO} or V_{NC} = 3.6V, 0.3V	T _{MIN} to T _{MAX}	-5		+5	nA	
COM_ Off-Leakage Current	ICOM_(OFF)	$V + = 3.6V, V_{COM} = 0.3V,$	+25°C	-2.5	0.002	+2.5	A	
(Note 7)		3.6V, V_{NO} or V_{NC} = 3.6V, 0.3V	T _{MIN} to T _{MAX}	-5		+5	nA nA	
COM_ On-Leakage Current		$V + = 3.6V$, $V_{COM} = 0.3V$, $3.6V$, V_{NO} or $V_{NC} = 0.3V$.	+25°C	-2.5	0.002	+2.5	-nΛ	
(Note 7)	ICOM_(ON)	3.6V, V_{NO} of V_{NC} = 0.5V,	T _{MIN} to T _{MAX}	-5		+5	- nA	

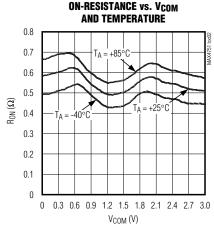
ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

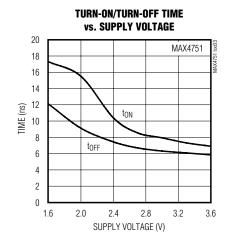
 $(V+=+2.7V \text{ to } +3.6V, V_{IH}_=+1.4V, V_{IL}_=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+=+3.0V, T_A=+25^{\circ}C.$) (Notes 2, 3)

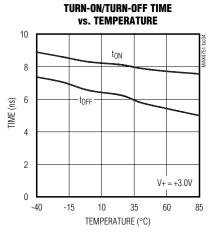
PARAMETER	SYMBOL	CONDI	TIONS	TA	MIN	TYP	MAX	UNITS	
SWITCH DYNAMIC CHARACTE	ERISTICS							•	
Turn-On Time	ton	-	V_{NO} or V_{NC} = 1.5V, R _L = 50 Ω , C _L = 35pF,			6	30	ns	
Tani on time	1011	Figure 1	_ = 5561 ,	T _{MIN} to T _{MAX}			30	110	
Turn-Off Time	torr	V _{NO} or V _{NC} .		+25°C		10	25	ns	
Turri-On Time	Time t_{OFF} $R_L = 50\Omega$, $C_L = 35pF$, Figure 1		T _{MIN} to T _{MAX}			25	115		
Break-Before-Make (Note 8)	+	V _{NO} and V _N		+25°C		7		200	
(MAX4753 Only)	^t BBM	$R_L = 50\Omega$, C_L Figure 1	_ = 35pr,	T _{MIN} to T _{MAX}	2			ns	
Charge Injection	Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1.0nF, Figure 2		+25°C		21		рС	
NO_ or NC_ Off-Capacitance	COFF	f = 1MHz, Figure 3		+25°C		31		pF	
COM_ Off-Capacitance	CCOM_(OFF)	f = 1MHz, Figure 3		+25°C		30		рF	
COM_ On-Capacitance	CCOM_(ON)	f = 1MHz, Fig	gure 3	+25°C		75		pF	
Off-Isolation (Note 9)	Viso	$R_L = 50\Omega$, $f = 10MHz$ $C_L = 5pF$,		+25°C		-51	dB		
On-isolation (Note 9)	V150	Figure 4	f = 1MHz	+25°C		-65	ub		
Crosstalk		$R_L = 50\Omega$, $f = 10MHz$		+25°C		-70		dB	
Clossidik		Figure 4	$C_L = 5pF,$ Figure 4 $f = 1MHz$		-80		ub		
Total Harmonic Distortion	THD	f = 20Hz to 20 kHz, $V_{COM} = 2$ V _{P-P} , $R_L = 32\Omega$		+25°C		0.031		%	
DIGITAL I/O									
Input Logic High	V _{IH} _			T _{MIN} to T _{MAX}	1.4			V	
Input Logic Low	V _{IL} _			T _{MIN} to T _{MAX}			0.5	V	
Input Leakage Current	I _{IN} _	$V_{IN} = 0$ or $V+$		T _{MIN} to T _{MAX}	-1	0.0005	+1	μΑ	
POWER SUPPLY	•	•						•	
Power-Supply Range	V+				+1.6		+3.6	V	
Positive Supply Current	l+	$V+ = 3.6V, V_{I}$	$N_{-} = 0$ or V+				1	μΑ	
117								•	

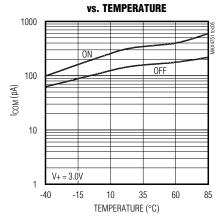
ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

