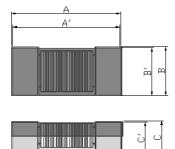
## **Telecoil-antennas Inductors**

PAS4420F-SERIES

## 1. Features

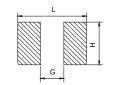
- 1. Hearing Aid Compatibility-/Telecoil-antennas;
- 2. PAS4420F-series realizes small size and low profile. 4.4x2.0x2.0 mm.
- 3. 100% Lead (Pb) & Halogen-Free and RoHS compliant.
- 4. Meets the T3 FCC requirements (HAC-Act) acc. ANSI C63.19
- 5. Operating temperature -40~+125°C (Including self temperature rise)






# 2. Applications

- 1. T-coil/HAC-coil for hearing and aid compatible cell phones.
- 2. Decoupling in RF and IF-circuit.
- 3. Transponder antenna.


## 3. Dimensions



| Size     | A(mm)     | A'(mm)    | B(mm)     | B'(mm)    | C(mm)     | C'(mm)    | D(mm)     |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| PAS4420F | 4.75±0.20 | 4.40±0.20 | 2.25±0.20 | 2.00±0.20 | 1.80±0.30 | 1.80±0.20 | 0.80 ref. |

**Recommend PC Board Pattern** 

Units: mm



| L(mm) | G(mm) | H(mm) |
|-------|-------|-------|
| 4.8   | 3.2   | 2.3   |

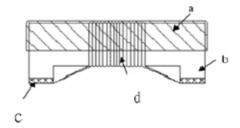
## 4. Part Numbering



A: Series

B: Dimension L x H

C: Lead Free Code


 $\begin{array}{ll} \mbox{D: Inductance} & \mbox{252=2500 uH} \\ \mbox{E: Inductance Tolerance} & \mbox{K=$\pm$10\%, M=$\pm$20\%} \end{array}$ 

F: Test Frequency 10 KHZ

## 5. Specification

| Part Number       | Inductance<br>(uH) | Tolerance | fLo<br>(kHz) | SRF<br>MHz(min) | RDC<br>(Ω)Max. | Rated current (mA) max. |
|-------------------|--------------------|-----------|--------------|-----------------|----------------|-------------------------|
| PAS4420F-301□-F10 | 300                | K,M       | 10           | 2.0             | 14             | 70                      |
| PAS4420F-401□-F10 | 400                | K,M       | 10           | 1.5             | 17             | 50                      |
| PAS4420F-252F10   | 2500               | K,M       | 10           | 1.0             | 82             | 40                      |
| PAS4420F-352 -F10 | 3500               | K,M       | 10           | 1.0             | 85             | 20                      |

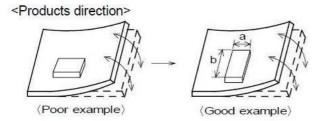
# 6. Material List



| No. | Description | Specification        |
|-----|-------------|----------------------|
| a.  | Upper Plate | UV Glue              |
| b.  | Core        | Ferrite Core         |
| С   | Termination | Ag/Ni/Sn             |
| d   | Wire        | Enameled Copper Wire |

