

Secondary-Side Constant Current and Constant Voltage Controller with PWM / Linear Dimming

DESCRIPTION

The TS19340CS14 provides an integrated solution using built in switch mode constant current (CC) and constant voltage (CV) regulation for isolation smart LED lighting applications. The built in PWM and linear dimming functions allows the designer to replace many external discrete components used for dimming schemes. The PWM frequency is configurable from 100Hz-10kHz through selection of the compensation capacitor. The linear dimming cut off voltage is configurable using a resistor divider at the CCO pin

FEATURES

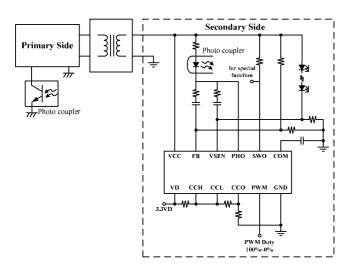
- Secondary-side CC and CV Control
- High accuracy internal voltage reference
- Build in PWM & Linear dimming functions
- LED current cut-off function
- Built-in 3.3V reference for dimming Power
- Compliant to RoHS Directive 2011/65/EU and in Accordance to WEEE 2002/96/EC.
- Halogen-free according to IEC 61249-2-21

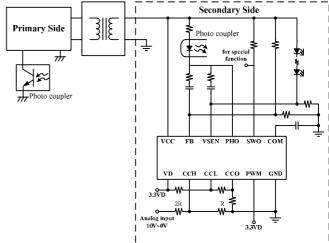
APPLICATION

- LED lighting
- Intelligent lighting management

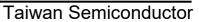
SOP-14

Pin Definition: 1. V_D


1


1. V _D	14. V _{CC}
2. CCH	13. FB
3. CCL	12. V_{SEN}
4. CCO	11. PHO
5. PWM	10. N/C
6. N/C	9. SWO
7. GND	8. COM

Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020


TYPICAL APPLICATION CIRCUIT

PWM Dimming Application Circuit

Linear Dimming Application Circuit

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified) (Note 1)				
PARAMETER	SYMBOL	LIMIT	UNIT	
Power Supply Pin	V _{cc}	40	V	
PHO Voltage to GND	V_{PHO}	-0.3 to 40	V	
SWO Voltage to GND	V_{SWO}	-0.3 to 40	V	
FB Voltage to GND	V_{FB}	-0.3 to 5.5	V	
VSEN Voltage to GND	V_{VSEN}	-0.3 to 5.5	V	
COM Voltage to GND	V _{COM}	-0.3 to 5.5	V	
CCH Voltage to GND	V _{CCH}	-0.3 to 5.5	V	
CCL Voltage to GND	V _{CCL}	-0.3 to 5.5	V	
CCO Voltage to GND	V _{cco}	-0.3 to 5.5	V	
PWM Voltage to GND	V_{PWMB}	-0.3 to 5.5	V	
Junction Temperature Range	TJ	-40 to +150	°C	
Storage Temperature Range	T _{STG}	-65 to +150	°C	
Lead Temperature (Soldering 10 sec)	T _{LEAD}	260	°C	
Power Dissipation @ T _A =25 °C	P _D	0.833	W	
ESD Rating (Human Body Mode) (Note 2)	НВМ	2	kV	

THERMAL PERFORMANCE (Note 3)				
PARAMETER	SYMBOL	LIMIT	UNIT	
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	120	°C/W	

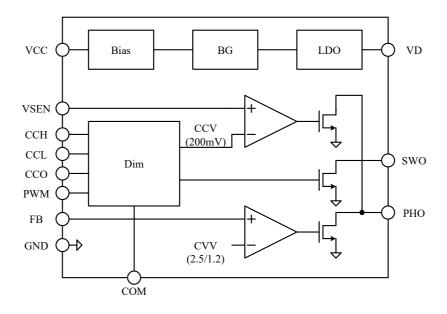
RECOMMENDED OPERATING CONDITION (T _A = 25°C unless otherwise specified) (Note 4)				
PARAMETER	SYMBOL	LIMIT	UNIT	
Power Supply Pin	V _{cc}	38	V	
PHO Voltage to GND	V_{PHO}	-0.3 to 38	V	
SWO Voltage to GND	V_{SWO}	-0.3 to 38	V	
FB Voltage to GND	V_{FB}	-0.3 to 5	V	
VSEN Voltage to GND	V_{VSEN}	-0.3 to 5	V	
COM Voltage to GND	V _{COM}	-0.3 to 5	V	
CCH Voltage to GND	V _{CCH}	-0.3 to 5	V	
CCL Voltage to GND	V _{CCL}	-0.3 to 5	V	
CCO Voltage to GND	V _{cco}	-0.3 to 5	V	
PWM Voltage to GND	V_{PWM}	-0.3 to 5	V	
Operating Junction Temperature Range	TJ	-40 to +125	°C	
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	°C	