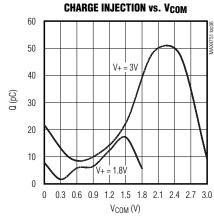

 $(V+ = +1.8V, V_{IH} = +1V, V_{IL} = +0.4V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Notes 2, 3)

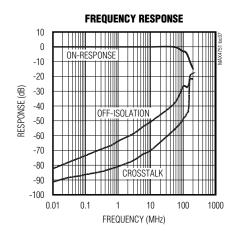

PARAMETER SYMBOL		CONDITIONS	TA	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	1							
Analog Signal Range VCC VNO_,				0		V+	V	
O D : (A) (A)	1	V+ = 1.8V,	+25°C		1.4	2.5	_	
On-Resistance (Note 4)	Ron	I _{COM} = 10mA, V _{NO} or V _{NC} = 0.9V	T _{MIN} to T _{MAX}			3	Ω	
On-Resistance Match Between Channels	4D	V+ = 1.8V,	+25°C		0.05	0.25	Ω	
(Notes 4, 5)	ΔR _{ON}	I _{COM} = 10mA, V _{NO} or V _{NC} = 0.9V	T _{MIN} to T _{MAX}			0.25		
SWITCH DYNAMIC CHARACTE	RISTICS							
T 0 T	ton	V_{NO} or V_{NC} = 1.0V,	+25°C		25	35		
Turn-On Time		$R_L = 50\Omega$, $C_L = 35pF$, Figure 1	T _{MIN} to T _{MAX}			35	ns	
T 0"T		V _{NO} _ or V _{NC} _ = 1.0V,	+25°C		20	25		
Turn-Off Time	tOFF	$R_L = 50\Omega$, $C_L = 35pF$, Figure 1	T _{MIN} to T _{MAX}		30		ns	
Charge Injection	Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1.0nF, Figure 2	+25°C	8			рС	
DIGITAL I/O	•							
Input Logic High	V _{IH} _		T _{MIN} to T _{MAX}	1.0			V	
Input Logic Low	V _{IL} _		T _{MIN} to T _{MAX}			0.4	V	
Input Leakage Current I _{IN} _		V _{IN} _ = 0 or V+ T _{MIN} to T _{MAX}		-1	0.0005	+1	μΑ	
POWER SUPPLY					-			
Power-Supply Range	V+			+1.6		+3.6	V	
Positive Supply Current	I+	V _{IN} _ = 0 or V+				1	μΑ	

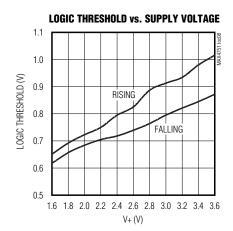

- Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- Note 3: Parts are tested at +85°C and guaranteed by design and correlation over the full temperature range.
- **Note 4:** RoN and Δ RoN matching specifications for QFN-packaged parts are guaranteed by design.
- **Note 5:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$
- **Note 6:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- **Note 7:** Leakage parameters are 100% tested at the maximum-rated hot operating temperature and guaranteed by correlation at $T_A = +25$ °C.
- **Note 8:** Guaranteed by design, not production tested.
- Note 9: Off-Isolation = $20\log_{10}[V_{COM} / (V_{NC} \text{ or } V_{NO})]$, V_{COM} = output, V_{NC} or V_{NO} = input to off switch.


Typical Operating Characteristics

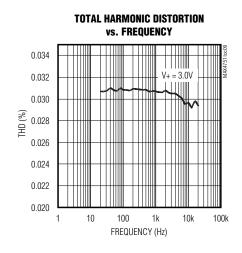

 $(V+ = +3V \text{ and } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

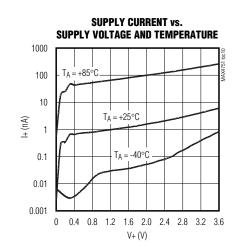






LEAKAGE CURRENT





Typical Operating Characteristics (continued)

(V+ = +3V and T_A = +25°C, unless otherwise noted.)

Pin Description

		PIN	1				
MAX4	MAX4751		752	MAX4	753	NAME	FUNCTION
TSSOP	QFN	TSSOP	QFN	TSSOP	QFN		
1, 3, 8, 11	15, 1, 7, 11	_	_	_	_	NO1, NO2, NO3, NO4	Switch Normally Open Terminals
_	_	1, 3, 8, 11	15, 1, 7, 11	_	_	NC1, NC2, NC3, NC4	Switch Normally Closed Terminals
_	_	_	_	3, 11	1, 11	NC2, NC4	Switch Normally Closed Terminals
_	_		_	1, 8	15, 7	NO1, NO3	Switch Normally Open Terminals
2, 4, 9, 10	16, 2, 8, 9	2, 4, 9, 10	16, 2, 8, 9	2, 4, 9, 10	16, 2, 8, 9	COM1, COM2, COM3, COM4	Switch Common Terminals
7	6	7	6	7	6	GND	Ground
13, 5, 6, 12	13, 4, 5, 12	13, 5, 6, 12	13, 4, 5, 12	13, 5, 6, 12	13, 4, 5, 12	IN1, IN2, IN3, IN4	Logic Control Inputs
14	14	14	14	14	14	V+	Positive Supply Voltage
_	3, 10		3, 10		3, 10	N.C.	No Connection. Not internally connected.

