EVALUATION KIT AVAILABLE

Low-Voltage, Internal Switch, Step-Down/DDR Regulator

General Description

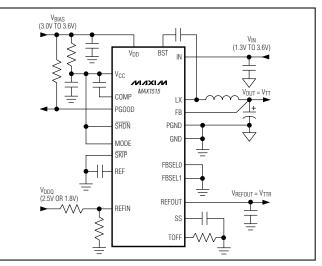
The MAX1515 constant-off-time, pulse-width-modulated (PWM) source/sink step-down DC-DC converter is optimized for use in low-voltage active-termination power rails or chipset power supplies in notebook and subnotebook computers. This device features dual internal n-channel MOSFET power switches for high efficiency and reduced component count. External Schottky diodes are not required. An integrated boost switch eliminates the need for an external boost diode. The internal 40m Ω NMOS power switches easily source and sink continuous load currents up to 3A. The MAX1515 produces an adjustable output from +0.5V to +2.7V and achieves efficiencies as high as 95%.

The MAX1515 can be configured as a DDR regulator, producing an output that is exactly half the memory supply rail. The input of the power stage can be taken from the memory supply rail itself, resulting in an efficient power supply that returns the energy to the rail from which it was sourced. The MAX1515 includes a reference buffer that provides \pm 5mA of drive current.

The MAX1515 uses a unique current-mode, constantoff-time, PWM control scheme. A selectable pulse-skipping mode maintains high efficiency during light-load operation, yet still sources and sinks current on demand. The MAX1515 can also be operated in fixed-PWM mode for low output ripple. The programmable constant-off-time architecture sets switching frequencies up to 1MHz, which allows the user to optimize performance trade-offs between efficiency, output switching noise, component size, and cost. The MAX1515 features an adjustable soft-start to limit surge currents during startup and a low-power shutdown mode to disconnect the input from the output and reduce supply current below 1µA. The MAX1515 is available in a 24-pin thin QFN package with an exposed backside pad.

Applications

Notebook DDR Memory Termination Active-Termination Buses Chipset/Graphics Processor Supplies


_Features

- Dual 40mΩ Internal n-Channel MOSFETs
- Integrated Boost Switch
- ♦ +1.3V to +3.6V Input Voltage Range
- ♦ 1% VOUT Accuracy Over Line and Load
- 1MHz Maximum Switching Frequency
- DDR Termination Regulator (DDR Mode) Tracking Output Voltage Source/Sink Pulse Skipping ±5mA Reference Buffer
- Output Voltage (Non-DDR Mode) +2.5V, +1.8V, or +1.5V Pin Selectable +0.5V to +2.7V Adjustable
- ♦ 1.1V ±0.75% Reference Output
- Adjustable Soft-Start Inrush Current Limiting
- ♦ < 1µA (typ) Shutdown Supply Current</p>
- ♦ < 800µA (max) Operating Supply Current</p>
- ♦ Selectable Pulse-Skipping Operation at Light Loads
- Positive and Negative Current Limit
- Power-Good Window Comparator
- Output Short-Circuit Protection

Ordering InformationPARTTEMP RANGEPIN-
PACKAGEPKG CODEMAX1515ETG-40°C to +85°C24 Thin QFN
4mm x 4mmT2444-4MAX1515ETG+-40°C to +85°C24 Thin QFN
4mm x 4mmT2444-4

+Denotes lead-free package.

_Minimal Operating Circuit

Pin Configuration appears at end of data sheet.

MIXXI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} , V _{DD} , LX, SHDN to GND0.3V to +4V	LX Current (Note 1)±4.7A
MODE, IC to GND0.3V to +4V	REF Short Circuit to GNDContinuous
COMP, FB, REF, REFIN, REFOUT, PGOOD	REFOUT Short Circuit to GNDContinuous
to GND0.3V to $(V_{CC} + 0.3V)$	Continuous Power Dissipation (T _A = +70°C)
FBSEL0, FBSEL1, TOFF, SKIP, SS to GND0.3V to $(V_{CC} + 0.3V)$	24-Pin Thin QFN (derate 20.8mW/°C above +70°C;
V_{DD} to V_{CC}	part mounted on 1in ² of 1oz copper)1667mW
IN to V _{DD} 0.3V to (V _{DD} + 0.3V)	Operating Temperature Range40°C to +85°C
PGND to GND0.3V to +0.3V	Junction Temperature+150°C
LX to BST4V to +0.3V	Storage Temperature Range65°C to +150°C
BST to GND0.3V to +8.0V	Lead Temperature (soldering, 10s)+300°C

Note 1: LX has clamp diodes to PGND and IN. If continuous current is applied through these diodes, thermal limits must be observed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1, $V_{IN} = +3.3V$, $V_{CC} = V_{DD} = \overline{SHDN} = MODE = +3.3V$, $V_{REFIN} = V_{REF}$, $\overline{SKIP} = GND$, $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS			MIN	ТҮР	МАХ	UNITS
PWM CONTROLLER								
Input Voltage Range	V _{IN}				1.3		3.6	
	V _{CC} , V _{DD}				3.0		3.6	v
Output Adjust Range		$V_{OUT} \le V_{IN}$			0.5		2.7	V
	V _{FB} -	V _{IN} = +3.3V,	I _{LOAD} = 0,	$T_A = +25^{\circ}C$ to +85°C	-3	0	+3	mV
	VREFIN	MODE = V _{CC}		$T_A = 0^\circ C$ to +85°C	-4	0	+4	ΠV
			FBSEL0 = V _{CC} ,	$T_A = +25^{\circ}C$ to +85°C	2.463	2.5	2.537	
			T _A = 0°C to +85°C	2.450	2.5	2.550		
		$V_{IN} = +3.3V,$ $I_{LOAD} = 0,$ MODE = Iow		$T_{A} = +25^{\circ}C$ to +85^{\circ}C	1.782	1.800	1.827	
Feedback Voltage Accuracy				$T_A = 0^\circ C$ to +85°C	1.773	1.800	1.836	V
	VFB		FBSEL0=GND	$T_A = +25^{\circ}C$ to +85°C	1.477	1.500	1.523	v
				$T_A = 0^{\circ}C$ to +85°C	1.470	1.500	1.530	
			FBSEL0=GND FBSEL1=GND	$T_A = +25^{\circ}C$ to +85°C	0.492	0.500	0.508	
		REFIN=0.5V		$T_A = 0^\circ C$ to +85°C	0.490	0.500	0.510	
Feedback Load-Regulation Error		V_{IN} = +1.3V to +3.6V, I _{LOAD} = 0 to 3A, SKIP = V _{CC}				0.1		%

5

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $V_{IN} = +3.3V$, $V_{CC} = V_{DD} = \overline{SHDN} = MODE = +3.3V$, $V_{REFIN} = V_{REF}$, $\overline{SKIP} = GND$, $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIC	DNS	MIN	ТҮР	MAX	UNITS
Sink-Mode Detect Threshold	V _{FB} - V _{REFIN}	MODE = V _{CC} , V_{REFIN} = +0.5V to +1.5V		+18		+32	mV
Source-Mode Detect Threshold	V _{FB} - Vrefin	MODE = V_{CC} , V_{REFIN} = +	0.5V to +1.5V	-32		-18	mV
MOSFET On-Resistance	R _{NMOS}	$V_{CC} = V_{DD} = V_{IN} = +3.3V$	', I _{LOAD} = 0.5A		0.04	0.10	Ω
Switching Frequency	fsw	(Note 2)				1	MHz
Maximum Output Current	IOUT(RMS)	(Note 3)		3.3			А
Current-Limit Threshold	I _{LIMIT_P}	V _{IN} = +3.3V, MODE = GN positive or sourcing mode		3.60	4.2	4.85	A
	ILIMIT_N	MODE = V _{CC} , negative or	sinking mode		-3.0		
Pulse-Skipping Current Threshold	I _{SKIP_P}	$V_{IN} = +3.3V$, MODE = GN or sourcing mode	ID or V _{CC} , positive	0.5	0.8	1.1	А
Zero Cross Current Threshold	I _{ZX_P}	$V_{IN} = +3.3V$, MODE = GN or sourcing mode	ID or V _{CC} , positive		200		mA
	I _{ZX_N}	MODE = V_{CC} , negative or sinking mode			-350		
FB Input Bias Current		FB = 1.01 x VTARGET (Not	e 4)	-50		+50	nA
Off-Time		VFB > 0.3 × VTARGET (Note 4)	$R_{TOFF} = 33.2 k\Omega$	0.270	0.34	0.405	
	tOFF		$R_{TOFF} = 110 k\Omega$	0.85	1.00	1.15	μs
			$R_{TOFF} = 499 k\Omega$	3.8	4.5	5.2	
Extended Off-Time	toff(ext)	V _{FB} < 0.3 x V _{TARGET} (Not	es 2, 4)		4 x toff		μs
Minimum On-Time	ton(min)	(Note 2)			180		ns
Maximum On-Time	ton(max)			5	11		μs
SS Source Current	ISS(SRC)			3.50	5.25	6.75	μA
SS Sink Current	ISS(SNK)			100			μA
No-Load Supply Current	+ IIN	V _{IN} = 3.3V (not switching) (Note 4)	$\begin{array}{l} \text{MODE} = \text{GND},\\ \text{FBSEL0} = \text{GND},\\ \text{FBSEL1} = \text{GND},\\ \text{V}_{\text{FB}} = 1.01 \text{ x}\\ \text{V}_{\text{TARGET}} \end{array}$		450	800	μA
			MODE = V _{CC} , V _{FB} = V _{TARGET}		700	1200	
Shutdown Supply Currents	+ I ^{IN}	$\overline{SHDN} = MODE = GND, LX = 0V \text{ or } 3.3V$ $\overline{SHDN} = MODE = GND, LX = 0V$			0.2	20	- μΑ
Shutdown Supply Currents	I _{IN}				0.2	20	
	ILX	SHDN = MODE = GND, LX = 3.3V			0.1	20	

