

HIGH SPEED, TRIPLE DIGITAL ISOLATORS

Check for Samples: ISO7230C-Q1, ISO7231C-Q1

FEATURES

- Qualified for Automotive Applications
- 25 and 150-Mbps Signaling Rate Options
 - Low Channel-to-Channel Output Skew
 - Low Pulse-Width Distortion (PWD)
 - Low Jitter Content; 1 ns Typ at 150 Mbps
- Typical 25-Year Life at Rated Working Voltage (See Application Note SLLA197 and Figure 14)
- 4000-V_{peak} Isolation, 560-V_{peak} V_{IORM}
 - UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2), IE 61010-1, IEC 60950-1 and CSA Approved
- 4 kV ESD Protection
- Operate With 3.3-V or 5-V Supplies

DESCRIPTION

The ISO7230C-Q1 and ISO7231C-Q1 are triple-channel digital isolators each with multiple channel configurations and output enable functions. These devices have logic input and output buffers separated by TI's silicon dioxide (SiO₂) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, and prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.

The ISO7230C-Q1 triple-channel device has all three channels in the same direction while the ISO7231C-Q1 has two channels in one direction and one channel in opposition. These devices have an active-high output enable that when driven to a low level, places the output in a high-impedance state.

The ISO7230C-Q1 and ISO7231C-Q1 have TTL input thresholds and a noise-filter at the input that prevents transient pulses of up to 2 ns in duration from being passed to the output of the device.

In each device, a periodic update pulse is sent across the isolation barrier to ensure the proper dc level of the output. If this dc-refresh pulse is not received, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high state. (Contact TI for a logic low failsafe option).

These devices require two supply voltages of 3.3-V, 5-V, or any combination. All inputs are 5-V tolerant when supplied from a 3.3-V supply and all outputs are 4-mA CMOS. These devices are characterized for operation over the ambient temperature range of -40°C to 125°C.

ISO7230 DW PACKAGE	ISO7231 DW PACKAGE
$V_{CC1} = 1 \bullet 11 = 16 = V_{CC2}$ GND1 = 2 11 = 15 = GND2	$V_{CC1} \square 1 \bullet 11 16 \square V_{CC2}$ GND1 $\square 2 11 15 \square$ GND2
IN _B □ 4 - → + + → 13 □ OUT _B IN _C □ 5 - → + + → 12 □ OUT _C	IN _B □ 4 - → + → 13 □ OUT _B OUT _C □ 5 - → + → 12 □ IN _C
	NC III 6 11 II II II II NC
NC ा⊐_7 ¦¦ └─_10 ⊨□ EN	EN₁ œ 7—┘ ¦ ¦ └──10⊨□ EN₂
GND1	$GND1 \square 8$ $1 9 \square GND2$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

- High Electromagnetic Immunity (See Application Note SLLA181)
- –40°C to 125°C Operating Range

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTION DIAGRAM

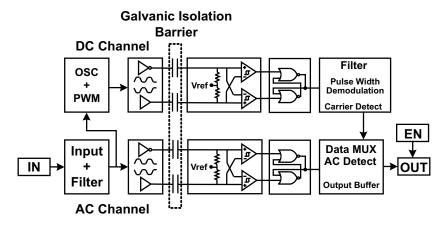


Table 1. Device Function Table ISO723xC-Q1 ⁽¹⁾

INPUT V _{CC}	OUTPUT V _{CC}	INPUT (IN)	OUTPUT ENABLE (EN)	OUTPUT (OUT)
		Н	H or Open	Н
DU	PU	L	H or Open	L
PU		Х	L	Z
		Open	H or Open	Н
PD	PD PU X H or Ope		H or Open	Н
PD	PD PU		L	Z

(1) PU = Powered Up; PD = Powered Down ; X = Irrelevant; H = High Level; L = Low Level

