

HDMI_TX_HSMC

Terasic HDMI Video Transmitter Daughter Board User Manual

V.1.0.1 © 2011 by Terasic

CONTENTS

Chapter 1	Introduction	2
1.1 About	t the KIT	2
1.2 Assem	nble the HDMI_TX_HSMC Board	3
1.3 Gettin	ng Help	4
Chapter 2	HDMI_TX_HSMC Board	5
2.1 Featur	res	5
2.2 Layou	ut and Componets	7
2.3 Block	Diagram of HDMI Signal Transmission	8
2.4 Gener	rate Pin Assignments	10
2.5 Pin De	refinition of HSMC Connector	11
Chapter 3	Demonstration	17
3.1 Introd	luction	
3.2 Syster	m Requirements	17
3.3 Setup	the Demonstration	17
3.4 Opera	ation	20
Chapter 4	Case Study	23
4.1 Overv	view	23
4.2 Syster	m Function Block	23
4.3 Nios I	II Program	26
Chapter 5	Appendix	30
5.1 Revisi	ion History	30
5.2 Alway	ys Visit HDMI_TX_HSMC Webpage for Update	30

Chapter 1

Introduction

HDMI_TX_HSMC is a HDMI transmitter daughter board with HSMC (High Speed Mezzanine Connector) interface. Host boards, supporting HSMC-compliant connectors, can control the HDMI_TX_HSMC daughter board through the HSMC interface.

This HDMI_TX_HSMC kit contains complete reference design with source code written in Verilog and C, for HDMI signal transmitting. Based on reference designs, users can easily and quickly develop their applications.

1.1 About the KIT

This section describes the package content.

The HDMI_TX_HSMC package, as shown in **Figure 1-1**, contains:

- HDMI_TX_HSMC board x 1
- System CD-ROM x 1

The CD contains technical documents of the HDMI transmitter, and one reference design for DE4 HDMI transmitting with source code.

Figure 1-1 HDMI_TX_HSMC Package

1.2 Assemble the HDMI_TX_HSMC Board

This section describes how to connect the HDMI_TX_HSMC daughter board to a main board, and uses DE4 as an example.

The HDMI_TX_HSMC board connects to main boards through the HSMC interface. For DE4, the HDMI daughter board can be connected to any one of two HSMC connectors on DE4.

Figure 1-2 shows a HDMI_TX_HSMC daughter board connected to the HSMC connector of DE4. Due to high speed data rate in between, users are strongly recommended to screw the two boards together.

Note. Do not attempt to connect/remove the HDMI_TX_HSMC daughter board to/from the main board when the power is on, or the hardware could be damaged.

Figure 1-2 Connect HDMI_TX_HSMC daughter board to DE4 board

1.3 Getting Help

Here are some places to get help if you encounter any problem:

• Email to support@terasic.com

• Taiwan: +886-3-550-8800

• China: +0086-13971483508

• Korea: +82-2-512-7661

• English Support Line: +1-408-512-12336

Chapter 2

HDMI_TX_HSMC Board

This chapter will illustrate technical details of HDMI_TX_HSMC board.

2.1 Features

This section describes the major features of the HDMI board.

Board Features:

- One HSMC interface for connection purpose
- One HDMI transmitter with single transmitting port
- Powered from 3.3V and 12V pins of HSMC connector

HDMI Transmitter Features:

- 1. HDMI 1.4 transmitter
- 2. Compliant with HDMI 1.3, HDMI 1.4a 3D, HDCP 1.4 and DVI 1.0 specifications
- 3. Supporting link speeds of up to 2.25 Gbps (link clock rate of 225MHZ)
- 4. Various video input interface supporting digital video standards such as:
 - 24/30/36-bit RGB/YCbCr 4:4:4
 - 16/20/24-bit YCbCr 4:2:2
 - 8/10/12-bit YCbCr 4:2:2 (CCIR-656)
- 5. Bi-direction Color Space Conversion (CSC) between RGB and YCbCr color space with programmable coefficients
- 6. Up/down sampling between YCbCr 4:4:4 and YCbCr 4:2:2
- 7. Dither for conversion from 12-bit/10-bit to component to 8-bit

- 8. Support Gammat Metadata packet
- 9. Digital audio input interface supporting:
 - Up to four I2S interface supporting 8-channel audio, with sample rates of 32~192 kHz and sample sizes of 16~24 bits
 - S/PDIF interface supporting PCM, Dolby Digital, DTS digital audio at up to 192kHz
 frame rate
 - Support for high-bit-rate (HBR) audio such as DTS-HD and Dolby TrueHD through the four I2S interface or the S/PDIF interface, with frame rates as high as 768kHz
 - Support for 8-channel DSD audio through dedicated inputs
 - Compatible with IEC 60958 and IEC 61937
 - Audio down-sampling of 2X and 4X
- 10. Software programmable, auto-calibrated TMDS source terminations provide for optimal source signal quality
- 11. Software programmable HDMI output current level
- 12. MCLK input is optional for audio operation. Users could opt to implement audio input interface with or without MCLK
- 13. Integrated pre-programmed HDCP keys
- 14. Purely hardware HDCP engine increasing the robustness and security of HDCP operation
- 15. Monitor detection through Hot Plug Detection and Receiver Termination Detection
- 16. Embedded full-function pattern generator
- 17. Intelligent, programmable power management