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $V_{IN} = +3.3V$, $V_{CC} = V_{DD} = \overline{SHDN} = MODE = +3.3V$, $V_{REFIN} = V_{REF}$, $\overline{SKIP} = GND$, $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	МАХ	UNITS
REFERENCE	•						
	N/		T _A = +25°C to +85°C	1.0923	1.100	1.1077	V
Reference Voltage	VREF	$V_{CC} = +3.0V \text{ to } +3.6V$	$T_A = 0^{\circ}C$ to +85°C	1.0907	1.100	1.1094	V
Reference Load Regulation		$I_{REF} = -1\mu A$ to $+50\mu A$				10	mV
REFIN Input Voltage Range	VREFIN	$V_{CC} = +3.0V \text{ to } +3.6V$		0.5		1.5	V
REFOUT Output Accuracy	V _{REFIN} -	$V_{REFIN} = +0.5V \text{ to } +1.5V$	I _{REFOUT} = -1mA to +1mA	-10		+10	
	Vrefout	$V_{REFIN} = +0.5V \text{ to } +1.5V$	I _{REFOUT} = -5mA to +5mA	-20		+20	mV
REFIN Input Bias Current	IREFIN	VREFIN = 1.1V		-50		+50	nA
FAULT DETECTION							
Thermal Shutdown	TSHDN	Rising, hysteresis = 15°C			+165		°C
Undervoltage-Lockout Threshold	V _{CC} (UVLO)	V _{CC} rising, 2% falling-edg	e hysteresis	2.5	2.7	2.9	V
PGOOD Trip Threshold (Lower)		No load, falling edge, hyst	eresis = 1%	-13	-10	-7	%
PGOOD Trip Threshold (Upper)		No load, rising edge, hyste	eresis = 1%	+7	+10	+13	%
PGOOD Propagation Delay	tpgood	FB forced 2% beyond PG0 threshold	OOD trip		10		μs
PGOOD Output Low Voltage		I _{SINK} = 1mA				0.1	V
PGOOD Leakage Current Condition		High state, forced to 3.6V; $V_{CC} = V_{DD} = 3.6V$				1	μA
INPUTS AND OUTPUTS							
Logic Input High Voltage		SKIP, SHDN, MODE, FBSEL0, FBSEL1		2.0			V
Logic Input Low Voltage		SKIP, SHDN, MODE, FBSE	ELO, FBSEL1			0.8	V
Logic Input Current		SKIP, SHDN, MODE, FBS	ELO, FBSEL1	-0.5		+0.5	μA

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1, $V_{IN} = +3.3V$, $V_{CC} = V_{DD} = \overline{SHDN} = MODE = +3.3V$, $V_{REFIN} = V_{REF}$, $\overline{SKIP} = GND$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Note 5)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
PWM CONTROLLER							
	VIN			1.3		3.6	
Input Voltage Range	V _{CC} , V _{DD}					3.6	V
Output Adjust Range		$V_{OUT} \le V_{IN}$		0.5		V _{CC}	V
	V _{FB} - V _{REFIN}	$V_{IN} = +3.3V, I_{LOAD} = 0, N$	10DE = V _{CC}	-5		+5	mV
			$\label{eq:FBSEL0} \begin{split} FBSEL0 &= V_{CC},\\ FBSEL1 &= V_{CC},\\ REFIN &= REF \end{split}$	2.438		2.562	
Feedback Voltage Accuracy		V _{IN} = +3.3V, I _{LOAD} = 0,	FBSEL0 = V _{CC} , FBSEL1 = GND, REFIN = REF	1.755		1.845	V
	VFB	MODE = low	$\label{eq:FBSEL0} \begin{array}{l} FBSEL0 = GND,\\ FBSEL1 = V_{CC},\\ REFIN = REF \end{array}$	1.463		1.538	
			FBSEL0 = GND, FBSEL1 = GND, REFIN = 0.5V	0.487	0.51	0.513	
Sink-Mode Detect Threshold	Vfb - Vrefin	MODE = V_{CC} , V_{REFIN} = +	0.5V to +1.5V	+15		+35	mV
Source-Mode Detect Threshold	V _{FB} - V _{REFIN}	MODE = V_{CC} , V_{REFIN} = +	0.5V to +1.5V	-35		-15	mV
nFET On-Resistance	RNMOS	$V_{CC} = V_{DD} = V_{IN} = +3.3V$	′, I _{LOAD} = 0.5A			0.10	Ω
Switching Frequency	fsw	(Note 2)				1	MHz
Current-Limit Threshold	I _{LIMIT_P}	$V_{IN} = +3.3V$, MODE = GN positive or sourcing mode		3.35		5.05	А
Pulse-Skipping Current Threshold	I _{SKIP_P}	$V_{IN} = +3.3V$, MODE = GND or V _{CC} , positive or sourcing mode		0.4		1.2	А
			$R_{TOFF} = 33.2 k\Omega$	0.250		0.425	
Off-Time	tOFF	V _{FB} > 0.3 × V _{TARGET} (Note 4)	$R_{TOFF} = 110 k\Omega$	0.8		1.2	μs
			$R_{TOFF} = 499 k\Omega$	3.8		5.2	
Maximum On-Time	ton(max)			5			μs
SS Source Current	ISS(SRC)			3		7	μA
SS Sink Current	ISS(SNK)			100			μΑ

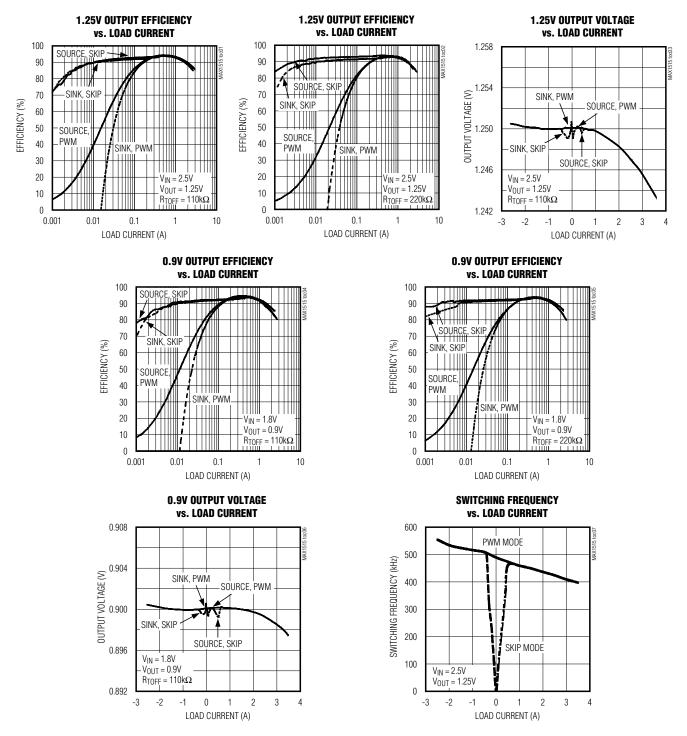
MAX1515

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $V_{IN} = +3.3V$, $V_{CC} = V_{DD} = \overline{SHDN} = MODE = +3.3V$, $V_{REFIN} = V_{REF}$, $\overline{SKIP} = GND$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Note 5)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
No-Load Supply Current	+ I ^{IN}	V _{IN} = 3.3V (Note 4)	MODE = GND, FBSEL0 = FBSEL1 = GND, VFB = 1.01 x VTARGET			900	μΑ
			MODE = V _{CC} V _{FB} = V _{TARGET}			1300	
	+ IIN + IDD	SHDN = MODE = GND, L	X = 0V or 3.3V			20	
Shutdown Supply Currents	I _{IN}	$\overline{\text{SHDN}}$ = MODE = GND, L	X = 0V			20	μA
	I _{LX}	$\overline{\text{SHDN}}$ = MODE = GND, L	X = 3.3V			20	
REFERENCE							
Reference Voltage	V _{REF}	$V_{CC} = +3.0V \text{ to } +3.6V$		1.086		1.114	V
Reference Load Regulation		$I_{REF} = -1\mu A$ to +50 μA				12	mV
REFIN Input Voltage Range	VREFIN	$V_{CC} = +3.0V$ to +3.6V, V_{CC}	> V _{REFIN} + 1.35V	0.5		1.5	V
	Vrefin -	$V_{REFIN} = +0.5V \text{ to } +1.5V$	I _{REFOUT} = -1mA to +1mA	-15		+15	
REFOUT Output Accuracy	Vrefout	$V_{REFIN} = +0.5V \text{ to } +1.5V$	I _{REFOUT} = -5mA to +5mA	-25		+25	mV
FAULT DETECTION							
Undervoltage-Lockout Threshold	V _{CC(UVLO)}	V _{CC} rising, 2% falling-edge	e hysteresis	2.40		2.95	V
PGOOD Trip Threshold (Lower)		No load, falling edge, hysteresis = 1%		-13		-7	%
PGOOD Trip Threshold (Upper)		No load, rising edge, hysteresis = 1%		+7		+13	%
INPUTS AND OUTPUTS							
Logic Input High Voltage		SKIP, SHDN, MODE, FBSE	ELO, FBSEL1	2.0			V
Logic Input Low Voltage		SKIP, SHDN, MODE, FBSE	ELO, FBSEL1			0.8	V

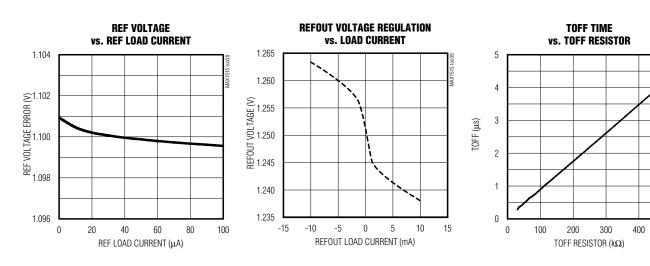
Note 2: Guaranteed by design. Not production tested.