Test Circuits/Timing Diagrams

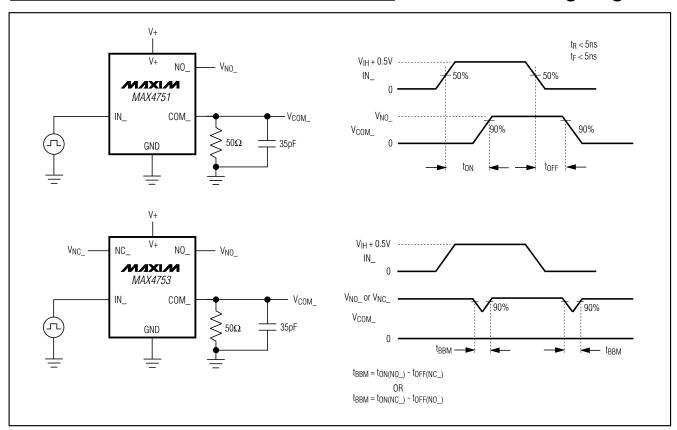
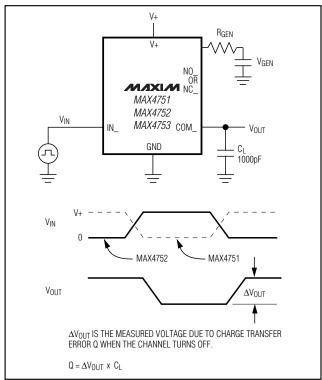
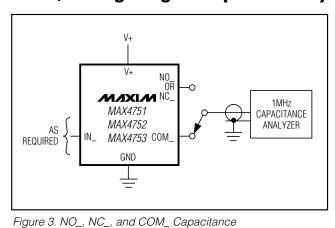




Figure 1. Switching Times

Test Circuits/Timing Diagrams (continued)

0.1µF NETWORK ANALYZER 50Ω NO_ OR MIXIM MAX4751 MAX4752 MEAS MAX4753 _{COM_} GND MEASUREMENTS ARE STANDARDIZED AGAINST OFF-ISOLATION = 20log SHORT AT SOCKET TERMINALS. OFF-ISOLATION IS $ON-LOSS = 20log \frac{V_{OUT}}{V_{IN}}$ MEASURED BETWEEN COM AND "OFF" TERMINAL ON EACH SWITCH, ON-LOSS IS MEASURED BETWEEN COM AND "ON" TERMINAL ON EACH SWITCH. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST *ADD 50Ω TERMINATION FOR VALUES ARE RECORDED. OFF-ISOLATION

Figure 4. Off-Isolation, On-Loss, and Crosstalk

Figure 2. Charge Injection

Detailed Description

The MAX4751/MAX4752/MAX4753 are low 0.9Ω max (at V+ = 3V) on-resistance, low-voltage quad analog switches that operate from a +1.6V to +3.6V single supply. CMOS construction allows switching analog signals that are within the supply voltage range (GND to V+).

When powered from a +3V supply, the 0.9 Ω (max) RoN allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by NO_, NC_, or COM_. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 5). Adding these diodes reduces the analog signal by one diode drop below V+ and one diode drop above GND, but does not affect the low switch resistance and low leakage characteristics of the device. Device operation is unchanged, and the difference between V+ and GND should not exceed 4V.

Power-supply bypassing is needed to improve noise margin and to prevent switching noise propagation from the V+ supply to other components. A $0.1\mu F$ capacitor, connected from V+ to GND, is adequate for most applications.

