

Features:

- 23 dBm of Power at 18 GHz
- 14 dB typical Small Signal Gain at 18 GHz
- 45% typical PAE at 18 GHz
- 0.25 x 180 Micron Refractory Metal/Gold Gate
- Excellent for High Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 385 x 260 microns Chip Thickness: 100 microns

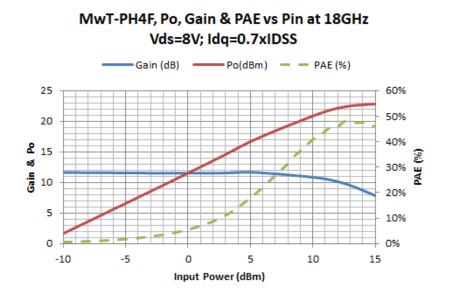
Description:

The MwT-PH4F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 180 micron gate width make it ideally suited for applications requiring high-gain and medium power up to 28 GHz frequency range. The device is equally effective for either wideband (e.g. 6 to 18 GHz) or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

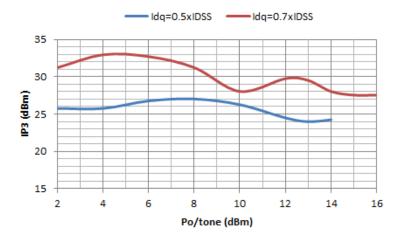
Electrical Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
Output Power at 1dB Compression Vds=8.0V lds=0.7xlDSS	P1dB	18 GHz	dBm		21.5
Saturated Power Vds=8.0V lds=0.7xlDSS	Psat	18 GHz	dBm		23.0
Output Third Order Intercept Point Vds=8.0V Ids=0.7xIDSS	OIP3	18 GHz	dBm		28.0
Small Signal Gain Vds=8.0V lds=0.7xlDSS	SSG	18 GHz	dB		14.0
Power Added Efficiency at P1dB Vds=8.0V lds=0.7xlDSS	PAE	18 GHz	%		45

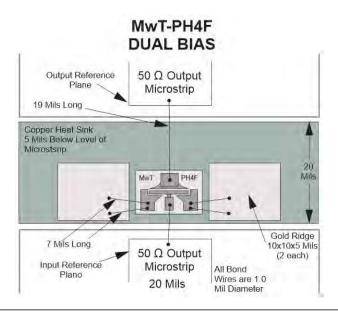
Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.


DC Specifications: at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 3.0 V Vgs= 0.0 V	IDSS	mA	40		60
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS		60	
Pinch-off Voltage Vds= 3.0 V lds= 1.0 mA	Vp	V		-0.8	-1.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA	BVGSO	V		-17.0	
Gate-to-Drain Breakdown Voltage lgd= -0.3 mA	BVGDO	V		-18.0	
Chip Thermal Resistance	Rth	C/W		200 410*	


* Overall Rth depends on case mounting

Updated October 2021



MwT-PH4F, OIP3 vs Po/tone with different Idq

28 GHz Medium Power AlGaAs/InGaAs pHEMT

Absolute Maximum Rating

Symbol	Parameter	Units	Cont Max1	Absolute Max2	
VDS	Drain to Source Volt.	V	7.0	7.5	
Tch	Channel Temperature	°C	+150	+175	
Tst	Tst Storage Temperature		-65 to +150	+175	
Pin	Pin RF Input Power		50	80	

Notes:

1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.

2. Exceeding any one of these limits may cause permanent damage.

28 GHz Medium Power AlGaAs/InGaAs pHEMT

S-Parameters

S-PARAMETER Vds=7V, lds= 0.7 x ldss										
Freq.	S	11	S	21	S12		S22		К	GMAX
GHz	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)		dB
1	-0.105	-16.176	14.790	168.090	-39.241	81.541	-1.121	-4.047	0.077	27.016
2	-0.251	-31.811	14.564	156.892	-33.706	74.217	-1.168	-7.676	0.106	24.135
3	-0.536	-46.471	14.139	146.322	-30.583	66.864	-1.381	-11.465	0.165	22.361
4	-0.801	-60.193	13.682	136.631	-28.583	60.655	-1.649	-14.224	0.215	21.132
5	-1.275	-73.123	12.983	127.307	-27.368	54.269	-1.748	-17.560	0.288	20.176
6	-1.625	-82.374	12.348	120.973	-26.535	51.215	-1.850	-17.371	0.352	19.441
7	-1.924	-93.238	11.750	113.102	-25.877	46.890	-1.991	-19.564	0.402	18.813
8	-2.280	-104.884	11.253	105.435	-25.169	42.612	-2.204	-23.461	0.438	18.211
9	-2.398	-115.055	10.775	97.416	-24.854	40.519	-2.630	-25.264	0.506	17.815
10	-2.660	-126.034	10.103	91.170	-24.512	35.805	-2.707	-27.117	0.559	17.307
11	-2.932	-134.743	9.511	85.520	-24.532	34.265	-2.894	-28.813	0.644	17.021
12	-3.003	-143.075	9.018	79.558	-24.253	31.824	-2.909	-30.479	0.660	16.636
13	-3.050	-151.488	8.575	73.891	-24.263	29.485	-2.984	-33.188	0.690	16.419
14	-3.140	-158.300	7.987	68.032	-24.363	28.358	-3.145	-35.528	0.782	16.175
15	-3.274	-165.181	7.565	64.815	-24.325	26.981	-3.153	-35.962	0.827	15.945
16	-3.062	-171.931	6.936	58.298	-24.326	27.668	-3.403	-39.855	0.864	15.631
17	-3.089	-176.891	6.505	53.335	-24.347	27.760	-3.418	-42.551	0.905	15.426
18	-2.957	177.249	6.131	48.146	-24.206	28.579	-3.497	-44.880	0.888	15.169
19	-2.988	173.079	5.681	45.137	-24.389	29.089	-3.587	-47.375	0.971	15.035
20	-3.011	167.898	5.275	40.118	-24.534	29.993	-3.621	-50.916	1.034	13.768
21	-2.980	163.739	4.930	36.235	-24.249	32.060	-3.677	-53.535	1.019	13.734
22	-2.881	160.728	4.463	32.016	-24.119	33.439	-3.646	-56.872	1.006	13.803
23	-2.792	156.554	4.119	27.412	-24.248	34.715	-3.824	-60.873	1.069	12.576
24	-2.844	153.342	3.809	23.933	-24.335	35.666	-3.695	-64.043	1.100	12.145
25	-2.696	149.953	3.413	19.645	-23.586	37.576	-3.801	-67.957	0.995	13.500
26	-2.582	148.173	2.983	15.817	-23.218	38.374	-3.715	-73.077	0.920	13.100
27	-2.659	145.300	2.562	11.874	-23.130	40.851	-3.653	-75.696	0.975	12.846
28	-2.401	143.141	2.312	8.239	-22.658	43.076	-3.756	-80.159	0.845	12.485
29	-2.478	139.982	2.008	4.402	-22.287	43.470	-3.660	-84.579	0.838	12.147
30	-2.314	136.850	1.721	0.815	-21.854	44.008	-3.582	-88.144	0.721	11.787

ORDERING INFORMATION:

When placing order or inquiring, please specify wafer number, if known. For details of Safe Handling Procedure please see supplementary information in available PDF on our website <u>www.mwtinc.com</u>. For package information, please see supplementary application note in PDF format by clicking located on our website.

Available Packaging:

70 Package - MwT-PH4F70 71 Package - MwT-PH4F71 73 Package - MwT-PH4F73