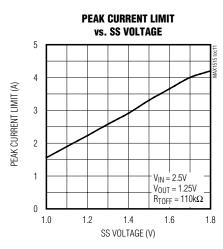

Note 3: Not tested; guaranteed by layout. Maximum output current may be limited by thermal capability to a lower value.

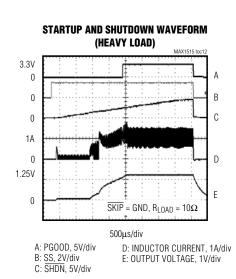
Note 4: V_{TARGET} is the set output voltage determined by V_{REFIN}, FBSEL0, and FBSEL1.

Note 5: Specifications to -40°C are guaranteed by design, not production tested.

_Typical Operating Characteristics

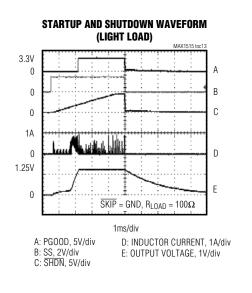

(MAX1515 Circuit of Figure 1, V_{IN} = 2.5V, V_{DD} = V_{CC} = \overline{SHDN} = MODE = 3.3V, T_A = +25°C, unless otherwise noted.)

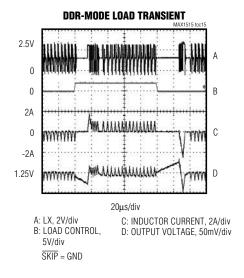


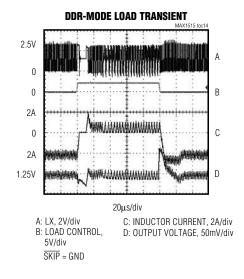

MAX1515

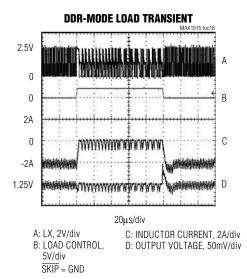
Typical Operating Characteristics (continued)

(MAX1515 Circuit of Figure 1, V_{IN} = 2.5V, V_{DD} = V_{CC} = SHDN = MODE = 3.3V, T_A = +25°C, unless otherwise noted.)






500


Typical Operating Characteristics (continued)

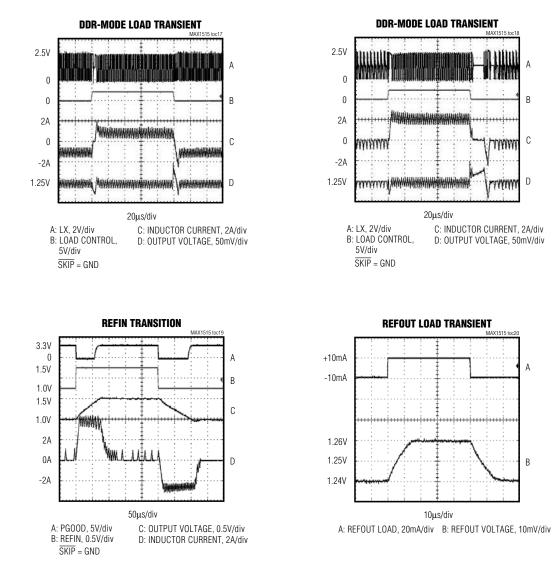
(MAX1515 Circuit of Figure 1, $V_{IN} = 2.5V$, $V_{DD} = V_{CC} = \overline{SHDN} = MODE = 3.3V$, $T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

В

С

D


А

В

TYYYYY

PYYYYYY

(MAX1515 Circuit of Figure 1, V_{IN} = 2.5V, V_{DD} = V_{CC} = SHDN = MODE = 3.3V, T_A = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 2	PGND	Power Ground. Internal connection to the source of the internal synchronous-rectifier switch. Connect both PGND pins together.
3	IC	Internally Connected Pin. Connect to PGND.
4	V _{DD}	Supply Input for the Low-Side Gate Drive and REFOUT Buffer. Connect to the system supply voltage, +3.0V to +3.6V. Bypass to PGND with a 1μ F (min) ceramic capacitor. V _{DD} supplies power to the drivers and the REFOUT buffer.
5	REFOUT	REFIN Buffered Output. REFOUT provides a buffered output voltage of REFIN when MODE = V_{CC} . Bypass to GND with a 0.47µF ceramic capacitor. REFOUT is disabled when MODE = GND.
6	SS	Soft-Start. Connect a capacitor from SS to GND to limit the inrush current during startup.
7	PGOOD	Power-Good Open-Drain Output. PGOOD is low when the output voltage is more than 10% above or below the normal regulation point. PGOOD is high impedance when the output is in regulation. PGOOD is low in shutdown.
8	TOFF	Off-Time Select Input. Connect a resistor from TOFF to GND to adjust the off-time.
9	FB	Feedback Input. In DDR mode (MODE = V_{CC}), FB regulates to the voltage at REFIN. In non-DDR mode (MODE = GND), connect directly to the output for preset voltage operation or to a resistive voltage-divider for adjustable-mode operation.
10	COMP	Integrator Compensation. Connect a 470pF capacitor from COMP to V_{CC} for integrator compensation.
11	V _{CC}	Analog Supply Input. Connect to the system supply voltage, +3.0V to +3.6V, with a series 10Ω resistor. Bypass to GND with a 1μ F (min) ceramic capacitor.
12	GND	Analog Ground. Connect exposed backside pad to GND.
13	REF	+1.1V Reference Voltage Output. Bypass to GND with a 1.0 μ F bypass capacitor. Can supply 50 μ A for external loads. Reference turns off in shutdown.
14	REFIN	External Reference Input. In DDR mode (MODE = V_{CC}), REFIN sets the voltage that FB regulates to. In non-DDR mode (MODE = GND), connect REFIN to REF.
15	SHDN	Shutdown Control. Low disables the switching regulator. SHDN and MODE select the operational mode of the MAX1515. SHDN MODE Description Low Low Step-down regulator and REFOUT OFF Low High Step-down regulator OFF, REFOUT active High Low Step-down regulator ON, non-DDR mode, REFOUT OFF High High Step-down regulator ON, DDR mode, REFOUT OFF
16	MODE	Mode-Select Pin. Mode sets the regulator into DDR mode or non-DDR operation mode, and controls the REFOUT buffer. When MODE = V_{CC} , MAX1515 is set in DDR mode and REFOUT is active. When MODE = GND, MAX1515 is set in non-DDR mode and REFOUT is disabled. See the <i>Modes of Operation (MODE)</i> section.
17	FBSEL0	Used with FBSEL1 to set the output voltage of the step-down regulator when MODE = GND. Connect to GND if MODE = V_{CC} .

Pin Description (continued)

PIN	NAME	FUNCTION
18	FBSEL1	Used with FBSEL0 to set the output voltage of the step-down regulator when MODE = GND. Connect to GND if MODE = V_{CC} .
19	SKIP	Pulse-Skipping Control Input. Connect to V_{CC} for low-noise, forced-PWM mode. Connect to GND to enable automatic pulse-skipping operation.
20	BST	Boost Flying-Capacitor Connection. Connect an external 0.01µF capacitor as shown in the standard application circuit (Figure 1).
21, 22	LX	Inductor Switched Node. LX is the connection for the source of the high-side NMOS power switch and drain of the low-side NMOS synchronous-rectifier switch. Connect both LX pins together.
23, 24	IN	Power Input. Supply voltage input for the switching regulator. Connect to a +1.3V to +3.6V supply voltage. Connect both IN pins together.

