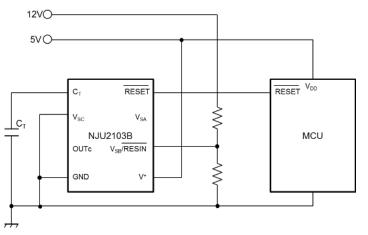


System Reset IC

FEATURES

Suitable for replacement from MB3771	
Detection voltage	V _{SA} =4.2V±1.0%
 Adjustable detection voltage 	V _{SB} =1.23V±1.0%
 Possible to detect over voltage 	V _{SC} =1.245V±1.0%
- V_{SA} and V_{SB} have hysteresis characteris	stics at reset release
Operating temperature	Ta=-40 to 125°C
Low quiescent current	280µA typ.
 Reference voltage can be taken out 	
 Low reset operation voltage 	0.8V typ.
•Package	EMP8

■GENERAL DESCRIPTION


The NJU2103B is a power supply voltage monitoring IC that instantaneously detects abnormality such as power supply voltage cutoff or drop and generates reset signal.

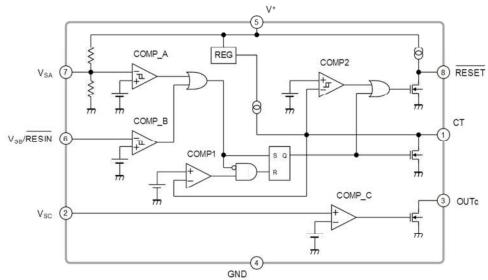
It can monitor 2 systems of 5 V power supply and arbitrarily set voltage.

Since V_{SB} Detecting Voltage, V_{SC} Detecting Voltage and $\overline{\text{RESET}}$ Output Pulse Width are adjusted from NJU2103A, it is more suitable for replacement from MB3771.

Furthermore, it improves usability by extending operating temperature, and making each parameter highly accurate.

■TYPICAL APPLICATION

■APPLICATION

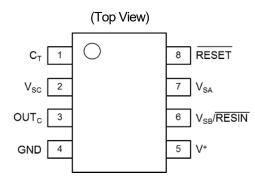

OA equipment

Industrial equipment

Amusement equipment

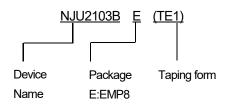
Housing and facility equipment

BLOCK DIAGRAM


New Japan Radio Co., Ltd.

www.njr.com

- 1 -



■PIN CONFIGURATION

EMP8		
PIN No.	PIN NAME	FUNCTION
1	C _T	Connects Capacitor pin for setting RESET Output Pulse Width
2	V _{SC}	Comparator C input pin
3	OUT _C	Comparator C output pin
4	GND	GND pin
5	V^{*}	Power Supply pin
6	V _{SB} /RESIN	Comparator B input pin
7	V _{SA}	Comparator A input pin
8	RESET	RESET output pin (Active Low)

■PRODUCT NAME INFORMATION

■ORDERING INFORMATION

PRODUCT NAME	PACKAGE OUTLINE	RoHS	Halogen- Free	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs)
NJU2103BE(TE1)	EMP8	yes	yes	Sn-2Bi	2103B	76	2000

-*New Japan Radio Co., Ltd.*-www.njr.com

■ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺	-0.3 to 20	V	
	V _{SA}	-0.3 to V ⁺ +0.3 (<20)	V	
Input Voltage	V _{SB}	-0.3 to 20	V	
	V _{SC}	-0.3 to 20	V	
C _T Pin Voltage	V _{CT}	-0.3 to V ⁺ +0.3 (<20)	V	
RESET Output Voltage	V _{RESET}	-0.3 to V ⁺ +0.3 (<20)	V	
OUT _C Output Voltage	V _{OUTC}	-0.3 to 20	V	
Power Dissipation(Ta=25°C)	п	(2-layer / 4-layer)	mW	
EMP8	P _D	700 ⁽¹⁾ / 1000 ⁽²⁾	IIIVV	
Junction Temperature	TJ	-40 to +150	°C	
Operating Temperature	T _{opr}	-40 to +125	°C	
Storage Temperature	T _{stg}	-50 to +150	°C	

(1): Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 2 Layers)

(2): Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 4 Layers) internal Cu area: 74.2 x 74.2mm

■RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	2.5 to 18	V
	V _{SA}	0 to V ⁺	V
Input Voltage	V _{SB}	0 to 18	V
	V _{SC}	0 to 18	V
Output Current	RESET	0 to 20	mA
Output Current	I _{OUTC}	0 to 6	mA
RESET Output Pulse Width	t _{PO}	0.10 to 1000	ms
C _T Capacitor	C _T	0.001 to 10	μF