Table 2-1 lists the supported output video formats:

Table 2-1 Output video formats supported by the HDMI_TX_HSMC board

				Output Pixel Clock Frequency(MHz)							
Color Space	Video Format	Bus Width	Hsync/ Vsync	480i	480p	XGA	720p	1080i	SXG A	1080p	UXGA
RGB	4:4:4	24 30/36	Separate	13.5 13.5	27 27	65 65	74.25 74.25	74.25 74.25	108 108	148.5 148.5	162
		12/15/ 18	Separate	13.5	27	65	74.25	74.25			
YCbCr	6bCr 4:4:4	24 30/36	Separate	13.5 13.5	27 27	65 65	74.25 74.25	74.25 74.25	108 108	148.5 148.5	162
		12/15/ 18	Separate	13.5	27	65	74.25	74.25			
	4:2:2	16/20/ 24	Separate Embedded	13.5 13.5	27 27		74.25 74.25	74.25 74.25		148.5 148.5	
		8/10/1 2	Separate Embedded	27 27	54 54		148.5 148.5	148.5 148.5			

2.2 Layout and Components

The photos of the HDMI_TX_HSMC board are shown in **Figure 2-1** and **Figure 2-2**. They indicate the location of the connectors and key components.

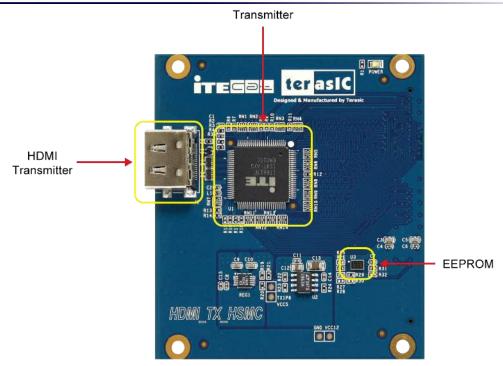


Figure 2-1 HDMI transmitter on the front of the HDMI_TX_HSMC board

Figure 2-2 On the back of the HDMI_TX_HSMC board with HSMC connector

■ The HDMI_TX_HSMC board includes the following key components:

- Transmitter (U1)
- Transmitter port (J1)
- HSMC expansion connector (J2)
- TX Regulator (REG1)
- TX Regulator (U2)

2.3 Block Diagram of HDMI Signal Transmission

This section describes the block diagram of HDMI signal transmission.

Figure 2-3 shows the block diagram of HDMI signal transmission. Please refer to the schematic included in the CD for more details. The HDMI transmitter is controlled through I2C interface, where the host works as master and the transmitter works as a slave. Because the pin PCADR is pulled low, the transmitter I2C device address is set to 0x98. Through the I2C interface, the host board can access the internal registers of transmitter to control its behavior.

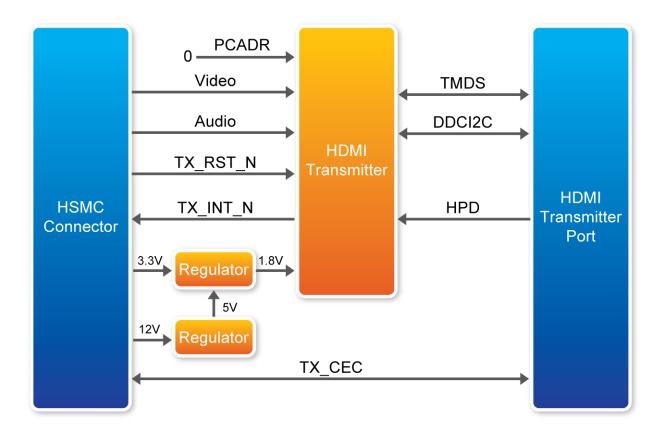


Figure 2-3 The block diagram of the HDMI signal transmission

The host can use reset pin TX_RST_N to reset the transmitter, and listen to the interrupt pin TX_INT_N to detect change of the transmitter status. When interrupt happens, the host needs to

read the internal register to find out which event is triggered and perform proper actions for the interrupt.