Logic Inputs

The MAX4751/MAX4752/MAX4753 logic inputs can be driven up to +3.6V regardless of the supply voltage. For example, with a +1.8V supply, IN_ may be driven low to GND and high to +3.6V. Driving IN_ rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in on-

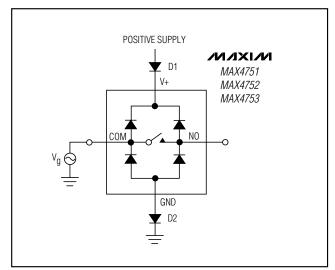
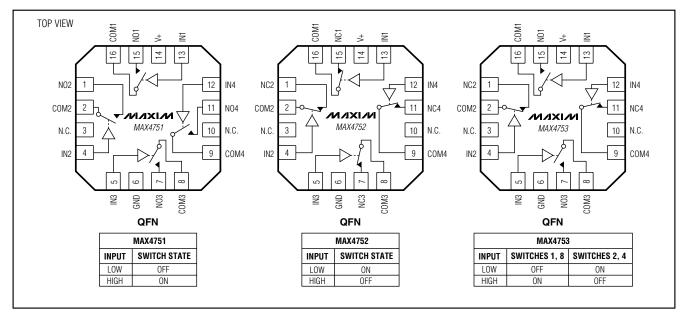


Figure 5. Overvoltage Protection Using Two External Blocking Diodes

resistance (see the *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be used as either inputs or outputs.

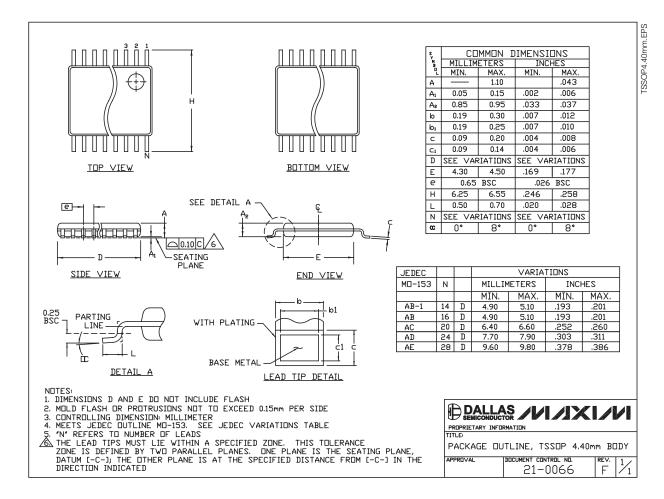
Layout


High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Chip Information

TRANSISTOR COUNT: 228

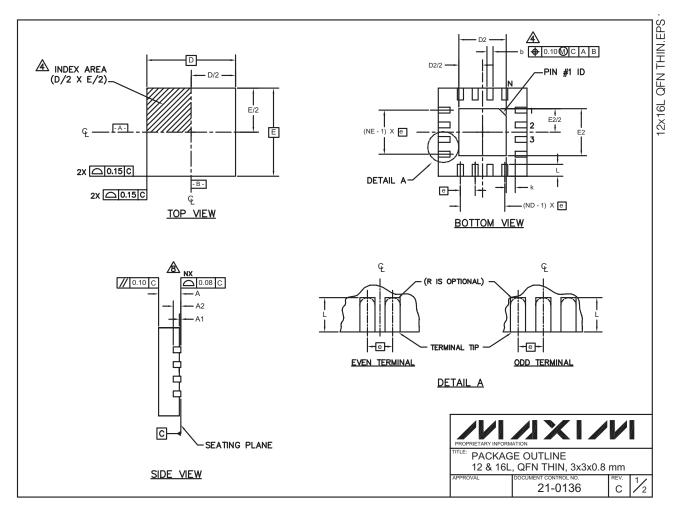
PROCESS: CMOS


Pin Configurations/Functional Diagrams/Truth Tables (continued)

10 ______ MAXIM

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



12

0.9 Ω , Low-Voltage, Single-Supply Quad SPST Analog Switches

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

PKG		12L 3x3			16L 3x3		
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	0.70	0.75	0.80	
b	0.20	0.25	0.30	0.20	0.25	0.30	
D	2.90	3.00	3.10	2.90	3.00	3.10	
Е	2.90	3.00	3.10	2.90	3.00	3.10	
9		0.50 BSC		0.50 BSC.			
L	0.45	0.55	0.65	0.30	0.40	0.50	
N		12		16			
ND		3		4			
NE	3			4			
A1	0 0.02 0.05			0 0.02 0.05			
A2		0.20 REF	:		0.20 REF	:	
k	0.25	-	-	0.25	-	-	

	EXPOSED PAD VARIATIONS										
PKG. D2 E2								PIN ID	JEDEC		
CODE	S	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	PINID	JEDEC		
T1233	3-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-1		
T1633	3-1	0.95	1.10	1.25	0.95	1.10	1.25	0.35 x 45°	WEED-2		
T1633	3F-3	0.65	0.80	0.95	0.65	0.80	0.95	0.225 x 45°	-		

NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- ⚠ THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- ⚠ DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
- M ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- ▲ COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.