-*New Japan Radio Co., Ltd.*-www.njr.com

■ELECTRICAL CHARACTERISTICS

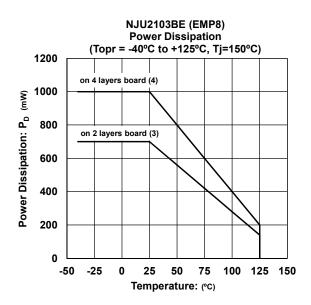
(DC Characteristics)		Unless other noted, V ⁺ =5V, V_{SB}	=0V, V _{SC} =	0V, C _T =0	.01µF, T _a	=25°C
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current 1	I _{CC1}	V _{SB} =5V	-	280	390	μA
Operating Current 2	I _{CC2}		-	300	410	μA
V/ Dotooting Voltage 1	Maria	V^+ sweep down, $V_{SB}=V^+$	4.158	4.200	4.242	V
V _{SA} Detecting Voltage 1	V _{SAL}	$V^{^{+}}$ sweep down, $V_{SB}\text{=}V^{^{+}}\text{, }Ta\text{=-}40\ ^{\circ}\text{C}$ to $125\ ^{\circ}\text{C}$	4.050	-	4.350	v
V _{SA} Detecting Voltage 2	V _{SAH}	V^+ sweep up, $V_{SB}=V^+$	4.210	4.300	4.390	V
	VSAH	V^{+} sweep up, $V_{SB}=V^{+}$, Ta=-40 °C to 125°C	4.150	-	4.450	v
V _{SA} Hysteresis Width	V _{HRSA}		50	100	150	mV
V _{SB} Detecting Voltage	V _{SBL}	V _{SB} sweep down	1.218	1.230	1.242	v
	V SBL	V _{SB} sweep down, Ta=-40 °C to 125°C	1.200	-	1.260	v
V _{SB} Detecting Supply Voltage Fluctuation	ΔV_{SBL}	V ⁺ =2.5 to 18V	-	3	10	mV
V _{SB} Hysteresis Width	V _{HRSB}		14	28	42	mV
V _{SB} Input Current 1	I _{IHB}	V _{SB} =5V	-	0	250	nA
V _{SB} Input Current 2	I _{ILB}		_	0	250	nA
High Level						
RESET Output Voltage	V _{OHR}	IRESET =-5µA, V _{SB} =5V	4.5	4.9	-	V
RESET Output	N	1====== -2== A		0.05	0.40	N
Saturation Voltage 1	V _{OLR1}	V _{OLR1} IRESET =3mA	-	0.05	0.40	V
RESET Output	V _{OLR2}	IRESET =10mA		0.15	0.50	V
Saturation Voltage 2	VOLR2	IRESET - TOTTA	-	0.15	0.50	v
RESET Output	IRESET	V _{OLR} =1V	20	60	-	mA
Sink Current	INEGET		20	00	_	
C_T Charge Current	I _{CT}	V _{SB} =5V, V _{CT} =0.5V	9	12	16	μA
V _{SC} Input Current1	I _{IHC}	V _{SC} =5V	-	0	500	nA
V _{SC} Input Current 2	l _{ILC}		-	0	500	nA
V _{SC} Detecting Voltage	V _{SC}		1.233	1.245	1.257	v
	VSC	Ta=-40 °C to 125°C	1.205	-	1.285	v
V _{SC} Detecting Supply	ΔV_{SC}	V ⁺ =2.5 to 18V	_	3	10	mV
Voltage Fluctuation	<u> </u>	V -2.0 10 10 V		0	10	
$OUT_{C}Output$ Leak Current	I _{OHC}	V _{OHC} =18V	-	0	1	μA
OUT _C Output	V _{OLC}	I _{OUTC} =4mA, V _{SC} =5V	_	0.15	0.40	V
Saturation Voltage	* ULC				0.10	
OUT _C Output Sink Current	I _{OUTC}	V _{OLC} =1V, V _{SC} =5V	6	20	-	mA
RESET Minimum	V ⁺ L	V _{QLR} =0.4V, IRESET =200µA	_	0.8	1.2	V
Operating Voltage	L					

-*New Japan Radio Co., Ltd.*--www.njr.com

■ELECTRICAL CHARACTERISTICS

(AC Characteristics)		Unless other noted, V ⁺ =5V, V _{SB} =5V, V _{SC} =0V, C _T =0.01 μ F, T _a =25				T _a =25°C
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
V _{SA} Input Pulse Width	t _{PIA}		5	-	-	μs
V_{SB} Input Pulse Width	t _{PIB}		5	-	-	μs
RESET Output Pulse Width	t _{PO}	V _{SB} =V ⁺	0.5	1.0	1.5	ms
RESET Rise Time	tr	$\frac{V_{SB}=V^{\dagger}, R_{L}=2.2k\Omega, C_{L}=100pF}{RESET=10\% \text{ to }90\%}$	-	1.0	1.5	μs
RESET Fall Time	t _f	$\frac{V_{SB}=V^{\dagger}, R_{L}=2.2k\Omega, C_{L}=100pF}{RESET=90\% \text{ to } 10\%}$	-	0.1	0.5	μs
	t _{PD}	V _{SB} sweep down	-	2	10	μs
Output Delay Time	t _{PHL}	V_{SC} sweep up, R _L =2.2k Ω , C _L =100pF	-	0.5	-	μs
	t _{PLH}	V_{SC} sweep down, R _L =2.2k\Omega, C _L =100pF	-	1.0	-	μs

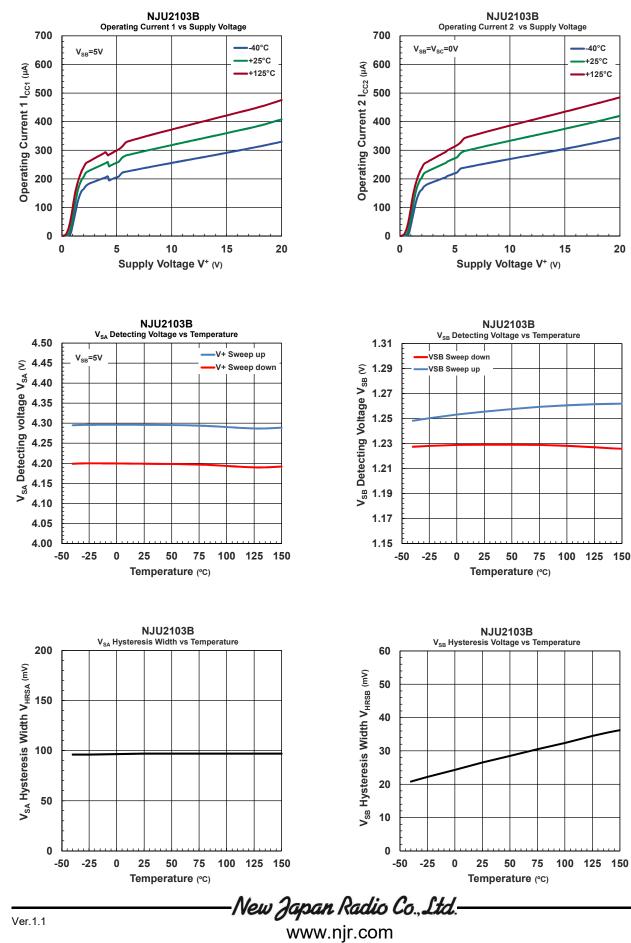
-*New Japan Radio Co., Ltd.*--www.njr.com


■THERMAL CHARACTERISTICS

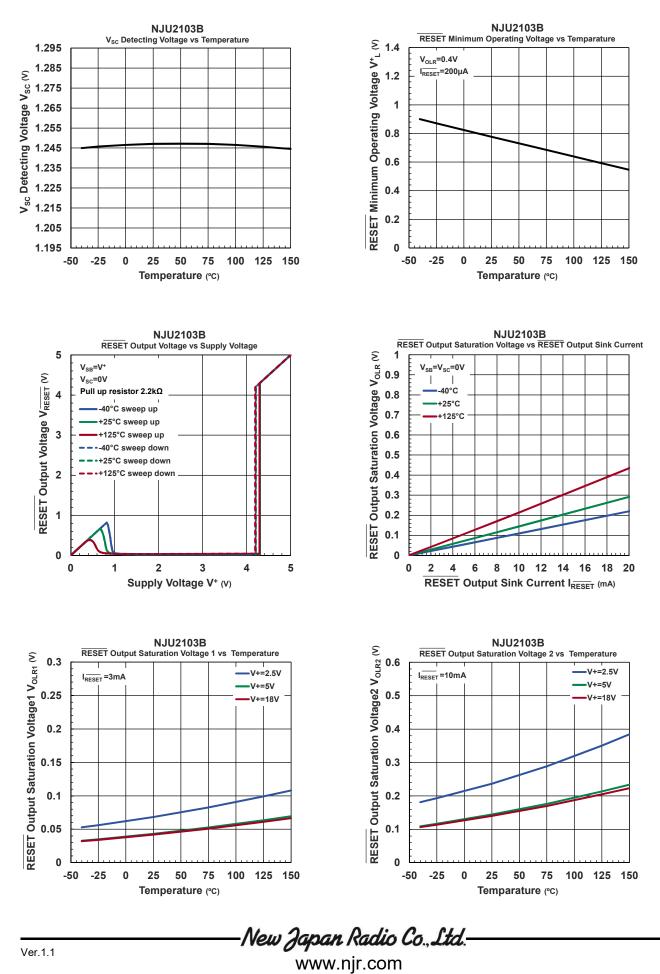
PARAMETER	SYMBOL	VALUE		UNIT
Junction-to-ambient thermal resistance	θja	EMP8	178 ⁽³⁾ 121 ⁽⁴⁾	°C/W
Junction-to-Top of package characterization parameter	ψjt	EMP8	31 ⁽³⁾ 27 ⁽⁴⁾	°C/W

