600 V

30 A

35 ns



advanced

### Sonic-FRD

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

**DHF 30 IM 600QB** 

## 30 2

# 1

Backside: cathode

#### Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
  - Power dissipation within the diode
  - Turn-on loss in the commutating switch

#### **Applications:**

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

#### Package:

 $V_{RRM} =$ 

TO-3P

- Industry standard outline
   compatible with TO-247
- Epoxy meets UL 94V-0
- RoHS compliant

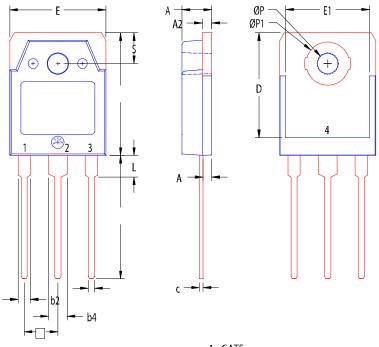
#### Ratings

| Symbol                       | Definition                          | Conditions                                              |                          | min. | typ. | max. | Unit      |
|------------------------------|-------------------------------------|---------------------------------------------------------|--------------------------|------|------|------|-----------|
| V <sub>RRM</sub>             | max. repetitive reverse voltage     |                                                         | T <sub>VJ</sub> = 25 °C  |      |      | 600  | V         |
| I <sub>R</sub>               | reverse current                     | V <sub>R</sub> = 600 V                                  | T <sub>vJ</sub> = 25 °C  |      |      | 50   | μΑ        |
|                              |                                     | $V_{R} = 600 \text{ V}$                                 | $T_{VJ}$ = 125 °C        |      |      | 5    | mA        |
| V <sub>F</sub>               | forward voltage                     | I <sub>F</sub> = 30 A                                   | T <sub>vJ</sub> = 25 °C  |      |      | 2.36 | V         |
|                              |                                     | I <sub>F</sub> = 60 A                                   |                          |      | 0.00 | 3.15 | V         |
|                              |                                     | I <sub>F</sub> = 30 A                                   | T <sub>vJ</sub> = 125 °C |      |      | 2.20 | V         |
|                              |                                     | I <sub>F</sub> = 60 A                                   |                          |      | 0.00 | 3.08 | V         |
| I <sub>FAV</sub>             | average forward current             | rectangular, d = 0.5                                    | $T_c = 35 ^{\circ}C$     |      |      | 30   | Α         |
| V <sub>F0</sub>              | threshold voltage                   | calculation only                                        | T <sub>VJ</sub> = 150 °C |      |      | 1.31 | V         |
| $\mathbf{r}_{_{\mathbf{F}}}$ | slope resistance                    | Calculation only                                        |                          |      |      | 28.6 | $m\Omega$ |
| R <sub>thJC</sub>            | thermal resistance junction to case |                                                         |                          |      |      | 3.50 | K/W       |
| T <sub>VJ</sub>              | virtual junction temperature        |                                                         |                          | -55  |      | 150  | °C        |
| P <sub>tot</sub>             | total power dissipation             |                                                         | T <sub>c</sub> = 25 °C   |      |      | 180  | W         |
| I <sub>FSM</sub>             | max. forward surge current          | $t_p = 10  \text{ms}  (50  \text{Hz}),  \text{sine}$    | T <sub>VJ</sub> = 45 °C  |      |      | 200  | Α         |
| I <sub>RM</sub>              | max. reverse recovery current       | I <sub>F</sub> = 30 A;                                  | T <sub>vJ</sub> = 25 °C  |      | 12   |      | Α         |
|                              |                                     | •                                                       | $T_{VJ}$ = 125 °C        |      |      |      | Α         |
| t <sub>rr</sub>              | reverse recovery time               | $-di_{F}/dt = 600 \text{ A/}\mu\text{s}$                | T <sub>VJ</sub> = 25 °C  |      | 35   |      | ns        |
|                              |                                     | $V_{R} = 400 V$                                         | T <sub>vJ</sub> = 125 °C |      |      |      | ns        |
| C <sub>J</sub>               | junction capacitance                | V <sub>R</sub> = 300 V; f = 1 MHz                       | T <sub>VJ</sub> = 25 °C  |      | 40   |      | pF        |
| E <sub>AS</sub>              | non-repetitive avalanche energy     | $I_{AS} = \text{tbd A}; L = 100 \mu\text{H}$            | T <sub>VJ</sub> = 25 °C  |      |      | tbd  | mJ        |
| I <sub>AR</sub>              | repetitive avalanche current        | $V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$ | 1                        |      |      | tbd  | Α         |

Recommended replacement: DHG30I600HA, DHG30I600PA

IXYS reserves the right to change limits, conditions and dimensions.

\* Data according to IEC 60747and per diode unless otherwise specified




advanced

|                            |                            |            |      | naungs |      |      |  |
|----------------------------|----------------------------|------------|------|--------|------|------|--|
| Symbol                     | Definition                 | Conditions | min. | typ.   | max. | Unit |  |
| I <sub>RMS</sub>           | RMS current                | per pin*   |      |        | 70   | Α    |  |
| $R_{\text{thCH}}$          | thermal resistance case to | heatsink   |      | 0.25   |      | K/W  |  |
| $M_{\scriptscriptstyle D}$ | mounting torque            |            | 0.8  |        | 1.2  | Nm   |  |
| Fc                         | mounting force with clip   |            | 20   |        | 120  | N    |  |
| T <sub>stg</sub>           | storage temperature        |            | -55  |        | 150  | °C   |  |
| Weight                     |                            |            |      | 5      |      | g    |  |

<sup>\*</sup> Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

#### **Outlines TO-3P**



| CVAA | INCHES   |      | MILLIMETERS |       |  |
|------|----------|------|-------------|-------|--|
| SYM  | MIN      | MAX  | MIN         | MAX   |  |
| Α    | .185     | .193 | 4.70        | 4.90  |  |
| A1   | .051     | .059 | 1.30        | 1.50  |  |
| A2   | .057     | .065 | 1.45        | 1.65  |  |
| b    | .035     | .045 | 0.90        | 1.15  |  |
| b2   | .075     | .087 | 1.90        | 2.20  |  |
| b4   | .114     | .126 | 2.90        | 3.20  |  |
| С    | .022     | .031 | 0.55        | 0.80  |  |
| D    | .780     | .791 | 19.80       | 20.10 |  |
| D1   | .665     | .677 | 16.90       | 17.20 |  |
| Е    | .610     | .622 | 15.50       | 15.80 |  |
| E1   | .531     | .539 | 13.50       | 13.70 |  |
| e    | .215 BSC |      | 5.45 BSC    |       |  |
| L    | .779     | .795 | 19.80       | 20.20 |  |
| L1   | .134     | .142 | 3.40        | 3.60  |  |
| ØΡ   | .126     | .134 | 3.20        | 3.40  |  |
| ØP1  | .272     | .280 | 6.90        | 7.10  |  |
| S    | .193     | .201 | 4.90        | 5.10  |  |

1 - GATE

2 - DRAIN (COLLECTOR)

3 - SOURCE (EMITTER)

4 - DRAIN (COLLECTOR)

All metal area are tin plated.