Here are the 3 steps to control the transmitter:

- 1. Reset the transmitter from the TX_RST_N pin
- 2. Initialize the transmitter through the I2C interface
- 3. Polling the interrupt pin INT_N continuously
 - If a HDMI sink device is detected (HDP flag is on):
 - o Read and parse EDID to determine the capacity of the attached HDMI sink device
 - o Configure desired output video/audio, including color space and color depth
 - o Perform HDCP authentication
 - o Output video/audio signals to the Video/Audio bus
 - Stop video output if a video sink device is removed (HPD flag is off)
 - Perform proper actions according to various interrupt events

2.4 Generate Pin Assignments

This section describes how to automatically generate a top-level project, including HDMI pin assignments.

Users can easily create the HDMI_TX_HSMC board pin assignments by utilizing the Terasic System Builder (Please visit http://www.terasic.com.tw/en/ to download the latest version of System Builder). Here are the procedures to generate a top-level project for HDMI_TX_HSMC.

- Launch Terasic System Builder(from the following path on the HDMI_TX system
 CD:HDMI_TX_Tool\DE4_SystemBuilder.exe)
- Select CLOCK, LED x 8, Button x 4, as shown in Figure 2-4
- Select HDMI TX on the HSMC Expansion options
- Input desired pin Prefix Name in the dialog of DE4 Configuration

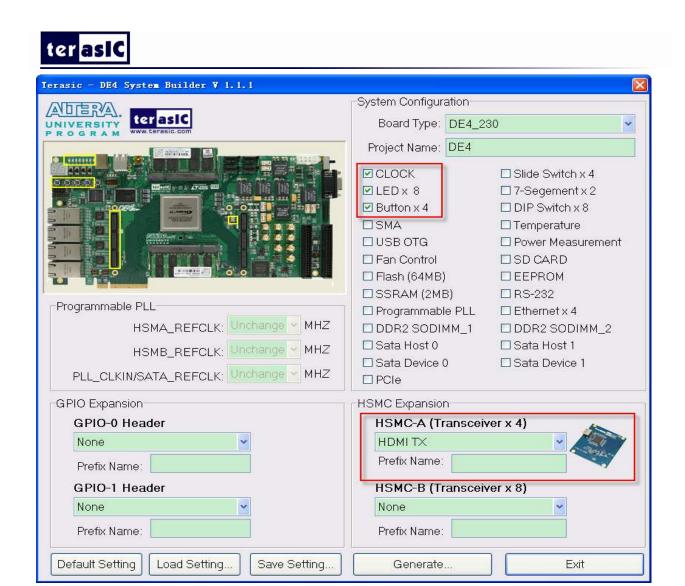
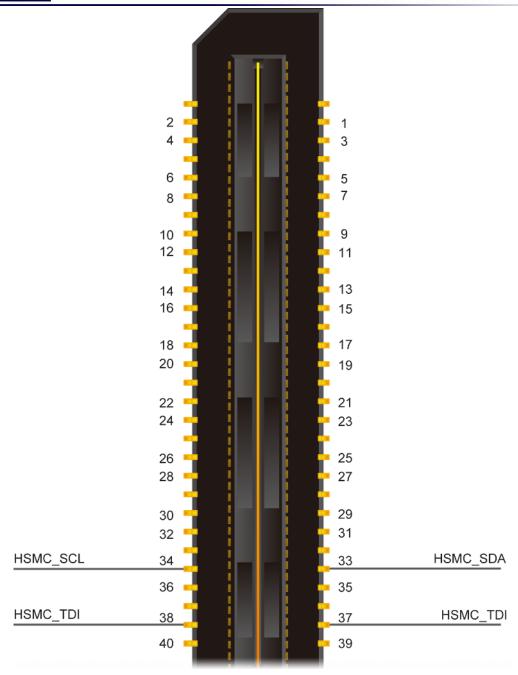
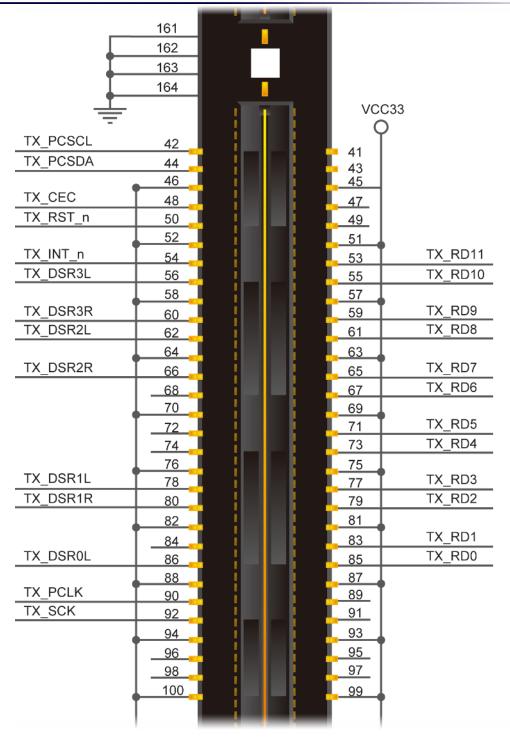


Figure 2-4 Select the HDMI TX board


Click "Generate" to generate the desired top-level and pin assignments for a HDMI project.