(3): Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 2 Layers)

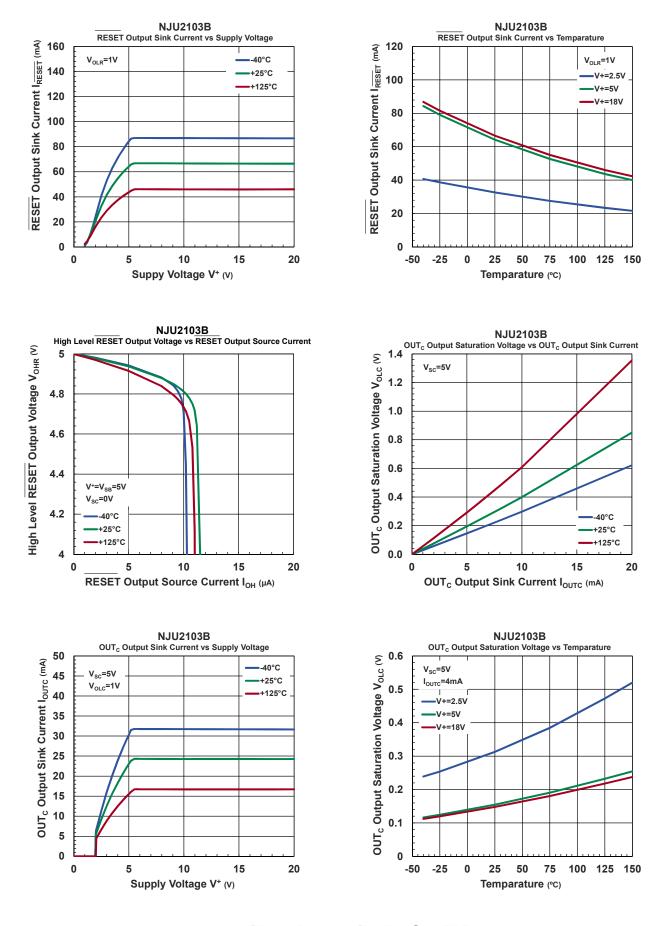
(4): Mounted on glass epoxy board.(76.2 x 114.3 x 1.6 :based on EIA/JEDEC standard, 4 Layers) internal Cu area: 74.2 x 74.2mm

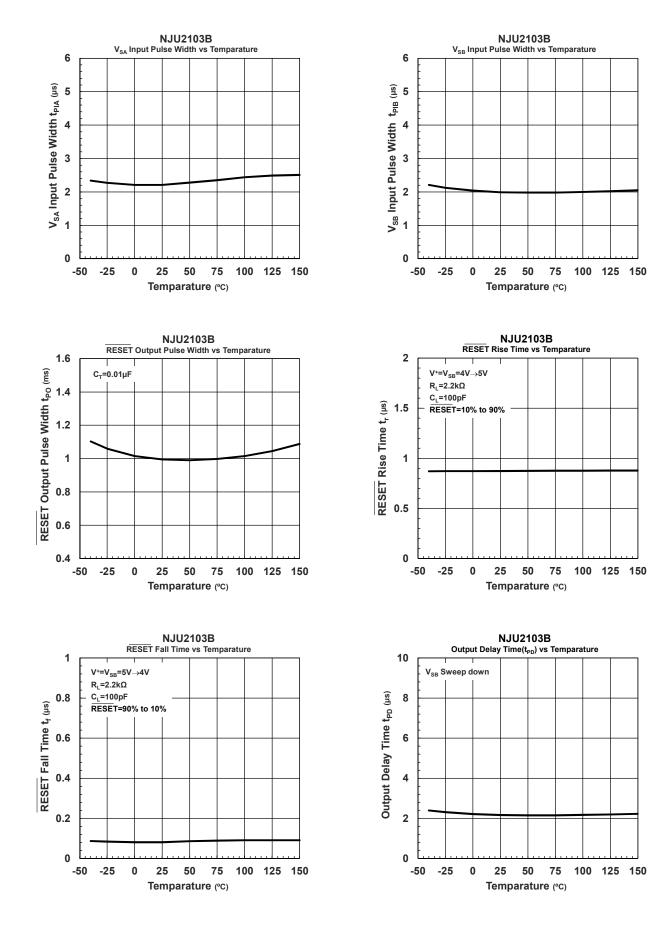

■POWER DISSIPATION vs. AMBIENT TEMPERATURE

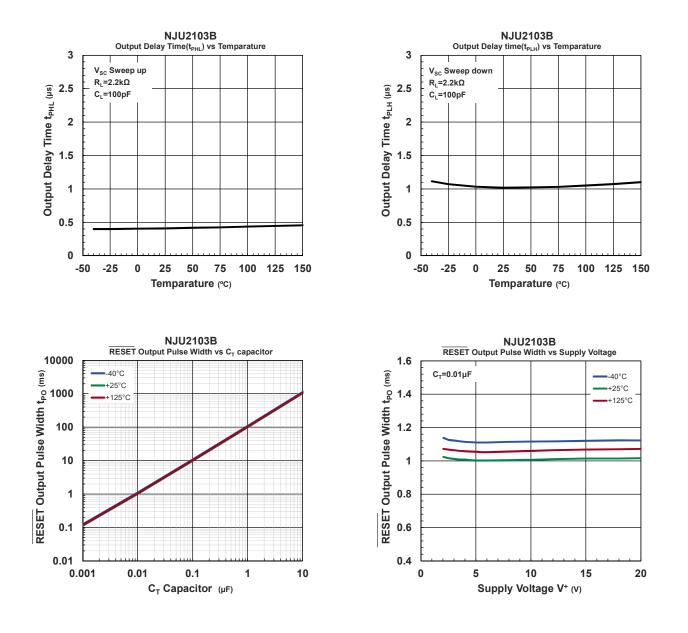
-*New Japan Radio Co., Ltd.*-www.njr.com