Table 1. Component Selection for Standard Applications

COMPONENT	±2A AT 1.25V _{OUT} DDR MODE (MODE = V _{CC})		±2A AT 0.9V _{OUT} DDR MODE (MODE = V _{CC})		
Input Voltage (VIN)	2.3V t	o 2.7V	1.6V t	o 2.0V	
Output Voltage (VOUT)	1.2	25V	0.	9V	
C _{IN} , Input Capacitor	33µF, 6.3V, ceramic TDK C3225XR0J336V		33µF, 6.3V, ceramic TDK C3225XR0J336V		
Switching Frequency (f _{SW})	250kHz	500kHz	250kHz	500kHz	
L, Inductor	2.5µH, 4.5A, Sumida CDRH8D28-2R5	1.2µH, 6.8A, Sumida CDR7D28MN-1R2	2.5µH, 4.5A, Sumida CDRH8D28-2R5	1.2µH, 6.8A, Sumida CDR7D28MN-1R2	
C _{OUT} , Output Capacitor	330μF, 18mΩ Sanyo 2R5TPE330MI POSCAP	220μF, 18mΩ Sanyo 2R5TPE220MI POSCAP	330μF, 18mΩ Sanyo 2R5TPE330MI POSCAP	220μF, 18mΩ Sanyo 2R5TPE220MI POSCAP	
RTOFF	221kΩ, 1%	110kΩ, 1%	221kΩ, 1%	110kΩ, 1%	

Table 2. Component Suppliers

WEBSITE
www.coilcraft.com
www.coiltronics.com
www.kemet.com
www.panasonic.com
www.sanyo.com
www.sumida.com
www.t-yuden.com
www.component.tdk.com
www.tokoam.com

Standard Application Circuit

The MAX1515 standard application circuit (Figure 1) generates a tracking output voltage and a reference buffer output required for DDR termination regulators. See Table 1 for component selections. Table 2 lists the component manufacturers.

Detailed Description

The MAX1515 synchronous, current-mode, constant off-time, PWM DC-DC converter steps down an input voltage (V_{IN}) from +1.3V to +3.6V to an output voltage from +0.5V to +2.7V. The MAX1515 output delivers up to 3A of continuous current. Internal 40m Ω NMOS power switches improve efficiency, reduce component count, and eliminate the need for a boost diode or any external Schottky diodes (Figure 2).

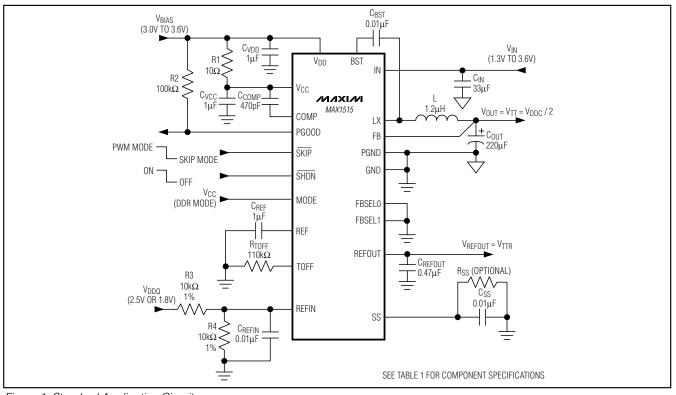


Figure 1. Standard Application Circuit

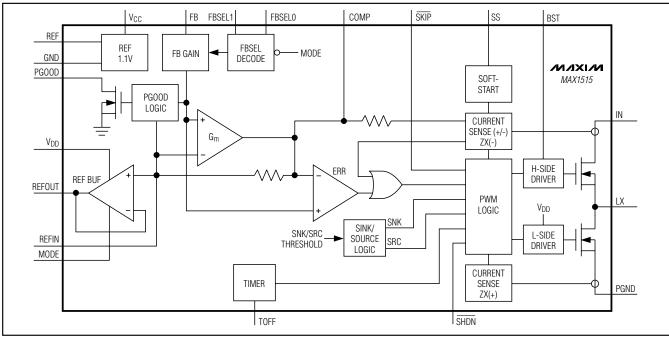


Figure 2. Functional Diagram

MAX1515

MAX1515

+3.3V Bias Supply (Vcc and VDD)

The MAX1515 requires a 3.3V bias supply for its internal circuitry. Typically, this 3.3V bias supply is the notebook's 95%-efficient, 3.3V system supply. The 3.3V bias supply must provide V_{CC} (PWM controller) and V_{DD} (gate-drive and reference buffer power), so the maximum current drawn is:

 $I_{BIAS} = I_{CC} + I_{REFOUT} + f_{SW} (Q_{G(LOW)} + Q_{G(HIGH)})$

where I_{CC} is 450 μ A (typ), f_{SW} is the switching frequency, and Q_{G(LOW}) and Q_{G(HIGH}) are the internal MOS-FET total gate charge of approximately 1nC.

The input supply (V_{IN}) and 3.3V bias inputs (V_{CC} and V_{DD}) can be connected together if the input source is a fixed 3.0V to 3.6V supply. If the 3.3V bias supply powers up prior to the input supply, the enable signal (SHDN going from low to high) must be delayed until the input voltage is present to ensure startup.

Current Limit

The MAX1515 provides peak current limiting to protect the MOSFETs during source/sink overload and short circuit. During source mode the controller switches the high-side MOSFET off when the inductor current exceeds 4.2A. Use the following equation to calculate the maximum source current:

$$I_{\text{SOURCE}_{MAX}} = I_{\text{LIMIT}_{P}} - \frac{V_{\text{OUT}} \times t_{\text{OFF}}}{2 \times L}$$

where I_{SOURCE_MAX} is the maximum source current, I_{LIMIT_P} is the source inductor current limit (4.2A typ), and toFF is the fixed off-time. For typical operating conditions and component selection, this results in a maximum source current of 3.7A.

In sink mode, the MAX1515 does not issue an off-time until the inductor current is above -3.2A. Use the following equation to calculate the maximum sink current:

$$I_{SINK_MAX} = I_{LIMIT_N} + \frac{V_{OUT}t_{OFF} - 2(V_{IN} - V_{OUT}) t_{DLY}}{2 L}$$

where I_{SINK_MAX} is the maximum sink current, I_{LIMIT_N} is the sink inductor current limit (-3.0A typ), t_{DLY} is the current-limit propagation delay of approximately 500ns, and t_{OFF} is the fixed off-time. For typical operating conditions and component selection, this results in a maximum sink current of -2.5A.

Soft-Start Current Limit

Soft-start allows a gradual increase of the internal current limit to reduce input surge currents at startup and at exit from shutdown. A timing capacitor, C_{SS} , placed from SS to GND sets the rate at which the internal current limit is changed. Upon power-up, when the device comes out of undervoltage lockout (2.6V typ) or after the SHDN pin is pulled high, a 5µA (typ) constant-current source charges the soft-start capacitor and the voltage on SS increases. When the voltage on SS is less than approximately 0.7V, the current limit is set to zero. As the voltage increases from 0.7V to approximately 1.8V, the current limit is adjusted from 0 to the current-limit threshold (see the *Electrical Characteristics*). The voltage across the soft-start capacitor changes with time according to the equation:

$$V_{SS} = \frac{I_{SS(SRC)} \times t}{C_{SS}}$$

where I_{SS(SRC)} is the soft-start source current from the *Electrical Characteristics*.

The time when full current limit is available is given by:

$$t = \frac{C_{SS} \times 1.8V}{I_{SS(SRC)}}$$

The soft-start current limit varies with the voltage on the soft-start pin, SS, according to the equation:

$$SSI_{LIMIT} = \frac{V_{SS} - 0.7V}{V_{REF}} \times I_{LIMIT_P}$$

where I_{LIMIT_P} is the positive current threshold from the *Electrical Characteristics*. The constant-current source stops charging once the voltage across the soft-start capacitor reaches 1.8V (Figure 3).

Adjustable Positive Current Limit

The MAX1515 has internal current-limit circuitry that limits the maximum current through the NMOS to 4.2A. For applications that require a lower current limit, the maximum current limit can be reduced by placing a resistor (R_{SS}) from SS to GND. The time constant for the soft-start current limit is R_{SS} x C_{SS}.

$$R_{SS} = \left(\frac{V_{REF} \times I_{LIMIT}}{I_{LIMIT_P}} + 0.7V\right) / I_{SS(SRC)}$$

where I_{LIMIT} is the desired reduced current limit, and I_{LIMIT_P} and $I_{\text{SS(SRC)}}$ are taken from the *Electrical Characteristics*.

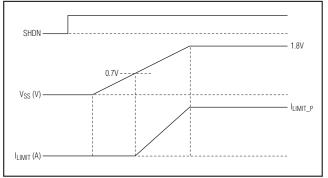


Figure 3. Soft-Start Current Limit

Short-Circuit/Overload Protection

The MAX1515 can sustain a constant short circuit or overload. Under a source-mode short-circuit or overload condition, when $V_{FB} < 0.3 \times V_{TARGET}$, the MAX1515 uses an extended off-time to control the current. Operation during a short circuit or overload is similar to forced-PWM mode except the off-time is 4 x tOFF. At the end of each off-time, the high-side NMOS switch turns on and remains on until the output is in regulation or the current through the switch increases to the maximum current limit. When the high-side NMOS switch turns off, it remains off for four times the programmed off-time (tOFF), and the low-side NMOS synchronous switch turns on. Since either NMOS switch is always on, the inductor current is continuous. The RMS inductor current during a short circuit remains below the maximum current-limit threshold. The MAX1515 operates using the extended off-time until the short circuit or overload is removed and $V_{FB} > 0.3 \times V_{TARGET}$. Prolonged short circuit or overload can result in thermal shutdown.

