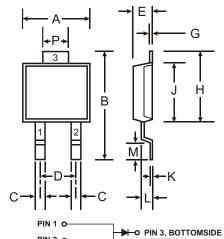


10A LOW VF SCHOTTKY BARRIER RECTIFIER **POWERMITE**® 3


Features

NOT RECOMMENDED FOR NEW DESIGNS - USE PDS1040

- Guard Ring Die Construction for Transient Protection
- Low Power Loss, High Efficiency
- High Surge Capability
- High Max Junction Temperature Rating
- Low Forward Voltage Drop
- Very Low Leakage Current
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications
- Available in Lead Free Finish/RoHS Compliant Version (Note 2)

Mechanical Data

- Case: POWERMITE®3
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Solderable per MIL-STD-202, Method 208
- Also available in Lead Free Plating (Matte Tin Finish).
 Please see Ordering Information, Note 12, on Page 3
- Polarity: See Diagram
- Marking Information: See Page 3
- Weight: 0.072 grams (approximate)

Note: Pins 1 & 2 must be electrically connected at the printed circuit board.

POWERMITE®3				
Dim	Min	Max		
Α	4.03	4.09		
В	6.40	6.61		
С	.864	.914		
D	1.83 NOM			
E	1.10	1.14		
G	.173	.203		
Н	5.01	5.17		
J	4.37	4.43		
K	.173	.203		
L	.71	.77		
М	.36	.46		
Р	1.73	1.83		
All Dimensions in mm				

Maximum Ratings @ T_A = 25°C unless otherwise specified

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V	
RMS Reverse Voltage	V _{R(RMS)}	28	V	
Average Rectified Output Current (see also Figure 4)	Io	10	Α	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave Superimposed on Rated Load @ T _C = 88°C	I _{FSM}	150	А	
Typical Thermal Resistance Junction to Soldering Point	$R_{ heta JS}$	2.5	°C/W	
Operating Temperature Range	Tj	-65 to +150	°C	
Storage Temperature Range	T _{STG}	-65 to +150	°C	

Electrical Characteristics @ T_A = 25°C unless otherwise specified

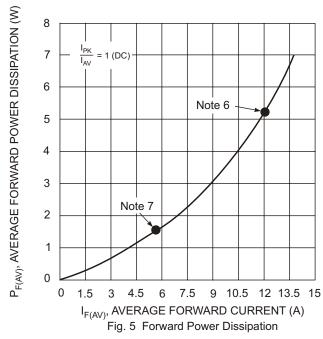
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 1)	V _{(BR)R}	40	_	_	V	I _R = 1mA
Forward Voltage	V _F		0.45 — 0.47	0.49 0.41 0.51	V	$\begin{array}{l} I_F = 8A, \ T_S = \ 25^{\circ}C \\ I_F = 8A, \ T_S = 125^{\circ}C \\ I_F = 10A, \ T_S = \ 25^{\circ}C \end{array}$
Reverse Current (Note 1)	I _R	_	0.1 12.5	0.3 25	mA	T _S = 25°C, V _R = 35V T _S = 100°C, V _R = 35V
Total Capacitance	Ст	_	700	_	pF	f = 1.0MHz, V _R = 4.0V DC

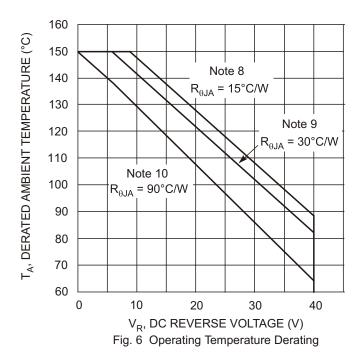
Notes:

- 1. Short duration test pulse used to minimize self-heating effect.
- 2. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.

 $V_{\rm R}$, REVERSE VOLTAGE (V) Fig. 3 Typical Total Capacitance vs. Reverse Voltage

0 25 50 75 100 125 150


T_A, AMBIENT TEMPERATURE (°C)

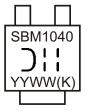

Fig. 4 DC Forward Current Derating

Notes:

- s: 3. Ta = Tsoldering point, $R_{\theta JS} = 2.5^{\circ}\text{C/W}$, $R_{\theta SA} = 0^{\circ}\text{C/W}$.
 - 4. Device mounted on GETEK substrate, 2"x2", 2 oz. copper, double-sided, cathode pad dimensions 0.75" x 1.0". $R_{\theta,JA}$ in range of 15-30°C/W.
 - Device mounted on FR-4 substrate, 2"x2", 2 oz. copper, single-sided, pad layout as per Diodes Inc. suggested pad layout document AP02001 which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. R_{BJA} in range of 60-75°C/W.

Notes:

- Maximum power dissipation when device mounted on GETEK substrate, 2"x2", 2 oz. copper, double-sided, cathode pad dimensions 0.75" x 1.0", anode pad dimensions 0.25" x 1.0". P_{θJA} in range of 15-30°C/W.
- Maximum power dissipation when device mounted on FR-4 substrate, 2"x2", 2 oz. copper, single-sided, pad layout as per Diodes Inc. suggested pad layout document AP02001 which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. R_{θ,JA} in range of 60-75°C/W.
- 8. R_{0,JA} = 15°C/W when mounted on 2"x2", single-sided, ceramic board with cathode pad dimensions 0.75"x1.0", anode pad dimensions 0.25"x1.0".
- 9. R_{0JA} = 30°C/W when mounted on 2"x2", single-sided, FR-4 board with cathode pad dimensions 0.5"x1.0", anode pad dimensions 0.5"x1.0", 2 oz. copper pads.
- 10. $R_{\theta,JA} = 90^{\circ}\text{C/W}$ when mounted on 0.5"x0.625", single-sided, FR-4 board with minimum recommended pad layout.


Ordering Information (Note 11)

Device	Packaging	Shipping
SBM1040-13	POWERMITE®3	5000/Tape & Reel

Notes:

- 11. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.
- 12. For Lead Free Finish/RoHS Compliant version part number, please add "-F" suffix to the part number above. Example: SBM1040-13-F.

Marking Information

SBM1040 = Product type marking code

O!! = Manufacturers' code marking

YYWW = Date code marking

YY = Last two digits of year ex: 02 for 2002

WW = Week code 01 to 52

(K) = Factory designator

NOT RECOMMENDED FOR NEW DESIGNS USE PDS1040

POWERMITE is a registered trademark of Microsemi Corporation.