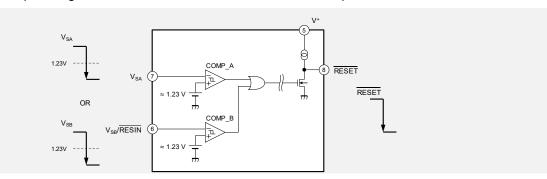
∎TYPICAL CHARACTERISTICS






-*New Japan Radio Co., Ltd.* www.njr.com

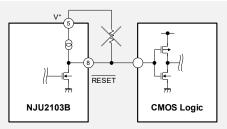
-*New Japan Radio Co., Ltd.*-www.njr.com


-*New Japan Radio Co., Ltd.*-www.njr.com

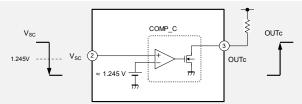
■FUNCTION EXPLAMATION

Technical Information

COMP A and COMP B are comparator with hysteresis in detection voltage.


When either V_{SA} or V_{SB} pin voltage becomes about 1.23 V or less, the RESET output becomes "Low".

COMP_B can be used for arbitrary voltage detection (refer to Fig.3 or Fig.4) and also can be used as a manual reset function with reset hold time by TTL signal input. (refer to Fig.7)

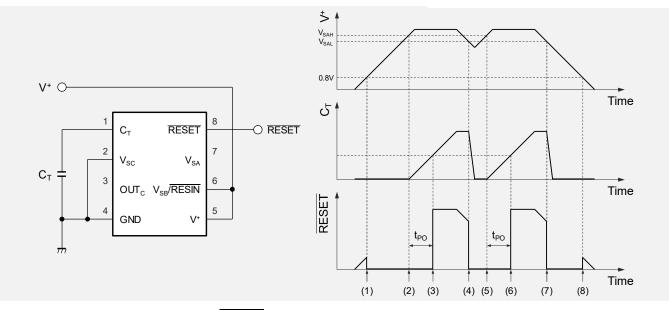

The NJU2103B can detect the instantaneous interruption and the instantaneous drop of the power line with a time of about 2 µs width. If this level of instantaneous interruption or drop is not a problem, it can have a delayed trigger function by connecting capacitor to the V_{SA} and V_{SB} pins (refer to Fig.9).

Since the RESET pin is internally pulled up to V⁺, an external pull-up resistor isn't required in case of high impedance load like a CMOS logic IC.

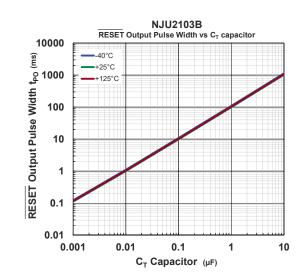
COMP_C is an open-drain output comparator without hysteresis which has anti-polarity input and output.

Therefore, it can be used for overvoltage detection (refer to Fig.14), positive logic reset output (refer to Fig.8) and generating a reference voltage source.(refer to Fig.11 to 13)

Unused Pin should be treated as shown in the table below.


Pin. No.	Pin Name	Treatment method of unused Pin
2	V _{SC}	Connect to GND
3	OUT _C	OPEN
6		Connect to V ⁺
7	V _{SA}	OPEN
8	RESET	OPEN

-*New Japan Radio Co., Ltd.*-www.njr.com


■OPERATION EXPLAMATION

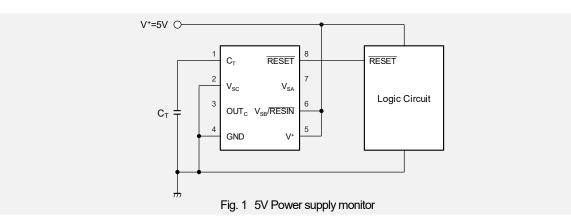
Technical Information

- (1) When V^{\dagger} increases to about 0.8V, RESET becomes "Low"
- (2) When V⁺ increases to V_{SAH}, charging to capacitor C_T starts. At this time, $\overline{\text{RESET}}$ holds "Low".
- (3) RESET switches from "Low" to "High" after the RESET Output Pulse Width t_{PO}. Refer to "Output Pulse Width vs C_T capacitor " in TYPICAL CHARACTERISTICS and t_{PO} can be calculated as following formula.

RESET Output Pulse Width t_{PO} [ms] $\approx 100 \times C_T$ [µF]

- (4) After RESET becomes "High", When V⁺ decreases below V_{SAL}, RESET goes "Low" and discharges C_T.
- (5) After V⁺ decreases below V_{SAL}, it starts charging C_T when V⁺ increase to V_{SAH}. In case of instantaneous V⁺ drop, if the time from V⁺ decreases below V_{SAL} to increase to V_{SAH} is more than V_{SA} Input Pulse Width t_{PlA}, charging will start after discharging C_T.
- (6) V^{\dagger} increase to V_{SAH} and .RESET switches from "Low" to "High" after .RESET Output Pulse Width t_{PO}
- (7) When V^+ becomes less than V_{SAL} , repeat steps (4) (6).
- (8) When V⁺ decreases to 0 V, $\overline{\text{RESET}}$ holds "Low" until V⁺ reaches about 0.8 V.

www.njr.com



■APPLICATION EXAMPLE

Technical Information

1. 5V Power supply monitor

Monitor the 5V power supply with V_{SA}(COMP_A). The detection voltage at falling is the V_{SA} detection voltage 1 V_{SAL} (4.2 V typ.), and the detection voltage at rising is the V_{SA} detection voltage 2 V_{SAH} (4.3Vtyp.).

Power supply monitor (adjust detection voltage by external resistor) 2.

V_{SA} detection voltage1 can be adjusted with an external resistor.

• By selecting the external voltage-dividing resistors R1 and R2 to a sufficiently smaller value than internal voltagedividing resistors R', R "(99 k Ω , 41 k Ω), the detection voltage can be set by the resistance ratio of R₁ and R₂.

The formula for calculating detection voltage is as follows and refer to Tab.1 for setting example.