Summing Comparator

Three signals are added together at the input of the summing comparator (Figure 2): an output-voltage error signal relative to the reference voltage, an integrated output-voltage error-correction signal, and the sensed high-side NMOS switch current. The integrated error signal is provided by a transconductance amplifier with an external capacitor at COMP. This integrator provides high DC accuracy without the need for a high-gain amplifier. Connecting a capacitor at COMP modifies the overall loop response (see the *Integrator Amplifier* section).

Integrator Amplifier

The MAX1515 includes an internal transconductance amplifier that improves the output DC accuracy.

A capacitor, C_{COMP}, from COMP to V_{CC} compensates the transconductance amplifier. For stability, choose $C_{COMP} = 470 pF$.

Modes of Operation (MODE)

Use MODE to configure the MAX1515 for DDR mode (MODE = V_{CC}) or non-DDR mode (MODE = GND). In DDR mode, the MAX1515 can sink current even while SKIP is low (see the *Pulse Skipping (Source Mode)* and *Pulse Skipping (Sink Mode)* sections). Also, DDR mode enables the REFOUT buffer, providing a buffered output of the REFIN voltage. In non-DDR mode, the MAX1515 can only source current when SKIP is low. The REFOUT buffer is also disabled in non-DDR mode.

Light-Load Operation (SKIP)

The MAX1515 includes a pulse-skipping mode that reduces current consumption during light loads. To configure the MAX1515 for pulse-skipping mode, connect SKIP to GND. Forced-PWM mode keeps the switching frequency relatively constant and is desirable in applications that must always keep the frequency of conducted and radiated emissions in a narrow band. Visit Maxim's website (www.maxim-ic.com) for more information on how to control electromagnetic interference (EMI). Pulse-skipping mode has a dynamic switching frequency under light loads and is desirable in applications that require high efficiency at light loads.

Forced-PWM Mode

Connect SKIP to V_{CC} to force the MAX1515 to operate in low-noise, constant-off-time PWM mode. Constant off-time PWM architecture provides a relatively constant switching frequency (see the *Frequency Variation with Output Current* section). A single resistor (R_{TOFF}) sets the high-side NMOS power-switch off-time that results in a switching frequency up to 1MHz, allowing performance trade-offs in efficiency, switching noise, component size, and cost.

Forced-PWM mode regulates the output voltage by increasing the high-side NMOS switch on-time to increase the amount of energy transferred to the load per cycle. At the end of each off-time, the high-side NMOS switch turns on and remains on until the output is in regulation or the current through the switch reaches the 4.2A current limit. When the high-side NMOS switch turns off, it remains off for the programmed off-time (tOFF), and the low-side NMOS switch remains on until the end of tOFF. Since either NMOS switch is always on in PWM mode, the inductor current is continuous.

MODE REFOUT STEP-DOWN STEP-DOWN SHDN SKIP PIN BUFFER **REGULATOR MODE REGULATOR CURRENT** Low Low Х Off, High-Z Off Off Low High Х On Off Off On, non-DDR mode. Source only. High Low Low Off, High-Z FB regulates to preset voltage or 0.5V. Pulse-skipping mode. On, non-DDR mode. Source/sink. High Off, High-Z Low High FB regulates to preset voltage or 0.5V. Forced-PWM mode. On, DDR mode. Source/sink. High High Low On FB regulates to REFIN. Pulse-skipping mode. On, DDR mode. Source/sink. High On High High Forced-PWM mode. FB regulates to REFIN.

Table 3. Modes of Operation

X = Don't care.

Pulse Skipping (Source Mode)

Connect SKIP to GND to allow the MAX1515 to automatically switch between high-efficiency pulse-skipping mode under light loads and PWM mode under heavy loads. The transition from PWM mode to pulse-skipping mode occurs when the load current is half the pulseskipping mode current threshold (800mA typ).

In pulse-skipping mode, the switching frequency is reduced to increase efficiency. The inductor current is discontinuous in this mode, and the MAX1515 only initiates an LX switching cycle when VFB < VREFIN. When VFB falls below VREFIN, the high-side NMOS switch turns on and remains on until output is in regulation and the current through the switch increases to the positive pulse-skipping-mode current threshold (ISKIP_P) of 800mA. When the high-side NMOS switch turns on and remains on until the current through the switch increases to the set turns off, the low-side NMOS synchronous switch turns on and remains on until the current through the switch decreases to the zero-cross-current threshold of 200mA.

Pulse Skipping (Sink Mode)

When pulse-skipping operation is selected (SKIP = GND) while in DDR mode (MODE = V_{CC}), the MAX1515's source/sink controller switches operating modes when the output voltage crosses either hysteretic sink/source thresholds (V_{REFIN} ±25mV). In pulse-skipping source mode, the MAX1515 regulates the valley of the output ripple voltage (see the *Pulse Skipping (Source Mode)* section). When the output voltage rises above the sink-mode threshold, the MAX1515 enters sink mode. The MAX1515 begins each sink-mode cycle by turning on the low-side NMOS. The low-side NMOS remains on until the off-time (tOFF). After the low-side NMOS turns off, the high-side NMOS turns on

Table 4. Output-Voltage Programming

FBSEL0	FBSEL1	OUTPUT VOLTAGE
GND	GND	Adjustable VFB = VREFIN
GND	Vcc	1.5V
V _{CC}	GND	1.8V
V _{CC}	V _{CC}	2.5V

and remains on until the current through the switch reaches the zero-cross-current threshold of -350mA. As long as the output voltage remains below the feedback threshold, the controller remains in the high-impedance state. Under light-load conditions, this allows the sinkmode controller to automatically skip pulses. Under heavy-load conditions, the output voltage remains above the feedback threshold, forcing the sink-mode controller to emulate typical forced-PWM operation.

The pulse-skipping current threshold allows the sinkmode control scheme to automatically switch between pulse-skipping PFM and nonskipping PWM operation. This mechanism forces the boundary between continuous and discontinuous inductor-current operation to be half the negative pulse-skipping current threshold.

Output Voltage in Non-DDR Mode

In non-DDR mode (MODE = GND and VREFIN = VREF), the output of the MAX1515 is selectable between one of three preset output voltages: 2.5V, 1.8V, and 1.5V. For a preset output voltage, connect FB to the output voltage and connect FBSEL0 and FBSEL1 as indicated in Table 4. For an adjustable output voltage, connect FBSEL0 and FBSEL1 to GND and connect REFIN to a

resistive divider between REF and ground (Figure 5). Regulation is maintained for adjustable output voltages when VFB = VREFIN. Use 100k Ω for RB. RA is given by the equation:

$$V_{FB} = V_{REF} \left(\frac{R_B}{R_A + R_B} \right)$$

where $V_{REF} = 1.1V$.

The preset output voltages use an internally trimmed resistor-divider network that sets the output voltage to the correct level when REFIN is connected to REF. Connecting REFIN to other voltage levels while using the preset voltage modes results in a ratiometrically scaled output voltage.

Output Voltage in DDR Mode

In DDR mode (MODE = V_{CC}), the MAX1515 regulates FB to the voltage set at REFIN. For DDR applications, the termination supply must track to exactly half the memory supply voltage. Figure 1 shows the MAX1515 configured for DDR applications.

Reference Buffer (REFOUT)

A unity-gain amplifier provides a buffered output for the reference input (V_{REFIN}) when MODE = V_{CC}. This transconductance amplifier must be compensated with a 0.47µF or greater ceramic capacitor. Larger capacitor values decrease the amplifier's bandwidth, thereby increasing the response time to dynamic input-voltage changes. The buffer allows this dynamic reference to remain within ±20mV of the input voltage (V_{REFIN}) even when loaded with ±5mA. The input voltage range of the amplifier is 0.5V to 1.5V. The reference buffer shuts down when MODE = GND.

Power-Good Output (PGOOD)

PGOOD is the open-drain output for a window comparator that continuously monitors the output. PGOOD is actively held low in shutdown and during soft-start. After soft-start terminates, PGOOD becomes high impedance as long as the respective output voltage is within $\pm 10\%$ of the nominal regulation voltage. When the output voltage drops 10% below or rises 10% above the nominal regulation voltage, the MAX1515 pulls the power-good output (PGOOD) low by turning on the MOSFET (Figure 2). For logic-level output voltages, connect an external pullup resistor between PGOOD and V_{CC}. A 100k Ω resistor works well in most applications.

Thermal Shutdown

The MAX1515 features a thermal fault-protection circuit. When the junction temperature rises above +165°C, a thermal sensor shuts down the MAX1515 regardless of

M/X/M

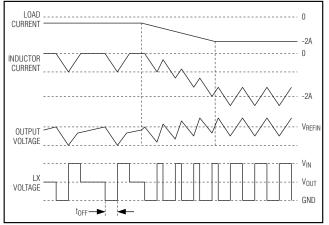


Figure 4. Sink-Mode Waveforms

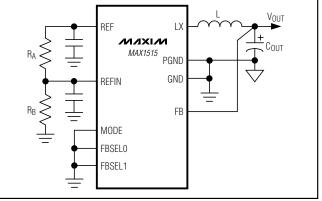


Figure 5. Setting VOUT with a Resistive Voltage-Divider at REFIN

 V_{SHDN} . The MAX1515 is reactivated after the junction temperature cools to +150°C.