2.5 Pin Definition of HSMC Connector


This section describes pin definition of the HSMC interface onboard.

All the control and data signals of HDMI transmitter are connected to the HSMC connector, so users can fully control the HDMI_TX_HSMC daughter board through the HSMC interface. Power is derived from 3.3V and 12V pins of the HSMC connector. **Figure 2-5** shows the physical pin location and signal name on the HSMC connector.

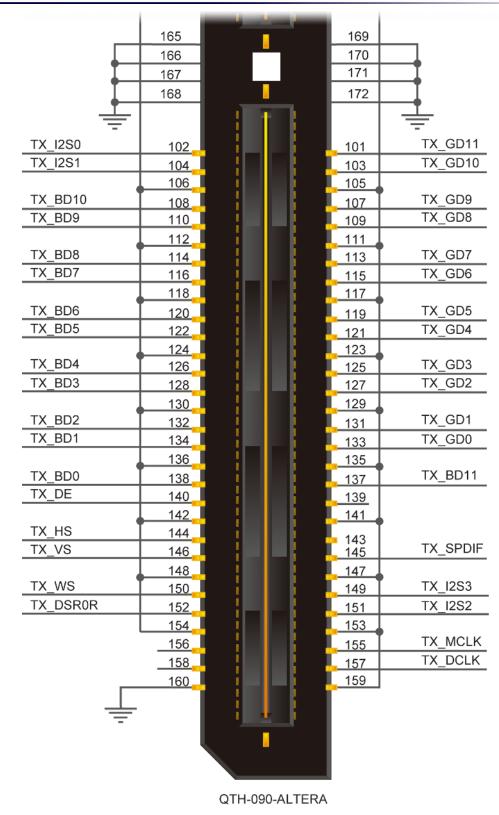


Figure 2-5 HSMC Connector of HDMI_TX_HSMC board

Table 2-2 below lists the HSMC signal direction and description.

Note. The power pins are not shown in the table.

Table 2-2 The HSMC pin definition of the HDMI TX HSMC board

Signal Name	Pin NO.	Direction	Description
		(FPGA View)	
HSMC SDA	33	inout	I ² C serial data for on-board EEPROM
HSMC SCL	34	output	I ² C serial clock for onboard EEPROM
TX PCSCL	42	output	I ² C Clock for DDC
TX PCSDA	44	inout	I ² C Data for DDC
TX CEC	48	inout	CEC (Consumer Electronics Control)
TX RST n	50	output	Hardware reset pin. Active LOW
TX RD11	53	output	Digital video output pins
TX INT n	54	input	Interrupt output. Default active-low
TX_RD10	55	output	Digital video output pins
TX DSR3L	56	output	DSD Serial Left CH3 data input
TX_RD9	59	output	Digital video output pins
TX_DSR3R	60	output	DSD Serial Right CH3 data input
TX_RD8	61	output	Digital video output pins
TX DSR2L	62	output	DSD Serial Left CH2 data input
TX_RD7	65	output	Digital video input pins
TX DSR2R	66	output	DSD Serial Right CH2 data input
TX RD6	67	output	Digital video output pins
TX RD5	71	output	Digital video output pins
TX RD4	73	output	Digital video output pins
TX RD3	77	output	Digital video output pins
TX_DSR1L	78	output	DSD Serial Left CH1 data input
TX_RD2	79	output	Digital video output pins
TX_DSR1R	80	output	DSD Serial Right CH1 data input
TX_RD1	83	output	Digital video output pins
TX_RD0	85	output	Digital video output pins
TX_DSR0L	86	output	DSD Serial Left CH0 data input
TX_PCLK	90	output	Input data clock
TX_SCK	92	output	I2S serial clock input
TX_GD11	101	output	Digital video output pins
TX_I2S0	102	output	I2S serial data input
TX_GD10	103	output	Digital video output pins
TX_I2S1	104	output	I2S serial data input
TX_GD9	107	output	Digital video output pins
TX_BD10	108	output	Digital video output pins
TX_GD8	109	output	Digital video output pins
TX_BD9	110	output	Digital video output pins
TX_GD7	113	output	Digital video output pins
TX_BD8	114	output	Digital video output pins
TX_GD6	115	output	Digital video output pins
TX_BD7	116	output	Digital video output pins
TX_GD5	119	output	Digital video output pins
TX BD6	120	output	Digital video output pins