Detection voltage calculate formula (R $_1$ << 100k $\Omega,$ R $_2$ << 41k Ω)	
$Detection \ Voltage(falling) = \frac{(R_1 \parallel R') + (R_2 \parallel R'')}{R_2 \parallel R''} \times \frac{R''}{R' + R''} \times V_{SAL} \approx \frac{R_1 + R_2}{R_2} \times 1.2300 \ [V]$	
$Detection \ Voltage(rising) = \frac{(R_1 \parallel R') + (R_2 \parallel R'')}{R_2 \parallel R''} \times \frac{R''}{R' + R''} \times V_{SAH} \approx \frac{R_1 + R_2}{R_2} \times 1.2593 \ [V]$	

External resistor R ₁ [k Ω]	External resistor R_2 [k Ω]	Detection Voltage(falling) [V]	Detection Voltage(rising) [V]
10	3.9	4.37	4.47
9.1	3.9	4.11	4.20

Tab. 1 Setting example

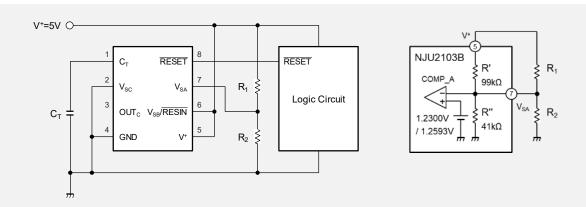


Fig. 2 Power supply monitor (adjust detection voltage by external resistor)

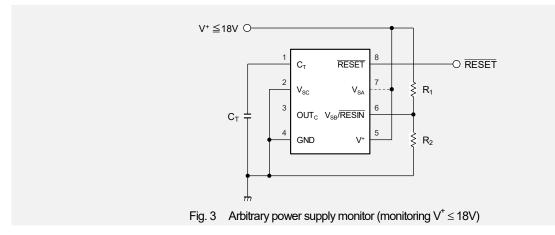
-*New Japan Radio Co., Ltd.*-www.njr.com

Arbitrary power supply monitor (monitoring $V^* \le 18V$) 3.

Technical Information

Monitor the power supply of $V^{\dagger} \leq 18V$ with V_{SB} (COMP_B) and voltage-dividing resistors R_1 and R_2 .

• The detection voltage can be set by resistors R1 and R2.


The formula for calculating R_1 and R_2 is as follows and refer to Tab.2.

$$Detection Voltage(falling) = \frac{R_1 + R_2}{R_2} \times V_{SBL} \approx \frac{R_1 + R_2}{R_2} \times 1.230 \text{ [V]}$$
$$Detection Voltage(rising) = \frac{R_1 + R_2}{R_2} \times (V_{SBL} + V_{HRSB}) \approx \frac{R_1 + R_2}{R_2} \times 1.258 \text{ [V]}$$

- When V⁺ is 4.45V or less, connects V_{SA} (pin 7) to V⁺ to disable COMP_A ٠
- When V⁺ is greater than 4.45 V, V_{SA}(pin 7) should be opened. And in this case, current consumption decreases. • (decrease value: $17.2 \times V^{+}$ [µA])

Tab. 2	setting example
--------	-----------------

External resistor R ₁ [kΩ]	External resistor R_2 [k Ω]	Detection Voltage(falling) [V]	Detection Voltage(rising) [V]
20	7.5	4.51	4.61
39	27	3.01	3.08

-*New Japan Radio Co., Ltd.*-www.njr.com

Arbitrary power supply monitor (monitoring $V^+ > 18V$) 4.

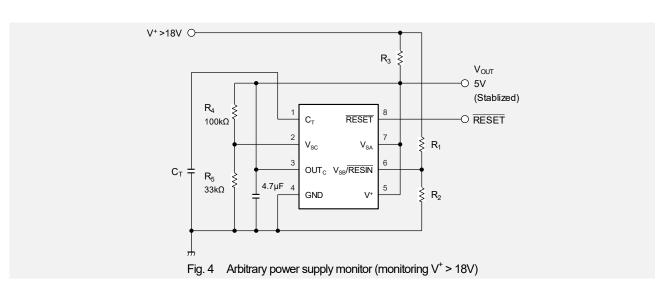
Monitor the power supply of V⁺ > 18V with V_{SB} (COMP_B) and voltage-dividing resistors R₁ and R₂.

The power supply of this IC (about 5V) is generated with V_{SC} (COMP_C) and feedback resistors R₄ and R₅.

Set the detection voltage with resistors R₁ and R₂ according to the following formula.

Detection voltage calculate formula

 $Detection Voltage(V^+ falling) = \frac{R_1 + R_2}{R_2} \times V_{SBL} \approx \frac{R_1 + R_2}{R_1} \times 1.230$ [V] $Detection Voltage(V^{+}rising) = \frac{R_1 + R_2}{R_2} \times (V_{SBL} + V_{HRSB}) \approx \frac{R_1 + R_2}{R_2} \times 1.258$ [V]


The RESET output is \approx 0V (low level) and \approx 5V (high level). Not outputs V⁺ voltage.

RESET should not be pulled up to V^+

If the resistor ratio of R₄ and R₅ is adjusted, high level RESET voltage is changed according to constant voltage set by resistor ratio of R4 and R5. Constant voltage VOUT is calculated as the following formula. However, shouldn't be exceed 18V.

Constant Voltage
$$V_{OUT} = \frac{R_4 + R_5}{R_5} \times V_{SC} \approx \frac{R_4 + R_5}{R_5} \times 1.245$$
 [V]

- The constant voltage (5V output) can be used as the power supply for the small current consumption circuit.
- When deciding the value of R₃, it is necessary to be careful about power consumption.

-*New Japan Radio Co., Ltd.*-www.njr.com

5V, 12V power supply monitor (dual power supply monitor e.g. V_1^{+} = 5V, V_2^{+} = 12V) 5.

Monitor the $V_{1}^{t}(5V)$ power supply with $V_{SA}(COMP_A)$ and monitor the $V_{2}^{t}(12V)$ power supply with V_{SB} (COMP_B) and voltage-dividing resistors R₁ and R₂.

- V_{1}^{+} detection voltage (falling) is 4.2V and detection voltage (rising) is 4.3V.
- V⁺₂ detection voltage (falling, rising) is set by R₁ and R₂ according to following formula. In case of resistor value in • Fig.5, the detection voltage (falling) is about 9.0 V and the detection voltage (rising) is about 9.2 V.

