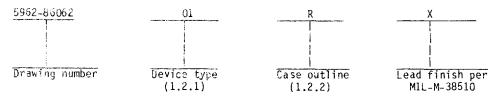
										RE	VISI	ION:	3												
LTR						1	DESC	CRIP	TION									DAT	E (YR	- M O-E	DA)	Al	PPRC	OVED	,
A			or CAGE 14 to c					out	line	s R	and	1 2.	Ad	d v	endo	r		1987	7 SE	PT 2	23	JV.	w.a. fy w.a. fye		
В	drawii vendo	ng. r C <i>F</i>	endor (Add v AGE (047 I chang	/endo /13 1	or CA From	\GE dra	0129 wing	95 to	o ca	se	outl	ine	S.	Rei	πονε	e le I.	•	198	9 JI	JL 2	24	M	!.4.	to	K
CU	JRRE	:N	Г СА	GE	E C	OE	DΕ	67	'26	58															
CU	JRRE	:N	r ca	GE	C	OE	DE 	67	'26 	88 								Ī			<u> </u>	Γ-	I	ī	Γ
		N.	Г СА	GE	E C	OE	DΕ	67	'26	8								<u> </u>				<u> </u>			
REV SHEE		:N	Γ CA	GE	C	OE	DE 	67	26	8															
REV SHEET REV	т	:N	Γ CA	GE	C	OE	DE	67	26	8															
REV SHEET REV SHEET	т	N	Γ CA	GE							В	В	В	В	В	В	В	В	В	В					
REV SHEET REV SHEET	Т	N		GE				В			B 7	B 8	B 9		B	B 12	_	B 14	⊢	B 16					
REV SHEET SHEET REV S OF SH	TATUS HEETS N/A ANDA MILIT	RD	REV SHEET		B 1	В	B 3 3 D BY	B 4	В	B 6		8	9 M	10	11 DEFE	12 NSE	13 ELECTORY	14 CTRC TON,	NIC: OHI	16 S SU O 45	444 [GH	SPEE	.D, (CMOS	,
REV SHEET REV SHEET REV SOF SHEET THIS TOOR US	TATUS HEETS N/A	RD AR VIN	REV SHEET NZED RY IG VAILABLE ARTMEN OF THE	E	B 1 PREED APP	B 2 PARE	B 3 D BY	B 4	B 5	B 6	7	8	9 M 0	10	11 DEFE	12 RCUIT D-TYF	DAY	14 CTRC TON,	OHIC: OHIC: TAL	16 S SU O 45	444 IGH _ITH	SPEE	D, (CMOS CON	


DESC FORM 193-1 SEP 87

* U.S. GOVERNMENT PRINTING OFFICE: 1987 --- 748-129/60912 5962-E1253

1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type	Generic number	Circuit function					
91	54HC563	Octal, 3-state, inverting D-type, transparent latch					

1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter	Case outline
R	D-8 (20-lead, 1.060" x $.310$ " x $.200$ "), dual-in-line package
S	F-9 (20 lead, $.540^{\circ}$ x $.300^{\circ}$ x $.100^{\circ}$) flat package
2.	C-2 (20-terminal .358" \times .358" \times .100"), square chip carrier package

1.3 Absolute maximum ratings. 1/

1/ Unless otherwise specified, all voltages are referenced to ground. 2/ For $T_C = \pm 100^{\circ}C$ to $\pm 125^{\circ}C$, derate linearly at 12 mW/°C.

STANDARDIZED MILITARY DRAWING	SIZE A		596	52-86062	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	B	SHEET 2	

1.4 Recommended operating conditions.		·	
Supply voltage range Case operating temperature range (T _C Input rise or fall time:)	+2.0 V dc to +6.0 V dc -55°C to +125°C	
V _{CC} = 2.0 V		0 to 1,000 ns 0 to 500 ns 0 to 400 ns	
Minimum setup time (t_S) :			
T _C = +25°C: V _{CC} = 2.0 V		75 ns 15 ns 13 ns	
T _C = -55°C to +125°C: V _{CC} = 2.0 V		110 ns 22 ns 19 ns	
Minimum hold time (t_h) :			
T _C = +25°C: Y _{CC} = 2.0 V		50 ns 10 ns 9 ns	
T _C = -55°C to +125°C: V _{CC} = 2.0 V		75 ns 15 ns 13 ns	
Minimum pluse width (t _w):			:
T _C = +25°C: V _{CC} = 2.0 V		80 ns 16 ns 14 ns	
T _C = -55°C to +125°C: V _{CC} = 2.0 V		120 ns 24 ns 20 ns	
STANDARDIZED	SIZE A	500	2 96062
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	7	REVISION LEVEL B	2-86062 SHEET 3

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions (hould be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagram. The Togic diagram shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking small be in accordance with MLL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be narreed as listed in 6.4 herein.

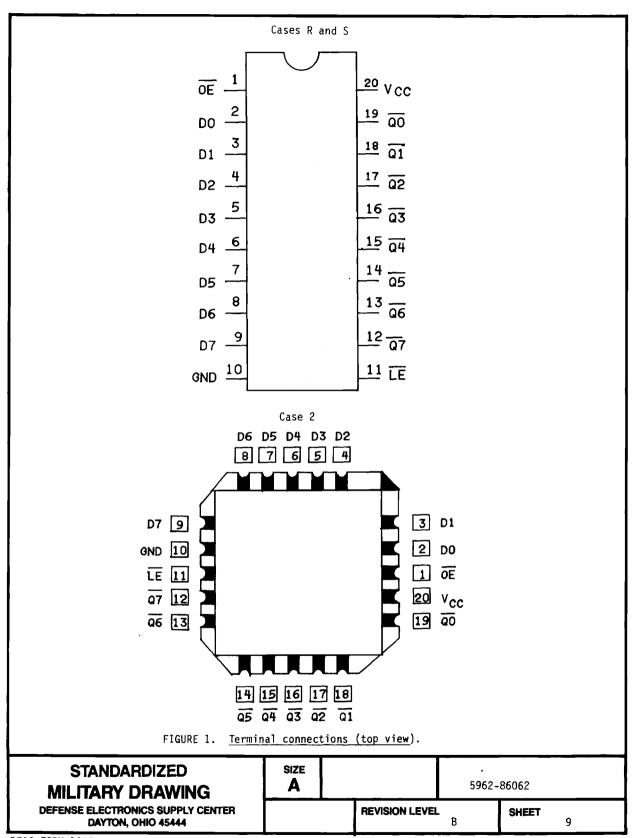
STANDARDIZED MILITARY DRAWING	SIZE A		596	2-86062	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	В	SHEET 4	

	TAB	E I. Electr	ical perfo	rmance	characteris	tics.	•		
	$\overline{}$	Γ		_		1	Lim	<u> </u>	
Test	Symbol	!	Conditi	ions	-*-	Group A	<u> </u>	,	Unit
	 	unle	-55°C < T _C ess otherwi	₹ +12 ise sp	ecified <u>1</u> /	subgroups	Min	Max	
High level output voltage	v _{OH}	 V _{IN} = V _{IH} (mi V _{IL} (max)	in) or	ı v _C	C = 2.0 V	1, 2, 3	1.9	 	v
		 Ι _Ο <u><</u> 20 μΑ 	1	VC	C = 4.5 V	 - -	4.4	 	!
				ν _C	C = 6.0 V		5.9		
	 	 V _{IN}	in) or nA	Vc	C = 4.5 Y	 	 3.7 	1 	
		 V _{IN}	in) or nA	V _C	c = 6.0 V	 	5.2	 	T
Low level output voltage	V _{OL}	 VIN = VIH(mi VIL(max)	n) or	ν _C	C = 2.0 V	1, 2, 3		0.1	 -
		 Ι _Ο <u><</u> 20 μΑ 	1	ν _C	C = 4.5 V			0.1	 -
		 		ν _C	C = 6.0 V	<u> </u>	 	0.1	<u> </u>
		 V _{IN}	in) or 1A	V _C	C = 4.5 V	 		0.4	
		 V _{IN}	n) or A	VC	c = 6.0 V		 	 0.4 	
High level input voltage	VIH			VC	C = 2.0 V	1, 2, 3	1.5	 	T -
<u>2</u> /		 		ν _C	c = 4.5 V	 	3.15	 	
		 		ν _C	C = 6.0 Y	 	 4.2 	! ! !	
See footnotes at e	end of tab	le.							
STANDA MILITARY			SIZE A				5962	-86062	
DEFENSE ELECTRO		Y CENTER			REVISION LEV				

	1	1				Lim	its	1
Test	Symbol 	-5 unles	Conditior 5°C < T _C < s otherwise	+125°C specified $\underline{1}/$	Group A subgroups 	 	Max	Unit
Low level input voltage	YIL	 	- 10-	V _{CC} = 2.0 V	1, 2, 3		0.3	i V
<u>2</u> /		 		V _{CC} = 4.5 V			0.9	<u>T</u>
		 		V _{CC} = 6.0 V			1.2	T
Input capacitance	C _{IN}	V _{IN} = 0 V, see 4.3.1c	T _C = +25°C		4 	 	10	 pF
Quiescent current	Icc	V _{CC} = 6.0 V	r GND		1, 2, 3	 	160	 μ Α
Input leakage current	I I N	V _{CC} = 6.0 V	r GND		1, 2, 3		±1	
Three-state output leakage current	I I O Z	$ V_0 = V_{CC} \text{ or } V_I = V_{IH} or $	GND V _{IL}		1, 2, 3		±10	μ Α
Output capacitance	COUT	See 4.3.1c		-	4		20	l pF
Functional tests		See 4.3.1d			7] [
Propagation delay time, data to	 tpHL1 	T _C = +25°C	.100	V _{CC} = 2.0 V	9		175	ns
0 output (see fig. 4) <u>3</u> /	tPLH1	C _L = 50 pF	±10%	V _{CC} = 4.5 V	 		35	! -
				V _{CC} = 6.0 V			30	<u> </u>
		$T_{C} = -55^{\circ}C$		V _{CC} = 2.0 V	10, 11		265	 -
	} 	C _L = 50 pF	±10%	V _{CC} = 4.5 V			53	! -
	 	 		V _{CC} = 6.0 V			45 	
See footnotes at e	nd of tab	e.		-				
STANDA MILITARY			SIZE A		5962	2-86062		
DEFENSE ELECTRO		Y CENTER		REVISION LE	VEL B	SHEE	τ 6	

	TABLE I.	Electrical performance c	haracteristics -	Continued.			
Test	Symbol	Conditions		Group A	Lim.	its	Unit
	 -	-55°C < T _C < + unless otherwise	125°C specified <u>1</u> /	subgroups 	Min	 Max 	
Propagation delay time, latch	t _{PHL2}	T _C = +25°C	V _{CC} = 2.0 V	9 1		175	l ns
enable to any output (see fig. 4) 3/	t _{PLH2} 	C _L = 50 pF ±10%	V _{CC} = 4.5 V			35 	
		1	V _{CC} = 6.0 V	T		30	
	 	T _C = -55°C, +125°C	VCC = 2.0 V	10, 11		 265 	
		C _L = 50 pF ±10%	V _{CC} = 4.5 V			 53 	
	 		V _{CC} = 6.0 V			 45 	
Propagation delay time, output	↓ t₽ZH	T _C = +25°C	V _{CC} = 2.0 V	9		175	l ns
enable to any output (see fig. 4)	t _{PZL}	C _L = 50 pF ±10%	V _{CC} = 4.5 V			35	T
<u>3</u> /	 		VCC = 6.0 V	 		30	
		T _C = -55°C, +125°C	V _{CC} = 2.0 V	10, 11		 265 	
		C _L = 50 pF ±10%	V _{CC} = 4.5 V			53 	
		 	V _{CC} = 6.0 V	T]		45	

See footnotes at end of table.


STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444
DRT ION, ONIO 43444

SIZE A		5962	2-86062	
	REVISION LEVEL		SHEET	
		В	7	

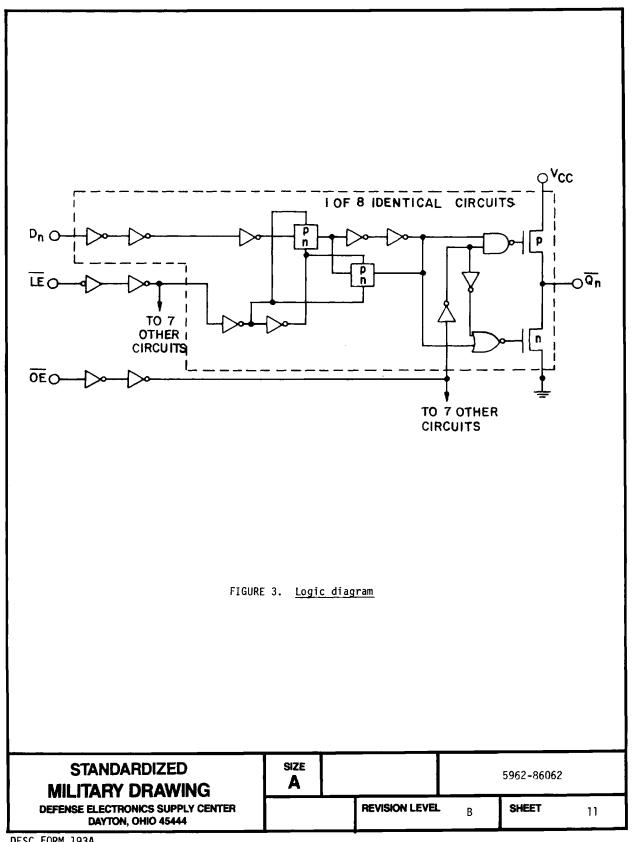
	TABLE I.	Electrical performance c	haracteristics -	Continued.		·	
Test	T Symbol	Conditions		 Group A	Lim	its	 Unit
		Conditions -55°C < T _C < + unless otherwise	125°C specified <u>1/</u>	subgroups 	Min	Max	Г ! !
Propagation delay time, output disable to any output (see fig. 4)	t _{PHZ}	T _C = +25°C	V _{CC} = 2.0 V	9		150	ns
	t _{PLZ}	C _L = 50 pF ±10%	V _{CC} = 4.5 V	T		30	
			V _{CC} = 6.0 V	T]		26	Γ
		T _C = -55°C, +125°C	V _{CC} = 2.0 V	10, 11		225	
		C _L = 50 pF ±10%	V _{CC} = 4.5 V			 4 5	
			V _{CC} = 6.0 V	T I		38	Г
Transition time, output rise and	t _{THL}	T _C = +25°C	V _{CC} = 2.0 V	9		60	ns
fall (see fig. 4) 4/	t _{TLH}	C _L = 50 pF *10%	V _{CC} = 4.5 V			12	
			V _{CC} = 6.0 V	T	í	 10 	
	- - - - - - - - -	T _C = -55°C, +125°C	V _{CC} = 2.0 V	10, 11		90	[
			C _L = 50 pF ±10%.	V _{CC} = 4.5 V			18
			V _{CC} = 6.0 V	<u>†</u>		15	

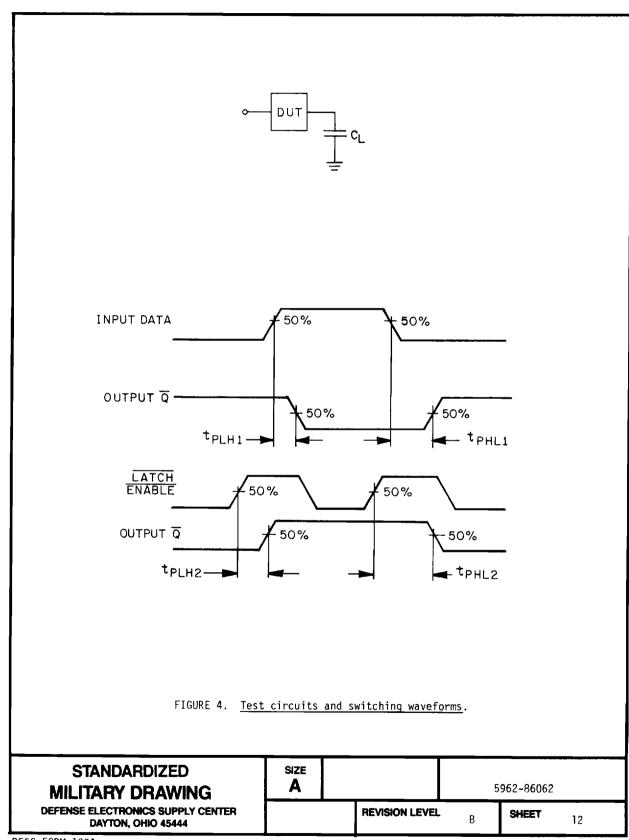
- For a power supply of 5 V $\pm 10\%$, the worst case output voltages (V $_{OH}$ and V $_{OL}$) occur for V $_{CC}$ at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst cases V $_{IH}$ and V $_{IL}$ occur at V $_{CC}$ = 5.5 V and 4.5 V, respectively. (The V $_{IH}$ value at 5.5 V is 3.85 V.) The worst case leakage currents (I $_{IN}$, I $_{CC}$, and I $_{OZ}$) occur for CMOS at the higher voltage, so the 6.0 V values should be used. Power dissipation capacitance (C $_{PD}$), typically 50 pF, determines the no load dynamic power consumption, P $_{D}$ = C $_{PD}$ V $_{CC}$ 2 f+I $_{CC}$ 0, and the no load dynamic current consumption, I $_{S}$ = C $_{PD}$ V $_{CC}$ 6 f+I $_{CC}$ 0.
- $\underline{2}/$ V_{IL} and V_{IH} tests not required. Apply as forcing function for V_{OH} and V_{OL}.
- 3/ AC testing at $\rm V_{CC}$ = 2.0 V and $\rm V_{CC}$ = 6.0 V shall be guaranteed if not tested to the specified parameters.
- 4/ Transition times, if not tested, shall be guaranteed to the specified parameters.