ORDERING INFORMATION⁽¹⁾

T _A	PAC	KAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
10°C to 125°C	SOIC - DW	Deal of 2000	ISO7230CQDWRQ1	PREVIEW	
–40°C to 125°C	50IC - DW	Reel of 2000	ISO7231CQDWRQ1	ISO7231CQ	Ì

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

				VALUE	UNIT
V_{CC}	Supply voltage	19 ⁽²⁾ , V _{CC1} , V _{CC2}		–0.5 to 6	V
VI	/ _I Voltage at IN, OUT, EN			–0.5 to 6	V
Io	O Output current			±15	mA
		Human Body Model		±4	kV
ESD	Electrostatic discharge	Field-Induced-Charged Device Model	All pins	±1	ĸv
	alconargo	Machine Model		±200	V
T_J	Γ _J Maximum junction temperature				°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal and are peak voltage values.

RECOMMENDED OPERATING CONDITIONS

		MIN	ТҮР	MAX	UNIT
V _{CC}	Supply voltage ⁽¹⁾ , V _{CC1} , V _{CC2}	3.15		5.5	V
I _{OH}	High-level output current	-4			mA
I _{OL}	Low-level output current			4	mA
t _{ui}	Input pulse width	40			ns
1/t _{ui}	Signaling rate	0	30 ⁽²⁾	25	Mbps
VIH	High-level input voltage (IN) (EN on all devices)	2		V _{CC}	V
VIL	Low-level input voltage (IN) (EN on all devices)	0		0.8	V
T _A	Operating free-air temperature	-40		125	°C
Н	External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification			1000	A/m

For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V. Typical sigalling rate under ideal conditions at 25°C. (1)

(2)

STRUMENTS

EXAS

ELECTRICAL CHARACTERISTICS: V_{cc1} and V_{cc2} at 5-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT						
	10070000.04	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		1	3	mA
	ISO7230C-Q1	25 Mbps	EN ₂ at 3 V		7	9.5	mA
I _{CC1}	10070040 04	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		6.5	11	~ ^
	ISO7231C-Q1	25 Mbps	EN_1 at 3 V, EN_2 at 3 V		11	17	mA
	16070200 04	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		15	22	~ ^
	ISO7230C-Q1	25 Mbps	EN ₂ at 3 V		17	24	mA
I _{CC2}	10070040 04	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		13	20	
	ISO7231C-Q1	25 Mbps	EN_1 at 3 V, EN_2 at 3 V		17.5	27	mA
ELECTR	ICAL CHARACTERISTIC	S					
I _{OFF}	Sleep mode output curr	ent	EN at 0 V, Single channel		0		μA
V	High-level output voltag	10	I _{OH} = –4 mA, See Figure 1	$V_{CC} - 0.8$			V
V _{OH}	High-level output voltag	le	$I_{OH} = -20 \ \mu A$, See Figure 1	$V_{CC} - 0.1$			v
V		•	I _{OL} = 4 mA, See Figure 1			0.4	V
V _{OL}	Low-level output voltage	e	$I_{OL} = 20 \ \mu A$, See Figure 1			0.1	v
V _{I(HYS)}	Input voltage hysteresis	3			150		mV
I _{IH}	High-level input current		IN from 0 \/ to \/			10	
I _{IL}	Low-level input current		IN from 0 V to V _{CC}	-10			μA
CI	Input capacitance to gro	ound	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		2		pF
CMTI	Common-mode transier	nt immunity	$V_{I} = V_{CC}$ or 0 V, See Figure 4	25	50		kV/µs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

Submit Documentation Feedback

4

SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 5-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay		18		45	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	- See Figure 1			5	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				8	ns
t _{sk(o)}	Channel-to-channel output skew (3)			0	4	ns
t _r	Output signal rise time			2		
t _f	Output signal fall time	- See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	25	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	- See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μs

(1) Also referred to as pulse skew.