Thermal Resistance

Junction-to-ambient thermal resistance, θ_{JA} , is highly dependent on the amount of copper area connected to the exposed backside pad. Airflow over the board significantly reduces θ_{JA} . For heatsinking purposes, evenly distribute the copper area connected at the IC among the high-current pins. Refer to the Maxim website (www.maxim-ic.com) for QFN thermal considerations.

Power Dissipation

Power dissipation in the MAX1515 is dominated by conduction losses in the two internal power switches. Power dissipation due to supply current in the control section and average current used to charge and discharge the gate capacitance of the internal switches (i.e., switching losses—PSL) is approximately:

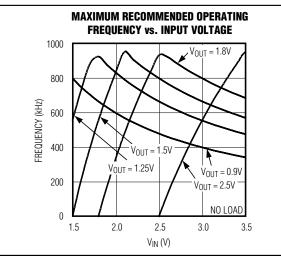


Figure 6. Maximum Operating Frequency vs. Input Voltage

where:

C = 5nF

f_{SW} = switching frequency

The combined conduction losses (PCL) in the two power switches are approximated by:

 $PCL = IOUT^2 \times R_{NMOS}$

where:

 $I_{OUT} = load current$

RNMOS = NMOS switch on-resistance

Design Procedure

For typical DDR applications, use the recommended component values in Table 1. For other applications, use the recommended component values in Table 5, or take the following steps:

- 1) Select the desired PWM-mode switching frequency. See Figure 6 for maximum operating frequency.
- 2) Select the constant off-time as a function of input voltage, output voltage, and switching frequency.
- 3) Select RTOFF as a function of off-time.
- 4) Select the inductor as a function of output voltage, off-time, and peak-to-peak inductor current.

Programming the No-Load Switching Frequency and Off-Time

The MAX1515 features a programmable PWM mode switching frequency, which is set by the input and output voltage and the value of RTOFF. RTOFF sets the high-side NMOS power switch off-time in PWM mode.

Table 5. Recommended ComponentValues (IOUT = 3A)

V _{IN} (V)	V _{OUT} (V)	f _{PWM} (kHz)	L (µH)	С _{ОՍТ} (µF)	R _{TOFF} (kΩ)
3.3	2.5	400	1.5	100	49.9
3.3	1.8	400	2.2	150	110
3.3	1.5	480	2.2	180	110
3.3	1.2	420	2.2	220	150
2.5	1.8	430	1.2	100	49.9
2.5	1.5	320	1.8	150	110
2.5	1.2	440	1.5	180	110

Use the following equation to select the off-time according to the desired no-load switching frequency in PWM mode:

$$t_{OFF} = \frac{V_{IN} - V_{OUT}}{f_{PWM} \times V_{IN}}$$

where:

tOFF = the programmed off-time

VIN = the input voltage

V_{OUT} = the output voltage

fPWM = no-load switching frequency, PWM mode Select RTOFF according to the formula:

$$\mathsf{R}_{\mathsf{TOFF}} = \left(\mathsf{t}_{\mathsf{OFF}} - 0.035\mu s\right) \frac{110k\Omega}{1.00\mu s}$$

VRTOFF is typically 1.1V and the recommended values for RTOFF range from $33.2k\Omega$ to $499k\Omega$ for off-times of 0.35µs to 4.5µs.

Frequency Variation with Output Current

The operating frequency of the MAX1515 in PWM mode is determined primarily by toFF (set by R_{TOFF}), V_{IN} , and V_{OUT} as shown in the following formula:

$$f_{PWM} = \frac{V_{IN} - V_{OUT} - V_{CHG}}{t_{OFF}(V_{IN} - V_{CHG} + V_{DISCHG})}$$

where:

 V_{CHG} = the voltage drop in the inductor charge path due to high-side FET R_{NMOS} and inductor DCR

V_{DISCHG} = the voltage drop in the inductor discharge path due to low-side FET R_{NMOS} and inductor DCR

ŋ

While sourcing current, V_{CHG} and V_{DISCHG} increase with source load current and the voltage across the inductor decreases. This causes the frequency to drop. Conversely, while sinking current, V_{CHG} and V_{DISCHG} decrease with sink load current and the voltage across the inductor increases. Approximate the change in frequency with the following formula:

$$\Delta f_{PWM} = -\frac{I_{OUT} \times R_{DROP}}{V_{IN} \times t_{OFF}}$$

where R_{DROP} is the resistance of the internal MOSFETs (40m Ω typ) and the inductor.

Inductor Selection

The key inductor parameters must be specified: inductor value (L) and peak current (IPEAK). The following equation includes a constant, denoted as LIR, which is the ratio of peak-to-peak inductor AC ripple current to maximum DC load current. A higher value of LIR allows smaller inductance but results in higher losses and ripple. A good compromise between size and losses is found at approximately a 25% ripple-current to load-current ratio (LIR = 0.25), which corresponds to a peak inductor current 1.125 times the DC load current:

$$L = \frac{V_{OUT} \times t_{OFF}}{I_{OUT(MAX)} \times LIR}$$

Additionally, the minimum inductance chosen must be high enough to limit the inductor current during the high-side switch on-time to less than $1A/\mu s$.

$$L_{MIN} \ge (V_{N(MAX)} - V_{OUT}) \times \frac{1 \mu s}{1 A}$$

The peak-inductor current at full load is $1.125 \times I_{OUT(MAX)}$ if the above equation is used; otherwise, the peak current is calculated by:

$$I_{PEAK} = I_{OUT(MAX)} + \frac{V_{OUT} \times t_{OFF}}{2 \times L}$$

Choose an inductor with a saturation current at least as high as the peak-inductor current. The inductor selected should exhibit low losses at the chosen operating frequency.

Input Capacitor Selection

The input-filter capacitors reduce peak currents and noise at the voltage source. Place a low-ESR and low-ESL 0.1µF capacitor for noise filtering no further than

5mm from IN. Select the bulk input capacitor according to the RMS input ripple-current requirements and voltage rating:

$$I_{RMS} = I_{OUT(MAX)} \left(\frac{\sqrt{V_{OUT}(V_{IN} - V_{OUT})}}{V_{IN}} \right)$$

Output Capacitor Selection

The output filter capacitor affects the output-voltage ripple, output load-transient response, and feedback-loop stability. For stable operation, the MAX1515 requires a minimum output ripple voltage of V_{RIPPLE} \geq 1% x V_{OUT}. The minimum ESR of the output capacitor is calculated by:

$$\text{ESR} \ge 1\% \times \frac{\text{L}}{\text{t}_{\text{OFF}}}$$

Stable operation for source-only applications requires the correct output filter capacitor. When choosing the output capacitor, ensure that:

$$C_{OUT} \ge \frac{V_{REFIN} \times t_{OFF}}{V_{OUT}} \times 105 \mu F/\mu s$$

For DDR applications, the output capacitance requirement needs to be two times the above requirement. The output filter capacitor must have low enough equivalent series resistance (ESR) to meet output ripple and load-transient requirements, yet have high enough ESR to satisfy stability requirements.

For applications where the output is subject to violent load transients, the output capacitor's size depends on how much ESR is needed to prevent the output from dipping too low under a load transient. Ignoring the sag due to finite capacitance:

$$R_{ESR} \leq \frac{V_{STEP}}{\Delta I_{OUT(MAX)}}$$

In applications without large and fast load transients, the output capacitor's size often depends on how much ESR is needed to maintain an acceptable level of output voltage ripple. The output ripple voltage of a stepdown controller equals the total inductor ripple current multiplied by the output capacitor's ESR. Therefore, the maximum ESR required to meet ripple specifications is:

$$R_{ESR} \leq \frac{V_{RIPPLE}}{I_{OUT(MAX)} LIR}$$

The actual capacitance value required relates to the physical size needed to achieve low ESR, as well as to the chemistry of the capacitor technology. Thus, the capacitor is usually selected by ESR and voltage rating rather than by capacitance value (this is true of tantalums, OS-CONs, polymers, and other electrolytics).

Transient Response

The inductor ripple current also impacts transientresponse performance, especially at low $V_{IN} - V_{OUT}$ differentials. Low inductor values allow the inductor current to slew faster, replenishing charge removed from the output filter capacitors by a sudden load step. The worst-case output sag can be calculated from:

$$\begin{split} \mathsf{V}_{\mathsf{SAG}} &\approx \; \frac{(\Delta\mathsf{I}_{\mathsf{OUT}}\mathsf{L} + \mathsf{V}_{\mathsf{OUT}}\mathsf{t}_{\mathsf{OFF}})^2}{2\mathsf{L} \times \mathsf{C}_{\mathsf{OUT}}(\mathsf{V}_{\mathsf{N}} - \mathsf{V}_{\mathsf{OUT}})} \; + \; \frac{\mathsf{V}_{\mathsf{OUT}}\mathsf{t}_{\mathsf{OFF}}^2}{2\mathsf{L} \times \mathsf{C}_{\mathsf{OUT}}} \\ &+ \frac{\Delta\mathsf{I}_{\mathsf{OUT}}\mathsf{t}_{\mathsf{OFF}}}{\mathsf{C}_{\mathsf{OUT}}} \end{split}$$

where ΔI_{OUT} is the maximum load transient.