V⁺₂ detection voltage calculate formula

Detection Voltage(V_2^+ falling) = $\frac{R_1 + R_2}{R_2} \times V_{SBL} \approx \frac{R_1 + R_2}{R_2} \times 1.230$ [V] Detection Voltage(V_2^+ rising) = $\frac{R_1 + R_2}{R_2} \times (V_{SBL} + V_{HRSB}) \approx \frac{R_1 + R_2}{R_2} \times 1.258$ [V]

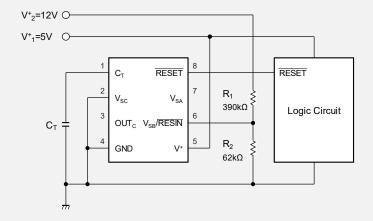


Fig. 5 5V, 12V power supply monitor (dual power supply monitor : $V_1^+ = 5V$, $V_2^+ = 12V$)

-*New Japan Radio Co., Ltd.*-www.njr.com

- 5V, 12V power supply monitor (e.g. $V_1^{\dagger} = 5V$, $V_2^{\dagger} = 12V$, RESET output is only V_1^{\dagger} detection result) 6. Monitor the $V_{1}^{\dagger}(5V)$ power supply with $V_{SA}(COMP A)$ and output signal from RESET. In addition, monitor the $V_2^{+}(12V)$ power supply with $V_{SC}(COMP_C)$ and voltage-dividing resistors R_1 , R_2 , R_3 , R₄, NPN transistor., base current limiting resistor R₅, and output signal from OUT_C.
 - V_{1}^{\dagger} detection voltage (falling) is 4.2V and detection voltage (rising) is 4.3V.
 - V^{*}₂ detection voltage (falling) and hysteresis width at rising are calculated as following formula. In case of resistor value in Fig.6, the detection voltage (falling) is about 9.0 V and the hysteresis width at rising is about 0.2 V

V^{*}₂ detection voltage and hysteresis width at rising calculate formula

Detection Voltage(V_2^+ falling) = $\frac{R_1 + R_2 + R_3}{R_2 + R_3} \times V_{SC} \approx \frac{R_1 + R_2 + R_3}{R_2 + R_3} \times 1.245$ [V] Hysteresis width at rising = $\frac{R_1(R_3 - R_3 \parallel R_4)}{(R_2 + R_3)(R_2 + R_3 \parallel R_4)} \times V_{SC} \approx \frac{R_1(R_3 - R_3 \parallel R_4)}{(R_2 + R_3)(R_2 + R_3 \parallel R_4)} \times 1.245$ [V]

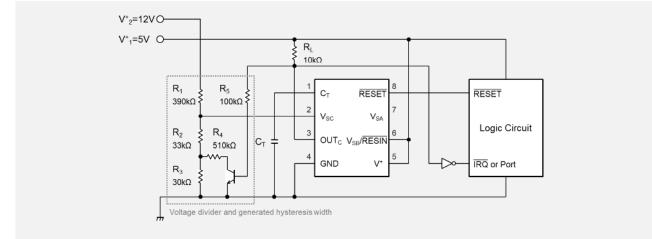
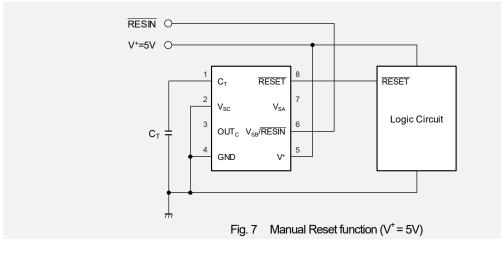
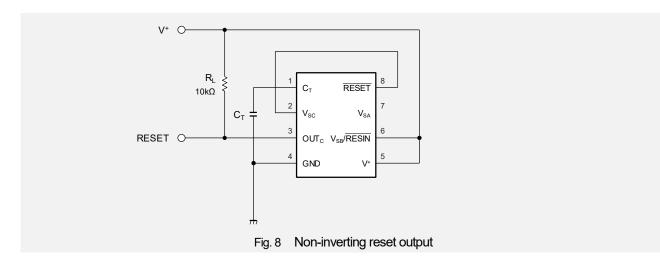



Fig. 6 5V, 12V power supply monitor ($V_1^+ = 5V$, $V_2^+ = 12V$, RESET output is only V_1^+ detection result)

7. Manual Reset function (V^+ = 5V)

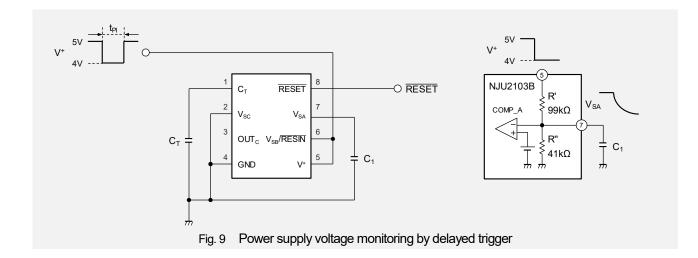
By inputting the TTL signal to V_{SB}/RESIN, it realizes manual reset output signal regardless of the state of V⁺.



-*New Japan Radio Co., Ltd.* www.njr.com

8. Non-inverting reset output

If a positive output is required for reset signal, invert the RESET output with COMP_C and output from OUT_c. Since OUT_C is an open drain output, It is required the pull-up resistor.(shown as R_L in Fig.8)



Power supply voltage monitoring by delayed trigger 9.

An arbitrary delay is added to the COMP_A operation by connecting capacitor C₁ between V_{SA} and GND. When C_1 is connected minimum input pulse width becomes longer. e.g. $t_{Pl} = 40 \mu s$ (C1=1000pF) Minimum input pulse width tpl is calculated as following formula.

Minimum input pulse width calculate formula

$$t_{PI} \,[\mu s] \approx (R' \parallel R'') \times \ln\left(\frac{5-4}{V_{SAL}-4}\right) \times 10^{-6} \times C_1 \,[\text{pF}] \approx 4.7 \times 10^{-2} \times C_1 \,[\text{pF}]$$

-*New Japan Radio Co., Ltd.*-www.njr.com

10. Positive and negative dual power supply monitoring (e.g. $V^{+} = 5V$, V^{-} = negative voltage)

Monitor the positive power supply with V_{SA} (COMP_A) and monitor the negative voltage with V_{SB} (COMP_B)

V_{SC} (COMP_C) is used to shift negative voltage to positive voltage.

- R_1 , R_2 , R_3 should have the same resistance value •
- V^{+} detection voltage (falling) is 4.2V and detection voltage (rising) is 4.3V.
- V detection voltage is calculated as following formula. In case of resistor value in Fig.10, the detection voltage (falling) is about -4.4V and the detection voltage (rising) is about -4.5V.

V detection voltage calculate formula

Detection voltage (V⁻falling) = $\frac{R_3 + R_4}{R_3} \times V_{SC} - \frac{2R_4}{R_3} \times V_{SBL} \approx \frac{R_3 - R_4}{R_3} \times 1.230$ [V] Detection voltage(V⁻rising) = $\frac{R_3 + R_4}{R_3} \times V_{SC} - \frac{2R_4}{R_3} \times (V_{SBL} + V_{HRSB}) \approx \frac{R_3 - R_4}{R_3} \times 1.258$ [V]

When using a power supply that outputs V- without V+ output, it is necessary to connect a Schottky barrier diode (SBD) between the V_{SC} and GND to prevent being applied negative voltage to this IC.