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

TEXAS INSTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETE	R	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
SUPPL	YCURRENT		-1					
	ISO7230C-Q1	Quiescent		load EN at 2 V		1	3	mA
	1507230C-Q1	25 Mbps	$V_{I} = V_{CC}$ or 0 V, All channels, no	$10a0$, EN_2 at 3 V		7	9.5	mA
I _{CC1}	ISO7231C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no	load, EN ₁ at 3 V,		6.5	11	mA
	15072310-Q1	25 Mbps	EN ₂ at 3 V			11	17	IIIA
	ISO7230C-Q1	Quiescent	$- V_{1} = V_{2}$, or $0 V_{1}$ All channels, no	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₂ at 3 V		9	15	mA
l	13072300-Q1	25 Mbps	$v_{\rm I} = v_{\rm CC}$ or 0 v, All charmens, no	$10au$, $Lin_2 at 5 v$		10	17	IIIA
I _{CC2}	ISO7231C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no	load, EN ₁ at 3 V,		8	12	mA
	13072310-Q1	25 Mbps	EN ₂ at 3 V	EN ₂ at 3 V		10.5	16	IIIA
ELECT	RICAL CHARACTER	RISTICS						
I _{OFF}	Sleep mode outp	ut current	EN at 0 V, Single channel			0		μA
				ISO7230C-Q1	$V_{CC} - 0.4$			l
V _{OH}	High-level output			ISO7231C-Q1 (5-V side)	V _{CC} – 0.8			V
			$I_{OH} = -20 \ \mu A$, See Figure 1		$V_{CC} - 0.1$			
V _{OL}	Low-level output	voltago	I _{OL} = 4 mA, See Figure 1				0.4	v
VOL		vollage	I _{OL} = 20 μA, See Figure 1				0.1	v
V _{I(HYS)}	Input voltage hys	teresis				150		mV
I _{IH}	High-level input o	current	IN from 0 V to V				10	
IIL	Low-level input c	urrent	IN from 0 V to V _{CC}		-10			μA
Cl	Input capacitance	e to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		2		pF
CMTI	Common-mode to immunity	ransient	$V_1 = V_{CC}$ or 0 V, See Figure 4		25	50		kV/µs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

6

SWITCHING CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay, low-to-high-level output		20		50	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	- See Figure 1			4	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				10	ns
t _{sk(o)}	Channel-to-channel output skew ⁽³⁾			0	4	ns
t _r	Output signal rise time	Dutput signal rise time				
t _f	Output signal fall time	- See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	25	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	─ See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		18		μs

(1) Also known as pulse skew

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

Texas Instruments

www.ti.com

ELECTRICAL CHARACTERISTICS: V_{CC1} at 3.3-V, V_{CC2} at 5-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETE	R	TEST CONDITION	S	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT							
	ISO7230C-Q1	Quiescent				0.5	1	mA
	15072300-01	25 Mbps	$V_{I} = V_{CC}$ or 0 V, All channels, no load	a, ΕΝ ₂ αι 5 ν		3	5	mA
I _{CC1}	ISO7231C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load	d, EN ₁ at 3 V,		4.5	7	mA
	15072310-01	25 Mbps	EN ₂ at 3 V			6.5	11	ША
	ISO7230C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load			15	22	mA
	13072300-Q1	25 Mbps	$v_{\rm I} = v_{\rm CC}$ or 0 v, All channels, no load	a, Lin ₂ at 5 v		17	24	ША
I _{CC2}	ISO7231C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load	d, EN ₁ at 3 V,		13	20	mA
	13072310-Q1	25 Mbps	EN ₂ at 3 V	EN ₂ at 3 V		17.5	27	, 111A
ELECT	RICAL CHARACTEI	RISTICS						
I _{OFF}	Sleep mode outp	out current	EN at 0 V, Single channel	EN at 0 V, Single channel		0		μA
-011			I _{OH} = -4 mA, See Figure 1	ISO7230C-Q1	$V_{CC} - 0.4$			
V _{OH}	High-level output	voltage		ISO7231C-Q1 (5-V side)	$V_{CC} - 0.8$			V
			$I_{OH} = -20 \ \mu A$, See Figure 1		V _{CC} – 0.1			
V	Low-level output	voltaga	I _{OL} = 4 mA, See Figure 1	I _{OL} = 4 mA, See Figure 1			0.4	V
V _{OL}	Low-level output	voltage	$I_{OL} = 20 \ \mu A$, See Figure 1				0.1	v
V _{I(HYS)}	Input voltage hys	steresis				150		mV
I _{IH}	High-level input of	current	IN from 0 1/ to 1/				10	
IIL	Low-level input c	urrent	IN from 0 V to V _{CC}		-10			μA
CI	Input capacitance	e to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		2		pF
CMTI	Common-mode t immunity	ransient	$V_I = V_{CC}$ or 0 V, See Figure 4		25	50		kV/µs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