# 7. Reliability and Test Condition

| Item                       | Performance                                                                                                                                  | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating temperature      | -40~+125°C (Including self - temperature rise)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Storage temperature        | -40~+125℃ (on board)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Electrical Performance Tes | st                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Inductance L               |                                                                                                                                              | Agilent E4991A , Keysight E4991B ,Keysight 4980AL<br>Agilent-4287, Agilent-4285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SRF                        |                                                                                                                                              | Agilent E4991A , Keysight E4991B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DC Resistance              | Refer to standard electrical characteristic list                                                                                             | Agilent-34420A<br>Agilent-4338B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rated Current              |                                                                                                                                              | Applied the current to coils, the inductance change shall be less than 20% to initial value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reliability Test           |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Life Test                  |                                                                                                                                              | Preconditioning: Run through reflow for 3 times.( IPC/JEDEC J-STD-020E Classification Reflow Profiles)  Temperature: 125±2°C  Applied current: rated current  Duration: 1000±12hrs  Measured at room temperature after placing for 24 hrs.                                                                                                                                                                                                                                                                                                                                                               |
| Load Humidity              |                                                                                                                                              | Preconditioning: Run through reflow for 3 times.( IPC/JEDEC J-STD-020E Classification Reflow Profiles Humidity: $85\pm3\%$ R.H, Temperature: $85\%\pm2\%$ Nin. Bead: with 100% rated current - Inductance: with 10% rated current Measured at room temperature after placing for 24 hrs.                                                                                                                                                                                                                                                                                                                 |
| Moisture Resistance        | Appearance: No damage. Inductance: within±10% of initial value RDC: within±15% of initial value and shall not exceed the specification value | Preconditioning: Run through reflow for 3 times.( IPC/JEDEC J-STD-020E Classification Reflow Profiles 1. Baked at50°C for 25hrs, measured at room temperature after placing for 4 hrs.  2. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs.  3. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs.  4. Keep at 25°C for 2 hrs then keep at -10°C for 3 hrs  5. Keep at 25°C 80-100%RH for 15min and vibrate at the frequency of 10 to 55 Hz to 10 Hz, measure at room temperature after placing for 1~2 hrs. |
| Thermal shock              |                                                                                                                                              | Preconditioning: Run through reflow for 3 times.( IPC/JEDEC J-STD-020E Classification Reflow Profiles Condition for 1 cycle Step1: -40±2°C 30±5min Step2: 125±2°C ≤0.5min Step3: 125±2°C 30±5min Number of cycles: 500 Measured at room temperature after placing for 24 hrs.  Oscillation Frequency: 10Hz~2KHz~10Hz for 20 minute                                                                                                                                                                                                                                                                       |
| Vibration                  |                                                                                                                                              | Equipment: Vibration checker Total Amplitude:10g Testing Time: 12 hours(20 minutes, 12 cycles each of 3 orientations) •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |


| Performance                                                                                                                                   | Test Condition                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               | Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mm Bending depth: >=0805 inch(2012mm):1.2mm <0805 inch(2012mm):0.8mm duration of 10 sec.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Appearance: No damage. Inductance: within±10% of initial value RDC: within ±15% of initial value and shall not exceed the specification value | Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mm  Bending depth: >=0805 inch(2012mm):1.2mm <0805 inch(2012mm):0.8mm  duration of 10 sec.    Peak | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               |                                                                                                                                                                                                                                   | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               | Lea                                                                                                                                                                                                                               | ad 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                   | Half-sine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                               | 3 shock                                                                                                                                                                                                                           | s in each direc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ction along 3 <sub>l</sub>                                                           | perpendicular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | axes. (18 shocks).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| More than 95% of the terminal electrode should be covered with solder。                                                                        | Testing Time :5 +0/-0.5 seconds<br>b. Method D category 3. (8hours ± 15 min)@ 260°C±5°C                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               | Tel                                                                                                                                                                                                                               | mperature(°C)  260 ±5 solder temp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time(s) ra and                                                                       | Femperature mp/immersior d emersion ratemm/s ±6 mm/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | te heat cycles s 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nductance:within±10ਔ of initial value<br>RDC:within ±15% of initial value and shall not                                                       |                                                                                                                                                                                                                                   | 020E Classifica<br>e component in<br>force(>0805:1<br>This force sha<br>a applied gradu<br>ested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation Reflow I<br>nounted on a<br>kg, <=0805:0<br>Il be applied I<br>nally as not to | Profiles PCB with the J.Skg)to the si or 60 +1 sec apply a shoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | device to be tested,<br>de of a device being<br>onds. Also the force<br>k to the component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                               | Appearance: No damage. Inductance: within±10% of initial value RDC: within ±15% of initial value and shall not exceed the specification value  More than 95% of the terminal electrode should                                     | Appearance: No damage.  Inductance: within±10% of initial value  RDC: within±15% of initial value and shall not exceed the specification value  More than 95% of the terminal electrode should be covered with solder.  Appearance: No damage.  Inductance: within±10% of initial value  Appearance: No damage.  Inductance: within±10% of initial value  RDC: within±15% of initial value and shall not exceed the specification value  Preconsideration of the specification value  Appearance: No damage.  Inductance: within±10% of initial value and shall not exceed the specification value  Inductance: within±15% of initial value and shall not exceed the specification value | Shall be mounted on a following dimensions: <pre></pre>                              | Shall be mounted on a FR4 substrate following dimensions: >=0805 inch(2012mm):40x100x0.8m Bending depth: >=0805 inch(2012nm):0.8mm duration of 10 sec.  Appearance : No damage. Inductance : within±15% of initial value and shall not exceed the specification value  More than 95% of the terminal electrode should be covered with solder.  More than 95% of the terminal electrode should be covered with solder.  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value | Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm);40v:100v.08mm Bending depth: >=0805 inch(2012mm);40v:100v.08mm Bending depth: >=0805 inch(2012mm);1.2mm <0805 inch(2012mm);0.8mm duration of 10 sec.  Appearance : No damage. Inductance : within±10% of initial value and shall not exceed the specification value  More than 95% of the terminal electrode should be covered with solder.  More than 95% of the terminal electrode should be covered with solder.  Appearance : No damage. Inductance : within±10% of initial value RDC: within ±15% of initial value RDC: within ±15% of initial value and shall not exceed the specification value  Appearance : No damage. Inductance : within±10% of initial value RDC: within ±15% of initial value and shall not exceed the specification value  Depth: completely cover the termination  Preconditioning: Run through reflow for 3 to 3.5 STD-020E classification Reflow Profiles With the component mounted on a PCB with the apply a force(>0805:1kg, <<0805:0.5 kg) to the sit tested. This force shall be applied for 60 +1 section for the section of the applied gradually as not to apply a shorbeing tested. |

## 8. Soldering and Mounting

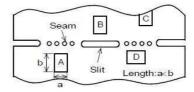
#### 8-1. Attention regarding P.C.B. bending

The following shall be considered when designing P.C.B.'S

(1)P.C.B. shall be designed so that products are not subjected to the mechanical stress for board warpage.



Products shall be located in the sideways direction (Length:a<b) to against the mechanical stress.


(2) Products location on P.C.B.

Products (A,B,C,D) shall be located carefully

to prevent mechanical stress when warping the board.

Products may be subjected to the mechanical

stress in the order of A>C>B≒D.



### 8-2. Soldering

Mildly activated rosin fluxes are preferred. TAI-TECH terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

#### 8-2.1 Soldering Reflow:

Recommended temperature profiles for lead free re-flow soldering in Figure 1. Table 1.1&1.2 (J-STD-020E)

#### 8-2.2 Soldering Iron:

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. (Figure 2.)

- Preheat circuit and products to  $150^{\circ}$ C  $350^{\circ}$ C tip temperature (max)
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 1.0mm tip diameter (max)
- Limit soldering time to 4~5sec

Fig.1 Soldering Reflow

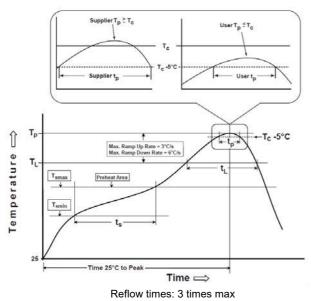
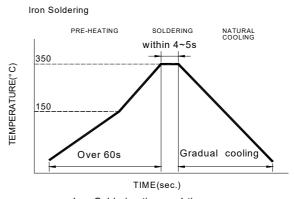