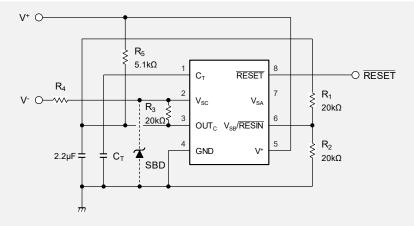


Fig. 10 Positive and negative dual power supply monitoring (V^+ = 5V, V^- = negative voltage)

-*New Japan Radio Co., Ltd.*-www.njr.com

11. Reference voltage output and voltage drop monitoring (e.g. 9V reference output, 5V, 9V monitoring)

Monitor the $V^{+}(5V)$ power supply with $V_{SA}(COMP A)$.

9V Reference voltage V_{OUT} is generated by V_{SC}(COMP_C), feedback resistors R₃, R₄ and NPN transistor, and its 9V is monitored by V_{SB}(COMP_B) and voltage-dividing resistors R₁ and R₂.

- V⁺ detection voltage (falling) is 4.2V and detection voltage (rising) is 4.3V.
- The reference voltage V_{OUT} and its detection voltage are calculated as the following formula. In case of resistor value In Fig.11, the reference voltage VOUT is about 9.0V, the detection voltage (VOUT falling) is about 7.2V and the detection voltage (V_{OUT} rising) is about 7.3V

Reference Voltage and detection voltage calculate formula

Reference voltage $V_{OUT} = \frac{R_3 + R_4}{R_4} \times V_{SC} \approx \frac{R_3 + R_4}{R_4} \times 1.245$ [V] Detection Voltage(V_{OUT} falling) = $\frac{R_1 + R_2}{R_2} \times V_{SBL} \approx \frac{R_1 + R_2}{R_2} \times 1.230$ [V] Detection Voltage(V_{OUT} rising) = $\frac{R_1 + R_2}{R_2} \times (V_{SBL} + V_{HRSB}) \approx \frac{R_1 + R_2}{R_2} \times 1.258$ [V]

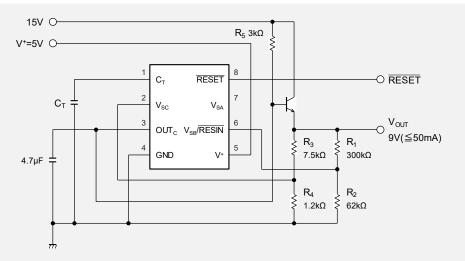
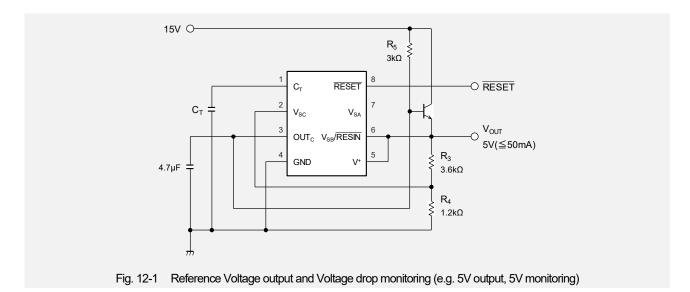


Fig. 11 Reference voltage output and voltage drop monitoring (e.g. 9V reference output, 5V, 9V monitoring)

-*New Japan Radio Co., Ltd.*-www.njr.com

Reference Voltage output and Voltage drop monitoring (e.g. 5V output, 5V monitoring) 12-1.


5V Reference voltage V_{OUT} is generated by V_{SC}(COMP_C), feedback resistors R₃, R₄, NPN transistor and drive resistor R₅, and its 5V is monitored by V_{SA}(COMP_A).

 The reference voltage V_{OUT} is calculated as following formula. In case of resistor value In Fig.12-1, the reference voltage V_{OUT} is about 5.0V

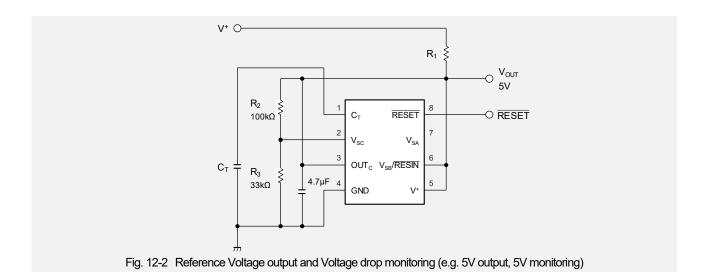
Reference Voltage calculate formula

Reference voltage $V_{OUT} = \frac{R_3 + R_4}{R_3} \times V_{SC} \approx \frac{R_3 + R_4}{R_3} \times 1.245$ [V]

The detection voltage (falling) is 4.2V and detection voltage (rising) is 4.3V. ٠

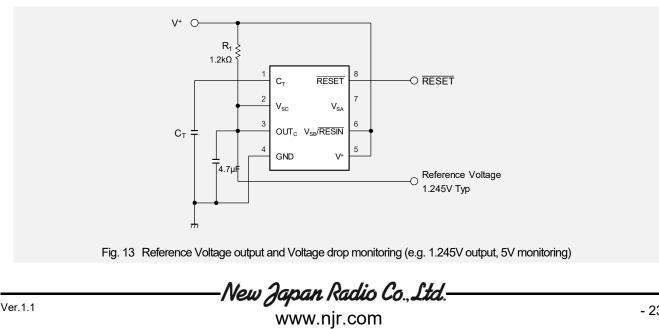
New Japan Radio Co., Ltd. www.njr.com

12-2. Reference Voltage output and Voltage drop monitoring (e.g. 5V output, 5V monitoring)


5V Reference voltage V_{OUT} is generated by V_{SC}(COMP_C) and feedback resistors R₂, R₃, and its 5V is monitored by V_{SA}(COMP_A). Unlike Fig. 12-1, 5V output cannot supply large current.

The reference voltage V_{OUT} is calculated as following formula. •

In case of resistor value In Fig.12-2, the reference voltage V_{OUT} is about 5.0V

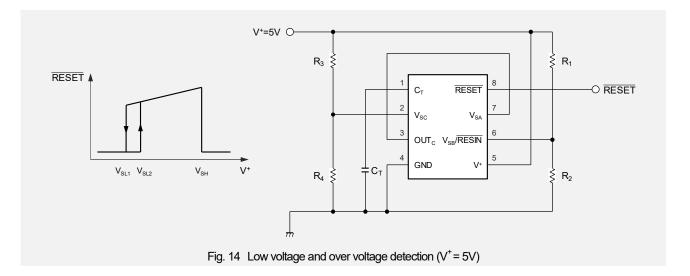

Reference voltage
$$V_{OUT} = \frac{R_2 + R_3}{R_3} \times V_{SC} \approx \frac{R_2 + R_3}{R_3} \times 1.245$$
 [V]

- The detection voltage (falling) is 4.2V and detection voltage (rising) is 4.3V.
- R1 value should be calculated from current consumption of NJU2103B, the current flowing through R2 and R3, and 5V output current. .