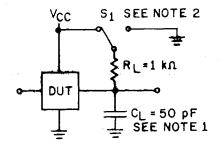
STANDARDIZED MILITARY DRAWING	SIZE A			5962-86062
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	В	SHEET 8

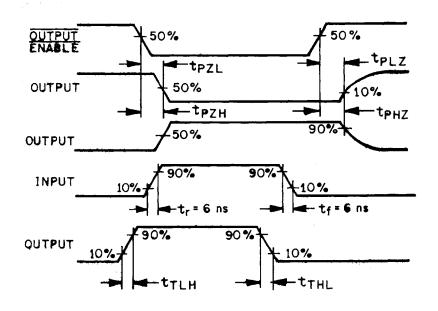
Output Enable	Latch Enable	Data	Q Output
L	н	Н	L
L	Н	L	н
L	L	1	н
L	L	h	L
н	X	x	Z

NOTE


L = Low voltage level
H = High voltage level
] = Low voltage level one set-up time
prior to the high to low latch enable transition


h = High voltage level one set-up time prior to the high to low latch enable transition


X = Don't care
Z = High impedance state


FIGURE 2. Truth table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A	5962-86062			
			REVISION LEVEL	. В	SHEET 10

NOTES:

1. Ct includes load and test jig.
2. St * We for tozt and totz.
St = GND for tozH and toHZ.

FIGURE 4. Test circuits and switching waveforms - Continued.

STANDARDIZED MILITARY DRAWING	\$IZE A			5962-86062
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, ONIO 45444		REVISION LEVEL	В ,	SHEET 13

- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DEX-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review.</u> DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{OUT} measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. Test all applicable pins on 5 devices with 0 failures.
 - d. Subgroup 7 tests sufficiently to verify the truth table.

STANDARDIZED MILITARY DRAWING	SIZE A			5962-86062	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	В	SHEET	14

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004) 	1*,2,9
Group A test requirements (method 5005) 	1,2,3,4,7,9, 10**,11**
Groups C and D end-point electrical parameters (method 5005) 	1,2,3

^{*} PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/65405B--.

STANDARDIZED MILITARY DRAWING	SIZE			5962-86062	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	- В	SHEET	

^{**} Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

 Military drawing part number 	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number
5962-8606201RX	27014 18714 101295	 MM54HC563J/883 CD54HC563F/3A SNJ54HC563J	M38510/65405BRX
5962-8606201SX	01295	 SNJ54HC563W 	M38510/65405BSX
 5962-86062012X 	01295 27014	SNJ54HC563FK MM54HC563E/883	M38510/65405B2X

 $\frac{1}{2}$ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address
27014	National Semiconductor 2900 Semiconductor Drive P. O. Box 58090 Santa Clara, CA 95052-8090
18714	RCA Corporation Solid State Division Route 202 Somerville, NJ 08876
01295	Texas Instruments, Incorporated P. O. Box 6448 Midland, TX 79701

STANDARDIZED MILITARY DRAWING	SIZE A		5962	-86062
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		 REVISION LEVEL	- В	SHEET 16