ter asiC

TX_GD4	121	output	Digital video output pins
TX_BD5	122	output	Digital video output pins
TX_GD3	125	output	Digital video output pins
TX_BD4	126	output	Digital video output pins
TX_GD2	127	output	Digital video output pins
TX_BD3	128	output	Digital video output pins
TX_GD1	131	output	Digital video output pins
TX_BD2	132	output	Digital video output pins
TX_GD0	133	output	Digital video output pins
TX_BD1	134	output	Digital video output pins
TX_BD11	137	output	Digital video output pins
TX_BD0	138	output	Digital video output pins
TX_DE	140	output	Data enable
TX_HS	144	output	Horizontal sync. signal
TX_SPDIF	145	output	S/PDIF audio input
TX_VS	146	output	Vertical sync. signal
TX_I2S3	149	output	I2S serial data input
TX_WS	150	output	I2S word select input
TX_I2S2	151	output	I2S serial data input
TX_DSR0R	152	output	Digital video output pins
TX_MCLK	155	output	Audio master clock input
TX_DCLK	157	output	DSD Serial audio clock input

Chapter 3

Demonstration

This chapter illustrates the video/audio demonstration for the HDMI_TX_HSMC board. There are three versions of source code available for connecting to different main boards, DE4, A2GX and DE2-115. Users may modify the reference designs for various purposes accordingly.

3.1 Introduction

■ This section describes the functionality of the demonstration briefly

This demonstration shows how to use DE4 (or A2GX, DE2-115) to control the HDMI_TX_HSMC board. The demonstration includes Transmission-Only:

Generate HDMI Video signal for transmission, including various video formats and color space. There are 11 video formats available. The color space includes RGB444, YUV422, and YUV444.

3.2 System Requirements

The following items are required for transmission-only demonstration.

Transmission-Only

- HDMI_TX_HSMC x 1
- DE4 Board x 1
- LCD monitor with at least one HDMI input x 1
- HDMI Cable x 1
- THCB-HMF2 x1

3.3 Setup the Demonstration

Figure 3-1 shows the THCB-HMF2 card.

Figure 3-1 THCB-HMF2 card

Note that we need to use the THCB-HMF2 card in between to make the HDMI_TX_HSMC daughter board connected to the HSMC connector of DE4.

Figure 3-2, Figure 3-3 and Figure 3-4 show how to setup hardware for transmission demonstration.

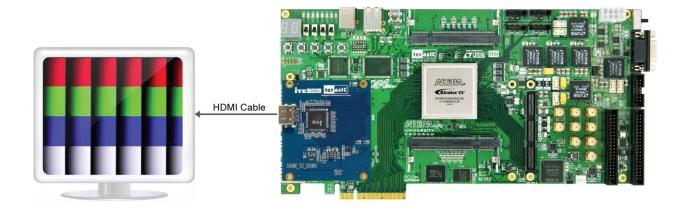


Figure 3-2 HDMI Transmission-Only Demonstration Setup

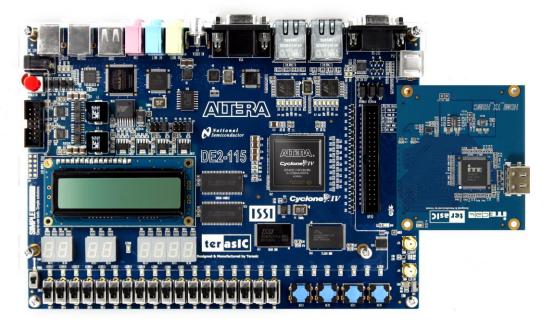


Figure 3-3 Connecting HDMI_TX_HSMC to DE2-115

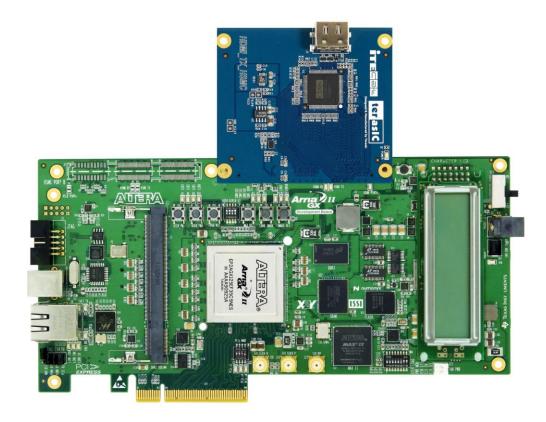


Figure 3-4 Connecting HDMI_TX_HSMC to A2GX

3.4 Operation

This section describes the procedures of running the demonstration.

■ FPGA Configuration

Please follow the steps below to configure the FPGA.

- Make sure hardware setup is completed
- Connect PC with DE4 via a USB cable
- Power on the DE4
- Make sure Quartus II is installed on your PC
- Execute the batch file hdmi_demo.bat under the folder
 "\HDMI_TX_Demonstration\DE4_230_HDMI_TX\demo batch" from the
 HDMI_TX_HSMC system CD

■ HDMI Transmission-Only

After FPGA is configured, please follow the steps below to run the HDMI transmission-only demonstration.