8

SWITCHING CHARACTERISTICS: V_{CC1} at 3.3-V and V_{CC2} at 5-V OPERATION

, over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay		20		51	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	- See Figure 1			4	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				10	ns
t _{sk(o)}	Channel-to-channel output skew ⁽³⁾			0	4	ns
t _r	Output signal rise time	See Figure 1		2		
t _f	Output signal fall time	- See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	25	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	- See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μs

(1) Also known as pulse skew

(2)

 $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. $t_{sk(o)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads. (3)

ISTRUMENTS

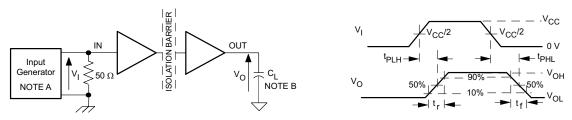
EXAS

ELECTRICAL CHARACTERISTICS: V_{cc1} and V_{cc2} at 3.3 $V^{(1)}$ OPERATION

, over recommended operating conditions (unless otherwise noted)

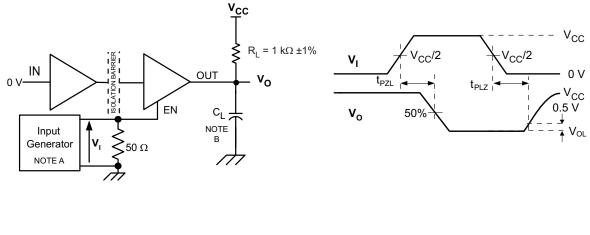
	PARAMETER		TEST CONDITIONS	MIN TY	P MAX	UNIT
SUPPLY	CURRENT		-			
	10.070000.04	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,	0.4	5 1	
	ISO7230C-Q1	25 Mbps	EN ₂ at 3 V	:	3 5	mA
I _{CC1}	ISO7231C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,	4.	5 7	~
	13072310-Q1	25 Mbps	EN ₁ at 3 V, EN ₂ at 3 V	6.	5 11	mA
	ISO7230C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		9 15	~
	1007200-01	25 Mbps EN ₂ at 3 V	1) 17	mA	
I _{CC2}	ISO7231C-Q1	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		3 12	mA
	15072310-01		EN ₁ at 3 V, EN ₂ at 3 V	10.	5 16	mA
ELECTR	RICAL CHARACTERISTICS	·				
I _{OFF}	Sleep mode output current		EN at 0 V, single channel)	μA
V	High-level output voltage		I _{OH} = -4 mA, See Figure 1	$V_{CC} - 0.4$		V
V _{OH}	nightevel output voltage		$I_{OH} = -20 \ \mu A$, See Figure 1	V _{CC} – 0.1		v
V			I _{OL} = 4 mA, See Figure 1		0.4	V
V _{OL}	Low-level output voltage		$I_{OL} = 20 \ \mu A$, See Figure 1		0.1	~
V _{I(HYS)}	Input voltage hysteresis			15)	mV
I _{IH}	High-level input current		IN from 0 \/ or \/		10	
IIL	Low-level input current		IN from 0 V or V _{CC}	-10		μA
CI	Input capacitance to ground		IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$		2	pF
CMTI	Common-mode transient imm	nunity	$V_1 = V_{CC}$ or 0 V, See Figure 4	25 50)	kV/µs

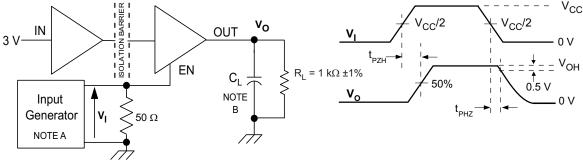
(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.


SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3-V OPERATION

over recommended operating conditions (unless otherwise noted)

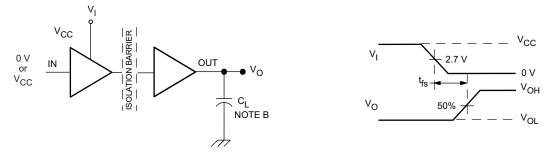
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay		25	25	56	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	See Figure 1			4	ns
t _{sk(pp)}	Part-to-part skew (2)				10	ns
t _{sk(o)}	Channel-to-channel output skew			0	4	ns
t _r	Output signal rise time	See Figure 1		2		
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output			15	25	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	→ See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		18		μs


Also referred to as pulse skew.
 t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.


PARAMETER MEASUREMENT INFORMATION

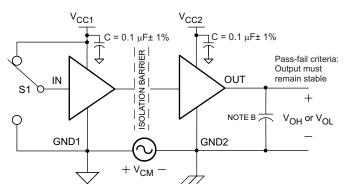
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z₀ = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms

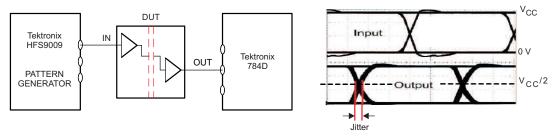


- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.


Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform



PARAMETER MEASUREMENT INFORMATION (continued)


- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, t_f \leq 3 ns, Z_D = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

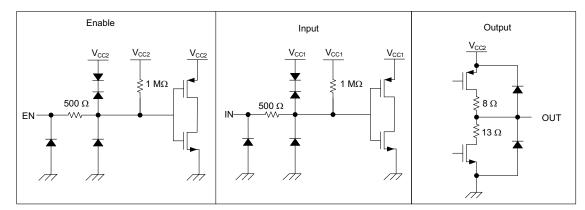
Figure 4. Common-Mode Transient Immunity Test Circuit and Voltage Waveform

NOTE: PRBS bit pattern run length is 2¹⁶ – 1. Transition time is 800 ps. NRZ data input has no more than five consecutive 1s or 0s.

Figure 5. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform

DEVICE INFORMATION

PACKAGE CHARACTERISTICS


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal-to-terminal distance through air	8.34			mm
L(I02)	Minimum external tracking (Creepage)	Shortest terminal-to-terminal distance across the package surface	8.1			mm
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device, $T_A < 100^{\circ}C$		>10 ¹²		Ω
		Input to output, $V_{IO} = 500 \text{ V}$, $100^{\circ}\text{C} \le \text{T}_{A} \le \text{T}_{A} \text{ max}$		>10 ¹¹		Ω
CIO	Barrier capacitance Input to output	V _I = 0.4 sin (4E6πt)		2		pF
CI	Input capacitance to ground	V _I = 0.4 sin (4E6πt)		2		pF