Typically, the maximum load transient is equal to the maximum load current ($\Delta I_{OUT} = I_{LOAD}(MAX)$). For DDR-termination applications, the output must source and sink current. In these applications, the actual peak-topeak transient current (ΔI_{OUT}) is defined as the sum of both the maximum source and sink load currents:

$$\Delta I_{OUT} = ||_{SOURCE(MAX)}| + ||_{SINK(MAX)}|$$

The amount of overshoot during a full-load to no-load transient due to stored inductor energy can be calculated as:

$$V_{\text{SOAR}} \approx \frac{(\Delta I_{\text{OUT}})^2 \text{ L}}{2C_{\text{OUT}} V_{\text{OUT}}}$$

When using the pulse-skipping source/sink feature (MODE = V_{CC} and \overline{SKIP} = GND), the output transient voltage should not exceed or drop below the sink and source (respectively) detection thresholds (V_{REFIN} ±20mV).

Applications Information

Dropout Operation

The MAX1515 improves dropout performance by having a maximum on-time of 10µs. When working with low input voltages, the duty-factor limit must be calculated using worst-case values for on- and off-times. Keep in mind that transient-response performance of step-down regulators operated too close to dropout is poor, and bulk output capacitance must often be added (see the VSAG equation in the *Design Procedure* section).

The absolute point of dropout is when the inductor current ramps down during the off-time (ΔI_{DOWN}) as much as it ramps up during the on-time (ΔI_{UP}). The ratio h = $\Delta I_{UP}/\Delta I_{DOWN}$ indicates the controller's ability to slew the inductor current higher in response to increased load, and must always be greater than 1. As h approaches 1, the absolute minimum dropout point, the inductor current cannot increase as much during each switching cycle and V_{SAG} greatly increases unless additional output capacitance is used.

A reasonable minimum value for h is 1.5, but adjusting this up or down allows trade-offs between V_{SAG} , output capacitance, and minimum operating voltage. For a given value of h, the minimum operating voltage can be calculated as:

$$V_{\text{IN(MIN)}} = V_{\text{OUT}} + V_{\text{CHG}} + \frac{h \times t_{\text{OFF}} \times (V_{\text{OUT}} + V_{\text{DISCHG}})}{t_{\text{ON(MAX)}}}$$

where V_{CHG} and V_{DISCHG} are the parasitic voltage drops in the charge and discharge paths (see the *Frequency Variation with Output Current* section), t_{ON(MAX)} is from the *Electrical Characteristics*, and t_{OFF} is the programmed off-time. The absolute minimum input voltage is calculated with h = 1.

If the calculated $V_{IN(MIN)}$ is greater than the required minimum input voltage, then toFF must be reduced or output capacitance added to obtain an acceptable V_{SAG} . If operation near dropout is anticipated, calculate V_{SAG} to be sure of adequate transient response.

Dropout Design Example:

 $V_{OUT} = 2.5V$ $t_{OFF} = 1\mu s$ $V_{CHG} = V_{DISCHG} = 100mV$ h = 1.5

$$V_{\text{IN(MIN)}} = 2.5V + 0.1V + \frac{1.5 \times 1\mu s \times (2.5V + 0.1V)}{10\mu s}$$

= 2.99V

Dynamic Output-Voltage Transitions

By changing the voltage at REFIN, the MAX1515 can be used in applications that require dynamic outputvoltage changes between two set points. An n-channel MOSFET can be used to dynamically adjust the second controller's output voltage by changing the resistive

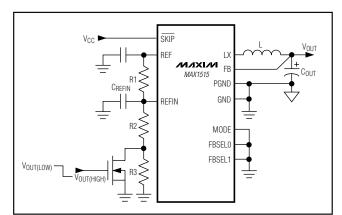


Figure 7. Dynamic Output Voltages

voltage-divider network at REFIN. The resulting output voltages are determined by the following equations:

$$V_{OUT(LOW)} = V_{REF} \left(\frac{R2}{R1 + R2}\right)$$
$$V_{OUT(HIGH)} = V_{REF} \left(\frac{R2 + R3}{R1 + R2 + R3}\right)$$

Forced-PWM operation is required to ensure fast, accurate negative voltage transitions when REFIN is lowered. Since forced-PWM operation disables the zero-crossing comparator, the inductor current can reverse under light loads, quickly discharging the output capacitors.

For a step voltage change at REFIN, the rate-of-change of the output voltage is limited by the inductor current ramp, the total output capacitance, the current limit, and the load during the transition. The inductor current ramp is limited by the voltage across the inductor and the inductance. The total output capacitance determines how much current is needed to change the output voltage. Additional load current slows down the output-voltage change during a positive REFIN voltage change, and speeds up the output-voltage change during a negative REFIN voltage change. Increasing the current-limit setting speeds up a positive output-voltage change.

To avoid tripping the power-good comparators, the reference-voltage slew rate must be slow enough that the output voltage (V_{OUT}) can accurately track the reference voltage (V_{REFIN}). Add a capacitor across REFIN and GND to control the rate-of-change of the REFIN voltage during dynamic transitions and filter noise.

With the additional capacitance, the REFIN voltage slews between the two set points with a time constant given by $R_{EQ} \times C_{REFIN}$, where R_{EQ} is the equivalent parallel resistance seen by the slew capacitor. Referring to Figure 7, the time constant for a positive REFIN voltage transition is:

$$\tau_{\text{POS}} = \left[\frac{\text{R1} \times (\text{R2} + \text{R3})}{\text{R1} + \text{R2} + \text{R3}}\right] C_{\text{REFIN}}$$

and the time constant for a negative REFIN voltage transition is:

$$\mathbf{r}_{\text{POS}} = \left[\frac{\text{R1} \times \text{R2}}{\text{R1} + \text{R2}}\right] C_{\text{REFIN}}$$

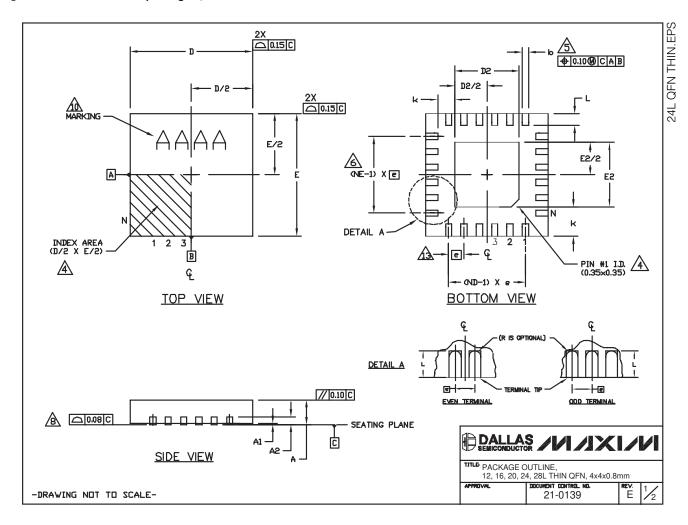
PC Board Layout Guidelines

Good layout is necessary to achieve the intended output power level, high efficiency, and low noise. Good layout includes the use of a ground plane, careful component placement, and correct routing of traces using appropriate trace widths. Refer to the MAX1515 EV kit for a reference of a good layout.

The following points are in order of decreasing importance:

- Minimize switched-current and high-current ground loops. Connect the input capacitor's ground, the output capacitor's ground, and PGND at a single point. Connect the resulting island to GND at only one point.
- Connect the input filter capacitor less than 5mm away from IN. The connecting copper trace carries large currents and must be at least 1mm wide, preferably 2.5mm.
- Place the LX node components as close together and as near to the device as possible. This reduces noise, resistive losses, and switching losses.
- 4) A ground plane is essential for optimal performance. In most applications, the circuit is located on a multilayer board, and full use of the four or more layers is recommended. Use the top and bottom layers for interconnections and the inner layers for an uninterrupted ground plane. Avoid large AC currents through the ground plane.

TRANSISTOR COUNT: 8258 PROCESS: BICMOS



MAX1515 TOP VIEW FBSEL1 **FBSEL0** MODE REFIN SHDN REF 18 17 16 15 14 13 SKIP 19 12 GND 11 20 BST V_{CC} 10 21 COMP LX MIXIM MAX1515 9 22 FB LX 8 23 IN TOFF 7 IN 24 PGOOD 2 3 4 5 6 + 11 PGND PGND $\underline{\circ}$ VDD REFOUT SS THIN QFN (4mm x 4mm)