Fig.2 Iron soldering temperature profiles



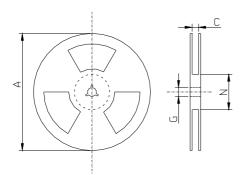
Iron Soldering times: 1 times max

Table (1.1): Reflow Profiles

| Profile Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pb-Free Assembly                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| $eq:total_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_cont$ | 150°C<br>200°C<br>60-120seconds |
| Ramp-up rate(T <sub>L</sub> to T <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3°ℂ/second max.                 |
| Liquidus temperature(T <sub>L</sub> ) Time(t <sub>L</sub> )maintained above T <sub>L</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 217°C<br>60-150 seconds         |
| Classification temperature(T <sub>c</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | See Table (1.2)                 |
| $\label{eq:tp} \mbox{Time}(t_p) \mbox{ at Tc-} \mbox{ 5^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 30 seconds                    |
| Ramp-down rate(T <sub>p</sub> to T <sub>L</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6°C /second max.                |
| Time 25°℃ to peak temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 minutes max.                  |

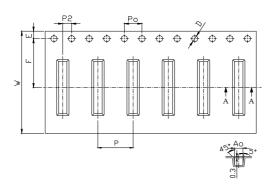
**Tp**: maximum peak package body temperature, **Tc**: the classification temperature.

For user (customer) **Tp** should be equal to or less than **Tc**.


Table (1.2) Package Thickness/Volume and Classification Temperature (T<sub>c</sub>)

|                  | Package   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |
|------------------|-----------|------------------------|------------------------|------------------------|
|                  | Thickness | <350                   | 350-2000               | >2000                  |
|                  | <1.6mm    | 260°C                  | 260°C                  | 260°C                  |
| PB-Free Assembly | 1.6-2.5mm | 260°C                  | 250°C                  | 245°C                  |
|                  | ≥2.5mm    | 250°C                  | 245°C                  | 245°C                  |

Reflow is referred to standard IPC/JEDEC J-STD-020E ∘

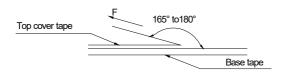

## 9. Packaging Information

#### 9-1. Reel Dimension



| Туре    | A(mm)     | C(mm)    | G(mm)    | N(mm)     |
|---------|-----------|----------|----------|-----------|
| 7"x12mm | 180.0±2.0 | 16.5±1.0 | 13.5±0.5 | 100.0±2.0 |

### 9-2. Tape Dimension / 12mm




### 9-2. Packaging Quantity

| Chip size | 4420    |  |
|-----------|---------|--|
| Reel      | 1000    |  |
| Reel Size | 7"x12mm |  |

| Series | Size | P(mm)      | Po(mm)   | P2(mm)  | Bo(mm)    | Ao(mm)   | Ko(mm)   | t(mm)    |
|--------|------|------------|----------|---------|-----------|----------|----------|----------|
| PAS    | 4420 | 8.0±0.1    | 4.0±0.1  | 2.0±0.1 | 5.00±0.10 | 2.5±0.10 | 2.1±0.10 | 0.3±0.05 |
| Series | Size | D(mm)      | E(mm)    | F(mm)   | W(mm)     |          |          |          |
| PAS    | 4420 | 1.5+0.1/-0 | 1.75±0.1 | 5.5±0.1 | 12±0.30   |          |          |          |

### 9-3. Tearing Off Force



The force for tearing off cover tape is 10 to 80 grams in the arrow direction under the following conditions(referenced ANSI/EIA-481-C-2003 of 4.11 standard).

| Room Temp. | Room Humidity | Room atm | Tearing Speed |
|------------|---------------|----------|---------------|
| (℃)        | (%)           | (hPa)    | mm/min        |
| 5~35       | 45~85         | 860~1060 | 300           |

## **Application Notice**

- Storage Conditions(component level)
- To maintain the solderability of terminal electrodes:
- 1. TAI-TECH products meet IPC/JEDEC J-STD-020E standard-MSL, level 1.
- 2. Temperature and humidity conditions: Less than 40°C and 60% RH.
- 3. Recommended products should be used within 12 months form the time of delivery.
- 4. The packaging material should be kept where no chlorine or sulfur exists in the air.
- Transportation
- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.