REGULATORY INFORMATION

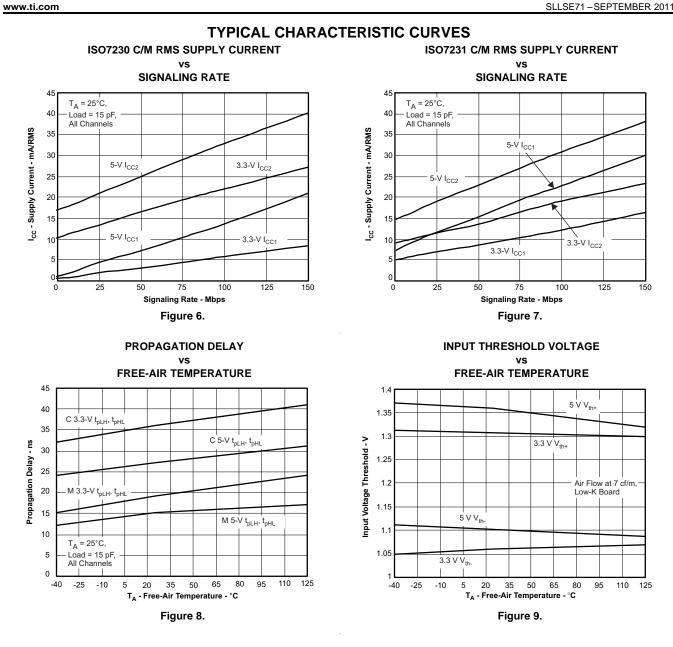
VDE	CSA	UL			
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program ⁽¹⁾			
File Number: 40016131	File Number: 220991	File Number: E181974			

(1) Production tested \geq 3000 VRMS for 1 second in accordance with UL 1577.

DEVICE I/O SCHEMATICS

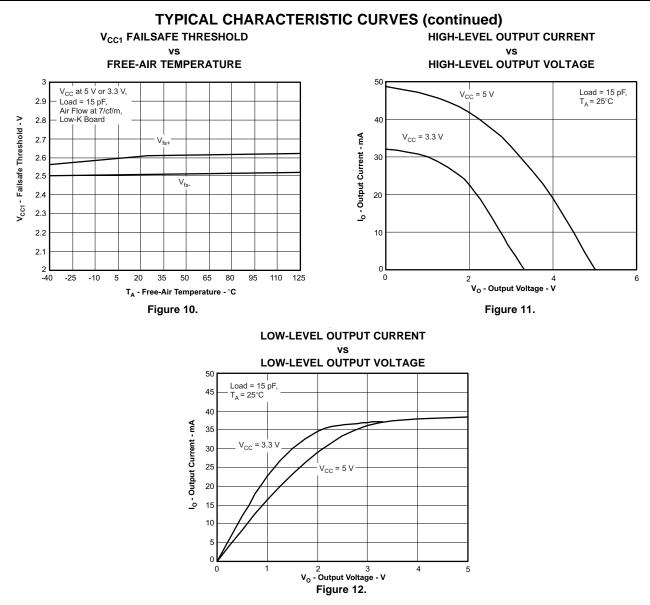
NOTE: Input is assumed to be on V_{CC1} side and Output on V_{CC2} side.

THERMAL CHARACTERISTICS


over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	Junction-to-air	Low-K Thermal Resistance ⁽¹⁾	168			°C/W
θ_{JA}	Junction-to-air	High-K Thermal Resistance		96.1		
θ_{JB}	Junction-to-Board Thermal Resistance			61		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance			48		°C/W
P_D	Device Power Dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, \text{ T}_{\text{J}} = 150^{\circ}\text{C}, \text{ C}_{\text{L}} = 15 \text{ pF},$ Input a 50% duty cycle square wave			220	mW

(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.