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise specified)						
PARAMETER	SYMBOL	CONDITION	MIN	TYP	МАХ	UNIT
Supply Voltage						
Turn-on Voltage	V _{CC_ON}		11.2	12.0	12.8	V
Turn-off Voltage	V_{CC_OFF}		7.1	7.6	8.1	V
Quiescent Current	IQ	V _{CC} =10V		22		μA
Operation Supply Current	I _{CC}	V _{CC} =20V		400		μA
3.3V Voltage reference	V_{DREF}	I _O =5mA	3.2	3.3	3.4	V
VCC Over Voltage Protection	V _{CC_OVP}			35		V
CCH Over Voltage Protection	V _{CCH_OVP}			4.2		V
GM Amplifier						
Voltage reference1	CV _H		2.4	2.53	2.66	V
Voltage reference2	CVL		1.15	1.21	1.27	V
Voltage reference3	CCV		196	200	204	mV
Driver						
Dropout Voltage (PHO)	VOL _{PHO}	I _O = 20mA		0.55		V
Dropout Voltage (SWO)	VOL _{SWO}	I _O = 20mA		0.48		V

Note:

- Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions beyond those indicated in the operational sections of the
 specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
 reliability.
- 2. Devices are ESD sensitive. Handing precaution recommended.
- 3. Thermal Resistance is specified with the component mounted on a test board with low effective thermal conductivity in free air at $T_A=25$ °C.

3


4. The device is not guaranteed to function outside its operating conditions.

ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS19340CS14 RLG	SOP-14	2,500pcs / 13"Reel

FUNCTION BLOCK

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	VD	3.3V low drop out voltage
2	CCH	Constant current high limit voltage
3	CCL	Constant current low limit voltage
4	CCO	LED current cut-off voltage
5	PWM	PWM input pin
6	N/C	No connection
7	GND	Ground
8	COM	PWM pulse filter pin
9	SWO	Open drain output of the comparator for LED current cut-off function
10	N/C	No connection
11	PHO	Open drain output of the two internal operational amplifier for photo coupler
12	V_{SEN}	Current sense pin
13	FB	Voltage sense pin
14	V_{CC}	Power supply pin

4

CHARACTERISTICS CURVES

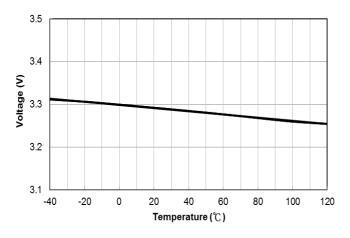


Figure 1. V_{DREF} vs. Junction Temperature

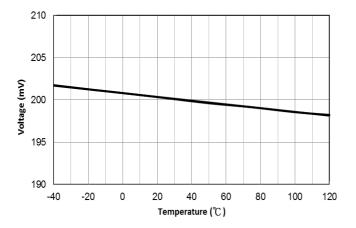


Figure 3. CCV vs. Junction Temperature

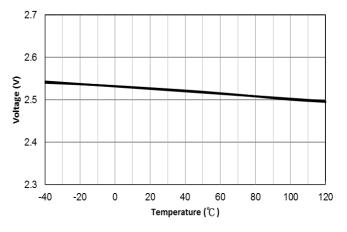


Figure 2. CV_H vs. Junction Temperature

Figure 4. CCH=1.6V vs. Junction Temperature

Version: B1705

5

APPLICATION INFORMATION

Function Description

The TS19340 is a secondary-side CC/CV shunt regulator for LED lighting dimming application. It has a built-in 3.3V low drop-out voltage (VD pin) for external dimming control. The LED current setting level for PWM and linear functions can be adjusted by the CCH (maximum), CCL (minimum), and CCO (cut-off) pins. When LED current is cut-off, the IC will change the CV reference voltage (2.53V → 1.21V) and the SWO will be pulled low.