Pin Configuration

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

				COM	<u>10N</u>	DIME	INSI	SNE									E	XPDS	SED	PAD	VAR	IATI	DNS	
PKG	12	12L 4×4		16L 4×4		20L 4×4		24L 4×4		28L 4x4		(4	PKG.	PKG.	D2			E2			DOWN BONDS			
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MĨN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	Ĺ	CODES	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	0.02	0.05	0,0	0.02	0.05	0,0	0.02	0.05	0,0	20,0	0.05		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0.20 REF		0.20 REF			0.20 REF			0.20 REF		1	0.20 REF				T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES	
b		0.30	0.35	0.25	0.30	0.35		0.25	0.30	0.18	0.23		0.15	0.20	0.25		T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D _	3,90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-2 T2044-3	1.95	2.10 2.10	2.25	1.95	2.10 2.10	2.25	YES
E e	3.90	4.00	4.10	3.90	4.00 65 BS	4.10		4.00 .50 BS	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2444-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
e k	0.25	- 10		0.25		L. 	0.25		L. -	0.25	- 1	sc.	0.25	-	<u> </u>		T2444-2	2.45	2.60	2.63	2.45	2.60	2.63	YES
<u> </u>	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40		0.30	0.40	0.50		T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	
N	1	12			16			20			24			28			T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	
ND		3		4			5			6			7											
NE		3		4		5		6		7														
edec /ar.		VGGB		WGGC		WGGD-1		WGGD-2			WGGE													
2. 3.	dimens All din N IS T	MENSIO He tot	ns are Tal nui	e in mi Meier (LUMETI DF TER	ers. A Minals	IGLES	ARE IN	DEGR	EES.		411 60		70										
1. 2. 3.	DIMENS ALL DIM N IS T THE TE JESD 9 THE ZO	Mensio He tot Erminal 95–1 Si Dne ind	NS ARE TAL NUT . #1 ID PP−012 DICATED	e in Mi Meier (Dentifie 2. deta). the	LUMETI DF TER TR AND ILS OF TERMIN	ers, a minals termi termi Ial #1	NGLES NAL NIL NAL #1 IDENTI	are in Jmberii Identi Fier M	ng coi Fier ai Ay be	ees. Nventk Re opt Eithef	rional, R A MC	BUT M	ust be Marke	ED FEA										
1. 2. 3. (A)	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND ANI	MENSIO HE TOT RMINAL 5-1 SI DNE INE SION 6 TERMIN D NE F	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MBER (DENTIFIE 2. DETA 2. THE 2. THE 3. TO I TO THE	LUMETI DF TER TR AND ILS OF TERMIN METALLI	ERS. AI MINALS TERMI TERMI IAL #1 ZED TE ER OF	NAL NU NAL NU NAL #1 IDENTH RMINAL TERMII	ARE IN IMBERII IDENTI FIER M AND NALS C	I DEGR NG COI FIER AI AY BE IS MEA IN EAC	ees. Nventk Re opt Eithef Sured	rional, R A MC D Betwi	BUT M DLD OR EEN 0.1	UST BE MARKE 25 mm	ED FEA										
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI	MENSIO HE TOT RMINAL 55-1 SI 50NE INE SION 6 TERMIN D NE F ULATION	NS ARI TAL NUI PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MBER (2. Deta 2. Deta 3. The 3. To I 5. To I 5. To The DSSIBLE	LUMETI DF TER TER AND ILS OF TERMIN METALLI NUMB	ers. A minals termi termi val #1 Zed te ber of symme	NGLES NAL NU IAL ∦1 IDENTII RMINAL TERMII TRICAL	ARE IN IDENTI FIER M AND WALS C FASHIN	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC DN.	ees. Nventik Re opt Eithef Sured H d a	rional, R A MC D Betwi ND E S	BUT M DLD OR EEN 0.: SIDE R	UST BE MARKE 25 mm ESPECTI	ED FEA	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND ANI DEPOPI COPLAY	MENSIO HE TOT RMINAL 5-1 SI DNE IND SION 6 TERMIN D NE F ULATION NARITY	NS ARI TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE	E IN MI MBER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 3. TO I 3. TO I 5. TO I 5. TO I	LUMETI DF TER ILS OF TERMIN METALU NUMB IN A	ers. A minals termi termi ial #1 zed te der of symme posed	NGLES NAL NU IDENTII RMINAL TERMIN TRICAL HEAT :	ARE IN IDENTI FIER M AND NALS C FASHIN	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC DN.	ees. Nventik Re opt Eithef Sured H D A S Well	rional, R A MC D Betwi ND E S	BUT M SLD OR EEN 0.: SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS	ED FEA	TURE.									
1. 2. 3. 4. 5. 7. 6. 7. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI	MENSIO HE TOT RMINAL 5-1 SI DNE INC SION 6 TERMIN D NE F ULATION NARITY NG CON	NS ARI TAL NUL PP-012 DICATED APPLIE APPLIE APPLIE IFORMS	E IN MI MBER (DENTIFIE 2. DETA 2. DET	LUMETI DF TER ILS OF TERMIN METALLI IN NMB IN A THE EXI DEC M	ERS. A MINALS TERMIN TERMIN VAL #1 ZED TE DER OF SYMME POSED 0220,	NGLES	ARE IN IMBERI IDENTI FIER M AND NALS C FASHIN SINK S F FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444	ees. Nventik Re opt Eithef Sured H D A S Well	rional, R A MC D Betwi ND E S	BUT M SLD OR EEN 0.: SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS	ED FEA	TURE.									
1. 2. 3. 4. 7. 9. 9.	DIMENS ALL DIM N IS TH THE TE JESD 9 THE ZC DIMENS FROM DIMENS FROM COPLAN DRAWIN	MENSIO HE TOT RMINAL 5-1 SI DNE INE SION & TERMIN D NE F ULATION NARITY NG CON G IS FC	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC	E IN MI MBER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 2. DE 2. DETA 2. DE 2. DETA 2.	LUMETI DF TER TERMIN METALU ILS OF TERMIN METALU IN NUMB IN A THE EXI DRIENTA	ERS. AI MINALS TERMI TERMI TERMI MAL #1 ZED TE DER OF SYMME POSED 0220, ATION F	NAL NU NAL NU IDENTI RMINAL TERMIN TRICAL HEAT EXCEPT	ARE IN IMBERI IDENTI FIER M AND NALS C FASHIN SINK S F FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444	ees. Nventik Re opt Eithef Sured H D A S Well	rional, R A MC D Betwi ND E S	BUT M SLD OR EEN 0.: SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS	ED FEA	TURE.									
1. 2. 3. 4. 7. 9. 11.	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 DEPOPU COPLAY DRAWIN JARKING	MENSION HE TOT ERMINAL 55-1 SI DONE IND SION & TERMINA D NE F ULATION NARITY NG CON G IS FC ARITY S	NS ARE TAL NUE PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC SHALL 1	E IN MI MBER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 3. TO I 5. TO I 5. TO I 5. TO JE KAGE (NOT EX	LUMETI DF TER R AND LLS OF TERMIN METALU IN A THE EX DEC M DRIENTA CEED (ERS. AI MINALS TERMI TERMI TERMI TERMI ZED TE ER OF SYMME POSED 0220, TION F 0.08mm	NAL NU NAL NU IDENTI RMINAL TERMIN TRICAL HEAT EXCEPT	ARE IN IMBERI IDENTI FIER M AND NALS C FASHIN SINK S F FOR	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444	ees. Nventik Re opt Eithef Sured H D A S Well	rional, R A MC D Betwi ND E S	BUT M SLD OR EEN 0.: SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS	ED FEA	TURE.									
1. 2. 3. 4. 7. 9. 11. 12. 11. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 DIMENS FROM 1 ND ANI DEPOPU COPLAN MARKING COPLAN	MENSION HE TOT ERMINAL 55-1 SI 50-1 SI 60-1 SI	NS ARI	E IN MI MBER (DENTIFIE 2. DETA 2. DETA 2. THE S TO I S TO	LLIMETI DF TER R AND ILS OF TERMIN METALLI : NUMB :	ERS. AI MINALS TERMIN TERMIN VAL #1 ZED TE DER OF SYMME POSED 0220, VIION F 0.08mm 0.08mm 0.08mm	NGLES NAL NL IDENTI IDENTI RMINAL TERMIN TRICAL HEAT EXCEPT	ARE IN IDENTI FIER M AND VALS C FASHIG SINK S F FOR VCE OF	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444- NLY.	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL -3, T2	rional, R A MC D Betwi ND E L AS TI 2444-4	BUT M DLD OR EEN Q.: SIDE RI HE TER - AND 1	UST BE MARKE 25 mm ESPECTI MINALS 12844-	LOCAT ED FEA AND IVELY.	TURE.								X	
1. 2. 3. 4. 7. 9. 11. 12. 12. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DIMENS ALL DIM N IS T THE TE JESD 90 THE ZC DIMENS FROM DIMENS FROM DIMENS FROM DIMENS FROM DIMENS FROM DIMENS COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN MARKING COPLAN COP	MENSION HE TOT ERMINAL 55-1 SI 50-1 SI 60-1 SI	NS ARI	E IN MI MBER (DENTIFIE 2. DETA 2. DETA 2. THE S TO I S TO	LLIMETI DF TER R AND ILS OF TERMIN METALLI : NUMB :	ERS. AI MINALS TERMIN TERMIN VAL #1 ZED TE DER OF SYMME POSED 0220, VIION F 0.08mm 0.08mm 0.08mm	NGLES NAL NL IDENTI IDENTI RMINAL TERMIN TRICAL HEAT EXCEPT	ARE IN IDENTI FIER M AND VALS C FASHIG SINK S F FOR VCE OF	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444- NLY.	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL -3, T2	rional, R A MC D Betwi ND E L AS TI 2444-4	BUT M DLD OR EEN Q.: SIDE RI HE TER - AND 1	UST BE MARKE 25 mm ESPECTI MINALS 12844-	LOCAT ED FEA AND IVELY.	TURE.			PAC	KAGE	OUTLI 24, 281		QFN, 4		B mm

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

24

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2006 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.