13. Reference Voltage output and Voltage drop monitoring (e.g. 1.245V output, 5V monitoring)

Buffer-connect the V_{SC}(COMP_C) and output the reference voltage of COMP_C. The output current of the reference voltage output is limited by R₁. If R₁ is 1.2 k Ω , it can output about 2 mA

14. Low voltage and over voltage detection ($V^+ = 5V$)


V_{SB} (COMP_B) for low voltage detection and V_{SC} (COMP_C) for overvoltage detection.

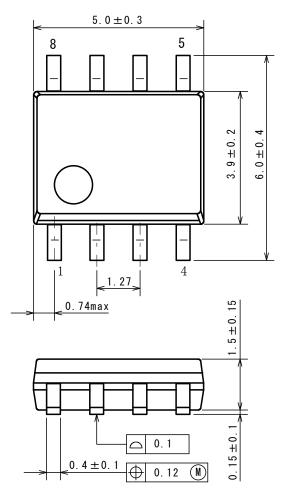
Logically synthesizes low voltage and over voltage detection by connecting OUT_C to V_{SA}, and output from RESET.

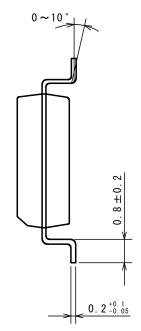
Low voltage detection and over voltage detection are calculated as following formula.

Low voltage detection (falling) $V_{SL1} = \frac{R_1 + R_2}{R_2} \times V_{SBL} \approx \frac{R_1 + R_2}{R_2} \times 1.230$ [V] Low voltage detection (rising) $V_{SL2} = \frac{R_1 + R_2}{R_2} \times (V_{SBL} + V_{HRSB}) \approx \frac{R_1 + R_2}{R_2} \times 1.258$ [V] Over voltage detection $V_{SH} = \frac{R_3 + R_4}{R_4} \times V_{SC} \approx \frac{R_3 + R_4}{R_4} \times 1.245$ [V]

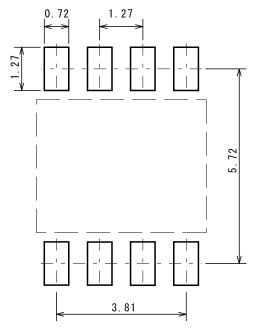
- There is no hysteresis characteristic for over voltage detection.
- "RESET Output Pulse Width tPO" is valid even when overvoltage is detected

New Japan Radio Co., Ltd. www.njr.com




NJU2103B

Unit: mm

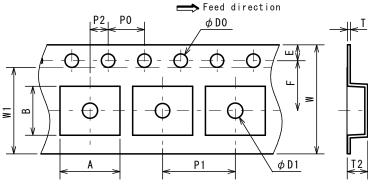

EMP8(SOP8 JEDEC 150mil)

■PACKAGE DIMENSIONS

■EXAMPLE OF SOLDER PADS DIMENSION

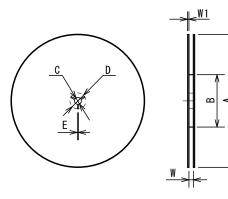
-*New Japan Radio Co., Ltd.*-www.njr.com

NJU2103B

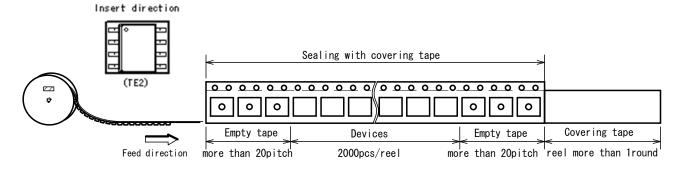

Unit: mm

EMP8(SOP8 JEDEC 150mil)

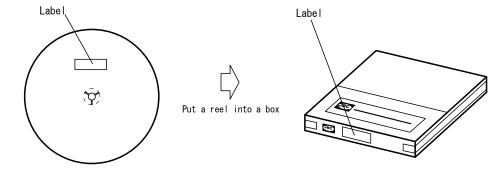
RC


■PACKING SPEC

TAPING DIMENSIONS


SYMBOL	DIMENSION	REMARKS
A	6.6	BOTTOM DIMENSION
В	5.4	BOTTOM DIMENSION
DO	1.5 ^{+0.1}	
D1	1.7±0.1	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.05	
T	0.30±0.05	
T2	2.2	
W	12.0±0.3	
W1	9.5	THICKNESS 0.1max

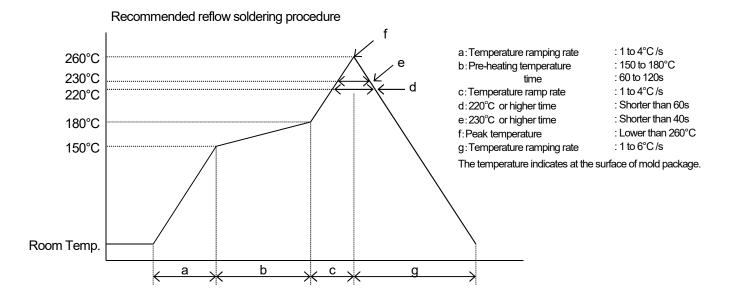
REEL DIMENSIONS



SYMBOL	DIMENSION
A	ϕ 330 ± 2
В	φ 80±1
C	φ 13±0.2
D	φ 21±0.8
E	2±0.5
W	13.5±0.5
W1	2.0±0.2

TAPING STATE

PACKING STATE



-*New Japan Radio Co., Ltd.*-www.njr.com

■RECOMMENDED MOUNTING METHOD

INFRARED REFLOW SOLDERING METHOD

-*New Japan Radio Co., Ltd.*-www.njr.com

REVISION HISTORY

Date	Revision	Changes		
12.Nov.2018.	1.0	New Release		
07.Feb.2019	1.1	Correction of error		

-*New Japan Radio Co., Ltd.*--www.njr.com

[CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications 1. and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights. All other trademarks mentioned herein are the property of their respective companies.
- To ensure the highest levels of reliability, NJR products must always be properly handled. 3. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper 4 component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Airplane, railroad, ship, etc.)
 - · Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9 The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

-*New Japan Radio Co., Ltd.*-www.njr.com