ISO7230C-Q1 ISO7231C-Q1 SLLSE71 – SEPTEMBER 2011

ISO7230C-Q1 ISO7231C-Q1 SLLSE71-SEPTEMBER 2011

www.ti.com

Copyright © 2011, Texas Instruments Incorporated

APPLICATION INFORMATION

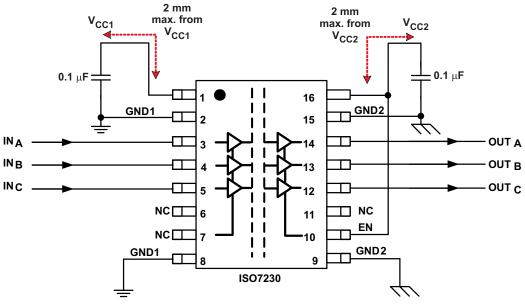


Figure 13. Typical ISO7230 Application Circuit

LIFE EXPECTANCY vs WORKING VOLTAGE

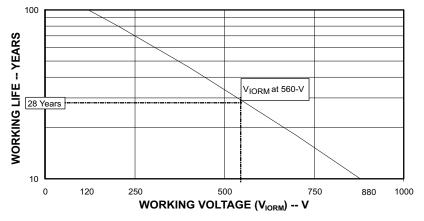


Figure 14. Time Dependant Dielectric Breakdown Testing Results

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	e Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7231CQDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	IS07231CQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO7231C-Q1 :

PACKAGE OPTION ADDENDUM

10-Dec-2020

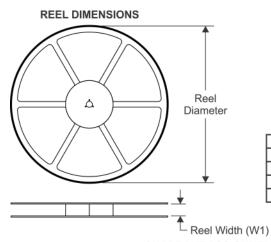
Catalog: ISO7231C

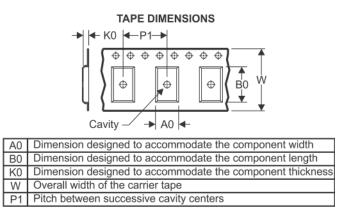
NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

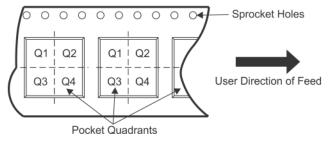
PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

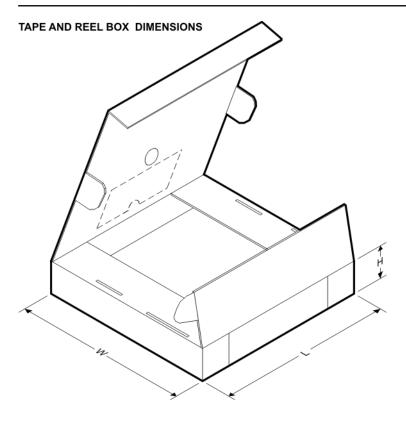

Pin1

Quadrant


Q1

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal											
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
ISO7231CQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0

TEXAS INSTRUMENTS

www.ti.com

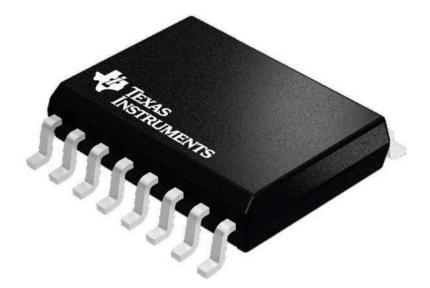
PACKAGE MATERIALS INFORMATION

26-Feb-2019

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7231CQDWRQ1	SOIC	DW	16	2000	350.0	350.0	43.0