- Connect the HDMI LCD monitor and the HDMI transmitting port with a HDMI cable
- Power on the LCD monitor and make sure the LCD monitor is set to the mode where
 HDMI input is the source. Please refer to the user manual of your HDMI Display for
 more details
- When LCD monitor is detected, the LED2 of DE4 will be turned on
- After approximately 10 seconds, a test pattern will be displayed on the LCD monitor.
 The first displayed pattern is 480p (720x480p60) pattern
- Press "BUTTON0" to change test patterns. Please refer to Table 4-3 for built-in test
 patterns. There are eleven built-in test patterns available in this demonstration. You will
 not be able to see all the test patterns if your LCD monitor doesn't support such
 resolution
- Press "BUTTON1" to change the color space of pattern source. The color space includes

RGB444, YUV422, and YUV444

Figure 3-5 and Figure 3-6 show the test patterns of FULL HD (1920x1080p60) in RGB and YUV color space, respectively.

It will take approximately 10 seconds to display a new pattern on the LCD when users change test pattern or color space.

Figure 3-5 FULL HD in RGB444 Color Space

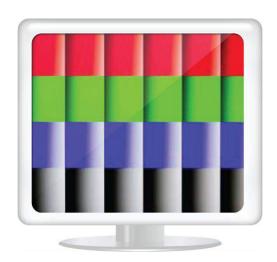


Figure 3-6 FULL HD in YUV Color Space

Figure 3-7 shows the Nios II program trace log when a HDMI LCD monitor is detected. It indicates that the LCD monitor in use supports color space YUV444 and YUV422, but not RGB444. Various video formats supported are listed according to Video Identify Code (VIC). The format of input and output color of the transmitter is RGB444 and RGB444, respectively. It implies there is no change of color format in between.


```
[TERASIC-00000.001]
====== HDMI Demo =========
[TERASIC-00000.002]TX hardware Reset
TX Chip Revision ID: 1
[TERASIC-00000.755][I2S]register callback success
[TERASIC-00000.756][I2S]register button callback success
[TERASIC-00000.758]RX hardware Reset
[TERASIC-00003.111]RX hardware Reset
[TERASIC-00004.541] RX Chip Revision ID: A1h
[TERASIC-00004.543]+++++++++ RX HW Reset ++++++++
[TERASIC-00004.546]RX hardware Reset
[TERASIC-00007.694][RX]Active Port: A
[TERASIC-00007.808] HPDChange
[TERASIC-00007.809] HPD=ON
[TERASIC-00010.577]Support Color: YUV444
[TERASIC-00010.578]Support Color: YUV422
[TERASIC-00010.581] HDMI Sink VIC(Video Identify Code) = 3
[TERASIC-00010.583] HDMI Sink VIC(Video Identify Code) = 18
[TERASIC-00010.585] HDMI Sink VIC(Video Identify Code) =4
[TERASIC-00010.588] HDMI Sink VIC(Video Identify Code) = 19
[TERASIC-00010.590] HDMI Sink VIC(Video Identify Code) = 5
[TERASIC-00010.592] HDMI Sink VIC(Video Identify Code) = 20
[TERASIC-00010.595] HDMI Sink VIC(Video Identify Code) = 16
[TERASIC-00010.597] HDMI Sink VIC(Video Identify Code) =31
[TERASIC-00010.599] HDMI Sink VIC(Video Identify Code) = 9
[TERASIC-00010.601] HDMI Sink VIC(Video Identify Code) = 1
[TERASIC-00010.604] HDMI Display found
[TERASIC-00010.605] HDMITX SetOutput
[TERASIC-00010.653] ===> Pattern Generator Mode: 0 (720x480p60 VIC=3)
[TERASIC-00010.702] Set Tx Color Depth: 24 bits
[TERASIC-00010.704]Set Tx Color Convert:RGB444->RGB444
[TERASIC-00011.441]ConfigAVIInfoFrame, VIC=3
```

Figure 3-7 Nios II program trace log of transmitting-only demonstration

Chapter 4 Case Study

This chapter describes the design concepts for the HDMI demonstration mentioned in the previous chapter.

4.1 Overview

This section describes the overview of the reference design.

This reference design shows how to use DE4 to control the HDMI_TX_HSMC board. Please refer to the previous chapter for the demonstration of this reference design.

The source code of the reference design can be found under the directory of Example folder in the CD of the HDMI_TX_HSMC board. The demonstration includes the following major function:

Transmission only:

Generate HDMI Video/Audio signal for transmission, including various video formats and color space. There are 11 video formats available. The color space includes RGB444, YUV422, and YUV444.

4.2 System Function Block

This section will describe the system behavior in function blocks.

Figure 4-1 shows the system function block diagram of this demonstration. In the design, SOPC is included because Nios II processor is used to control the transmitter through I2C interface. The Nios II program is designed to run on the on-chip memory. A customized I2S controller is designed to generate I2S 48K stereo audio for the HDMI transmitting-only mode. The audio data is stored in the on-chip memory and sent to the HDMI transmitter by Nios II processor.

The video pattern generator is designed to generate test patterns for HDMI transmitter-only mode. It provides eleven video formats in RGB color spaces. The source selector circuit is designed to select the desired video source from the video pattern generator. Four LEDs and two BUTTONs on DE4 are used for human interface. BUTTONs are designed to change the test pattern and associated

color space for transmission. LEDs are designed to indicate the HDMI status, which is illustrated in **Table 4-1**. BUTTONs are designed to change the video format and color space of the build-in video pattern generator, which is illustrated in **Table 4-2**.

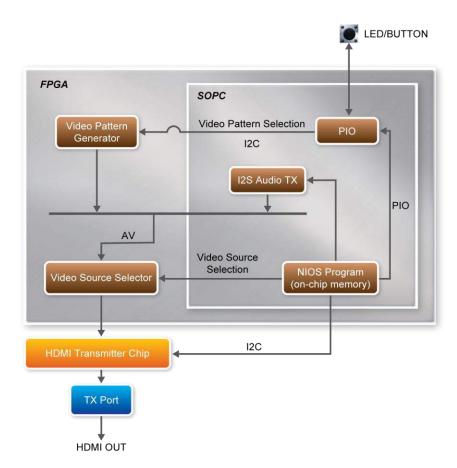


Figure 4-1 System Function Block Diagram

Table 4-1 LED Indications

LED	Description
LED1 LED0 LED0	System is running.
LED2	HDMI sink device is detected and synchronized.

Table 4-2 Button Operation Definition

	BUTTON	Description		
	BUTTONO	Press to change active video format of the built-in video pattern generator.		
	виттом	Press to change active video color space of the built-in video pattern generator.		

■ Transmitter Controlled by Nios II Processor

The transmitter is controlled by Nios II program through I2C interface. Based on I2C protocol, the Nios II program can read/write the internal registers of the transmitter, and control the behavior of the transmitter. The NIOS program controls the transmitter to perform the following procedures step by step:

- Initialize the HDMI chip
- Detect if a HDMI sink device is attached or detached, e.g. LCD Display
- Read and parse the EDID content to find the capability of the HDMI sink device. The capability includes supported color space, video format (VIC code), and color depth etc.
- Perform HDCP authentication
- Configure the color space of input and output. The transmitter offers color space transformation and outputs RGB444, YUV422, or YUV444
- Configure the color depth of output video
- Send VIC to the video sink device
- Configure the audio interface and format of output video

■ Video Pattern Generator

The video pattern generator is designed to generate test pattern for HDMI transmitting-only mode. The supported video formats are listed in **Table 4-3**.

Table 4-3 Built-in video formats

Video Format	VIC	PCLK (MHZ)
720x480p60	3	27
1024x768pP60	-	65
1280x720p50	19	74.25
1280x720p60	4	74.25
1280x1024	-	108
1920x1080i60	5	74.25
1920x1080i50	20	74.25
1920x1080p60	16	148.5
1920x1080p50	31	148.5
1600x1200p5	-	162
1920x1080i120	46	148.5

It also supports three color spaces, which are RGB444, YUV422, and YUV444.

The required PCLK is generated from Megafunction ALTPLL and ALTPLL_RECONFIG IP. The required PLL-reconfigure data is stored in on-chip ROMs.

4.3 Nios II Program

This section describes the design flow and how Nios II processor controls transmitter.

Figure 4-2 shows the software stack of the Nios II program. The I2C block implements the I2C read/write functions based on GPIO system call. The HDMI transmitter block is referred as the HDMI driver. The HDMI transmitter chip is managed and controlled through the I2C protocol. The I2S driver block is in charge of sending audio data to the transmitter.

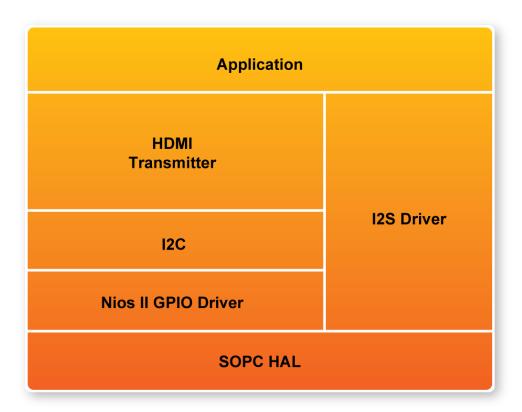


Figure 4-2 Software Stack

Figure 4-3 shows the file list of the Nios II program. The control center is located in main.c. The beep.c includes audio raw data for generating a tone sound. The folder named terasic_lib includes the I2C driver. The folder named HDMI_Lib includes transmitter drivers. The platform-dependent functions are located in mcu.c under HDMI_Lib.

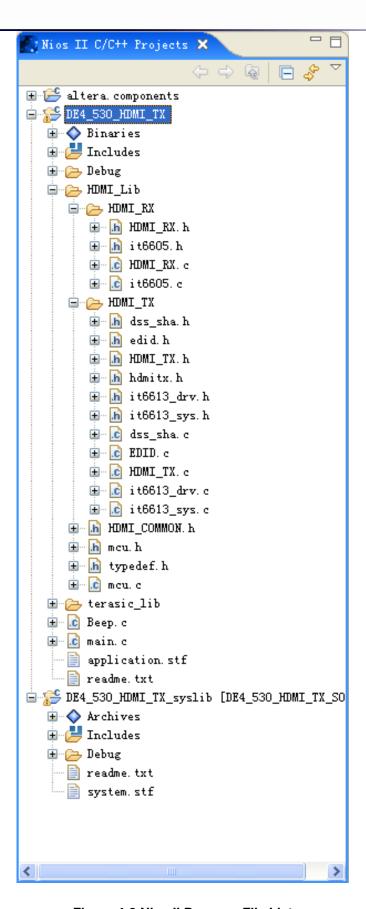


Figure 4-3 Nios II Program File List

■ System Configuration

To use the HDMI library in Nios II, the const _MCU_ should be defined in the configuration settings, as shown in **Figure 4-4**. Two on-chip memories are created to store the Nios II program and data separately. The size of each on-chip memory is 128 K bytes. One on-chip memory is used to store program and the other one is used to store data. The option "Small C Library" must be enabled to reduce the size of the program. The associated configuration is shown in **Figure 4-5**

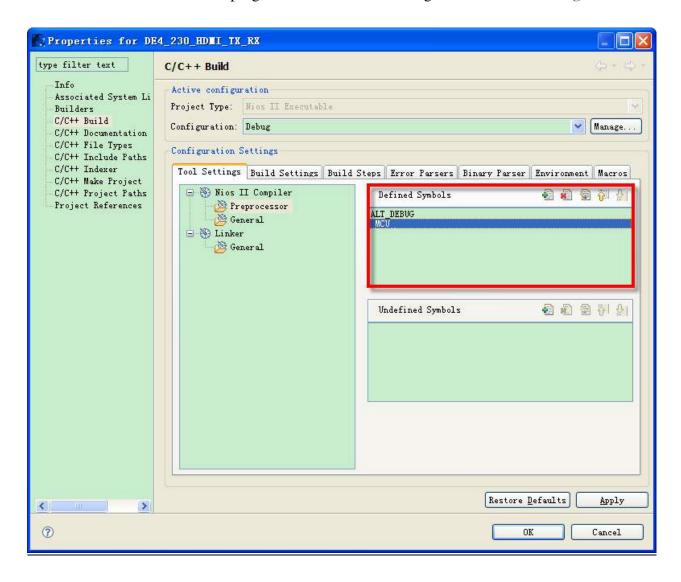


Figure 4-4 Define _MCU_ constant

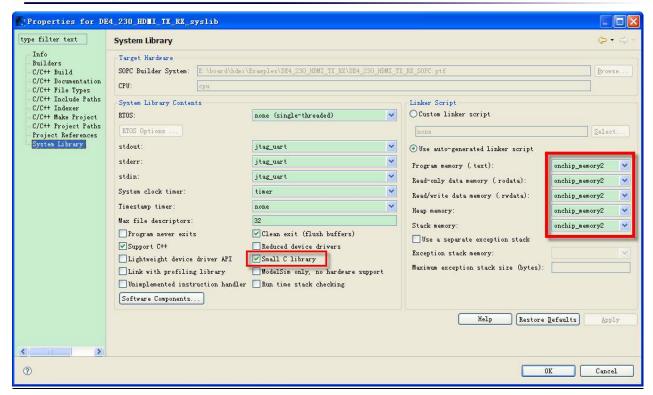


Figure 4-5 Configuration of System Library

■ Audio Test

If users would like to test audio during HDMI transmitting-only mode, please remove the constant definition TX_VPG_COLOR_CTRL_DISABLED from main.c. Users will hear a tone sound from the built-in speaker of HDMI LCD monitor when pressing BUTTON1 of DE4 board.

Chapter 5 *Appendix*

5.1 Revision History

Revision	Date	Change Log
1.0	NOV 02 2010	Initial Version
1.1	MAR 09 2011	Support to HDMI 1.4

5.2 Always Visit HDMI_TX_HSMC Webpage for Update

We will be continuing providing interesting examples and labs on our HDMI_TX_HSMC web page. Please visit www.altera.com or hdmi 1.4 tx .terasic.com for more information.