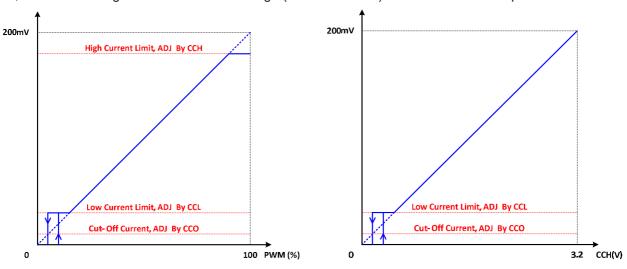


Figure 5: LED Current Ratio vs. PWM Duty Ratio

Figure 6: LED Current Ratio vs. Linear Dimming Voltage

Pin Detail

Pin 1: VD

The IC has built-in 3.3V LDO for setting the dimming function and external MCU.

Pin 2: CCH

The CCH pin is for the constant current high limit function. The pin function is shown in Figure 5 and Figure 6. The functional working voltage range is from 3.2V to 0V. The pin connects to internal 5V reference voltage or high voltage level when the function is not used.

The LED high limit current is shown as follows:

ILED(High Limit) =
$$\frac{V_{CCH}}{16 \times Rs} (A)$$

Pin 3: CCL

The CCL pin is for the constant current low limit function. The pin function is shown in Figure 5 and Figure 6. The functional working voltage range is from 3.2V to 0V. The pin connects to ground when the function is not used. The LED low limit current is shown as follows:

$$ILED(Low\ Limit) = \frac{V_{CCL}}{16 \times Rs} (A)$$

Pin 4: CCO (PWM / Linear)

The CCO pin is for the LED current cut-off function. The pin function is shown in Figure 5 and Figure 6. The functional working voltage range is from 3.2V to 0V. The pin pulls to ground when the function is not used.

The LED cut-off current is shown as a formula following:

$$I_{LED(Cut\ Off)} = \frac{V_{CCO}}{16 \times Rs} (A)$$

Taiwan Semiconductor

APPLICATION INFORMATION (CONTINUE)

Pin Detail

Pin 5: PWM

The pin is for PWM dimming function control. The pin should be connected to internal 5V reference voltage when using linear dimming function. Recommend operation frequency range from 100Hz to 10kHz.

The LED current vs. PWM duty ratio is shown as a formula following:

$$ILED(PWM) = PWM _Duty _Ratio \times \frac{0.2}{Rs}(A)$$

Pin 6 : N/C

No connection.

Pin 7: GND

GND is the reference node of internal circuit.

Pin 8: COM

The COM pin is for PWM pulse filter. The PWM duty ratio will be converted to 3.2V (Duty=100%) ~ 0V (Duty=0%). A suitable capacitor should be connected between the COM and ground.

Pin 9: SWO

The pin is an open drain output of the comparator for LED current cut-off function. The SWO pin will be pulled low when the LED current is cut-off.

Pin 10: N/C

No connection.

Pin 11: PHO

The PHO pin is for transferring secondary-side voltage/current signal for the primary-side controller. It is an open drain output of the two internal OP-AMPs for an external photo coupler. A capacitor and a resistor in series should be connected between PHO and FB for constant voltage control, and a capacitor and a resistor in series should be connected between PHO and V_{SEN} for constant current control.

Pin 12: VSEN

The V_{SEN} pin is for LED constant current control. The V_{SEN} reference voltage will be adjusted by the PWM/CCH/CCL setting. The illustration is shown in Figure 5 and Figure 6.

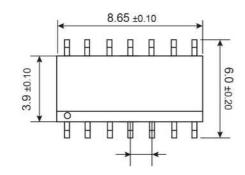
The maximum LED Current is in the formula as follows:

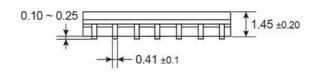
$$ILED(max) = \frac{0.2}{Rs}(A)$$

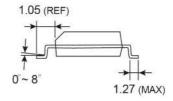
Pin 13: FB

The FB pin is for LED constant voltage control. The FB reference voltage will be 2.53V when the LED current is not cut-off, and it will be 1.21V when the LED current is cut-off

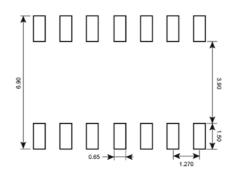
Pin 14: V_{CC}

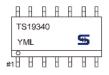

Power supply for the controller during normal operation. The controller will start up when V_{CC} reaches 12V (typical) and will shut-down when V_{CC} voltage is below 7.6V (typical). A decoupling capacitor should be connected between the V_{CC} and GND pin as close as possible.




Taiwan Semiconductor

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)


SOP-14



SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

 \mathbf{O} =Jan \mathbf{P} =Feb \mathbf{Q} =Mar \mathbf{R} =Apr

S =May T =Jun U =Jul V =Aug

W =Sep X =Oct Y =Nov Z =Dec

8

L = Lot Code (1~9, A~Z)

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.