DW 16

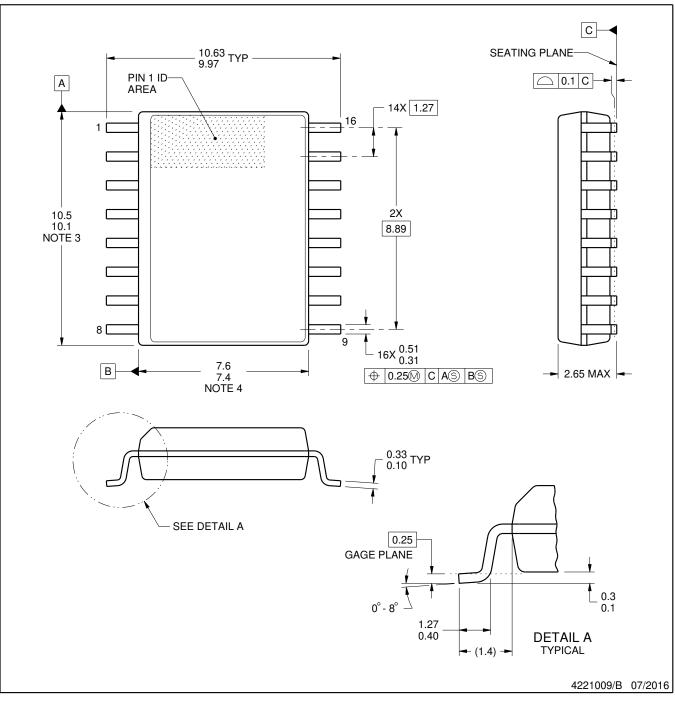

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016B

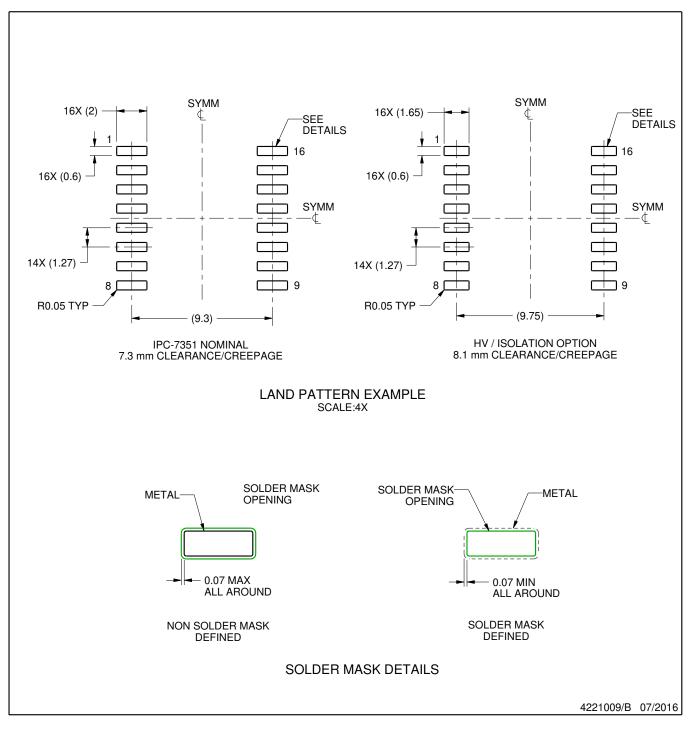
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016B

EXAMPLE BOARD LAYOUT

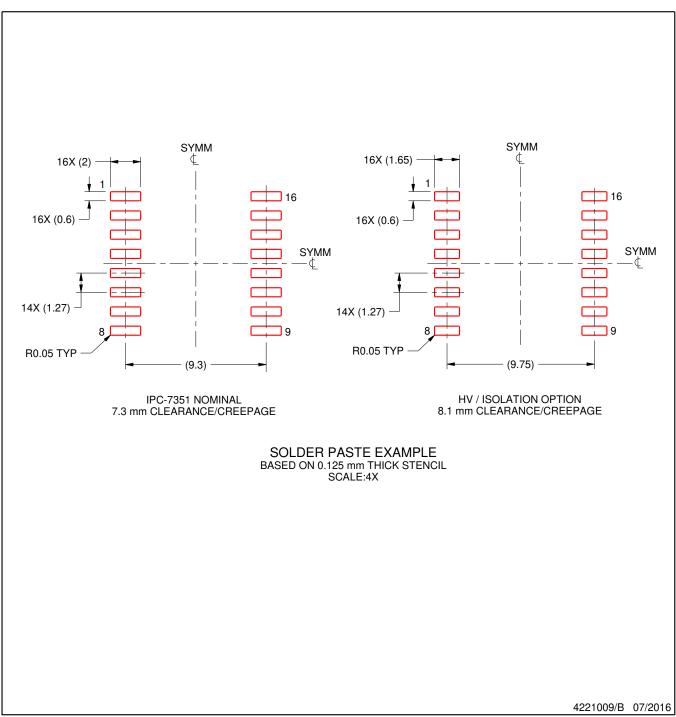
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016B

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated