ATA6629/ATA6631

Atmel

LIN Bus Transceiver with Integrated Voltage Regulator

DATASHEET

Features

- Supply voltage up to 40V
- Operating voltage $V_s = 5V$ to 27V
- Typically 10µA supply current during sleep mode
- Typically 35µA supply current in silent mode
- Linear low-drop voltage regulator, 85mA current capability:
	- Normal, fail-safe, and silent mode
	- Atmel ATA6629: $V_{CC} = 3.3V \pm 2\%$
	- Atmel ATA6631: $V_{CC} = 5.0V \pm 2\%$
	- Sleep mode: V_{CC} is switched off
- \bullet V_{CC} undervoltage detection with reset open drain output NRES (4ms reset time)
- Voltage regulator is short-circuit and over-temperature protected
- LIN physical layer according to LIN 2.0, 2.1 and SAEJ2602-2
- Wake-up capability via LIN bus (90µs dominant)
- TXD time-out timer
- Bus pin is overtemperature and short-circuit protected versus GND and battery
- Advanced EMC and ESD performance
- Fulfills the OEM "hardware requirements for LIN in automotive applications rev.1.1"
- Interference and damage protection according to ISO7637
- Package: SO8

1. Description

Atmel® ATA6629/ATA6631 is a fully integrated LIN transceiver, designed according to the LIN specification 2.0, 2.1 and SAEJ2602-2, with a low-drop voltage regulator (3.3V/5V/85mA). The combination of voltage regulator and bus transceiver makes it possible to develop simple, but powerful, slave nodes in LIN bus systems. ATA6629/ATA6631 is designed to handle the low-speed data communication in vehicles (for example, in convenience electronics). Improved slope control at the LIN driver ensures secure data communication up to 20kBaud. The bus output is designed to withstand high voltage. Sleep mode and silent mode guarantee minimized current consumption even in the case of a floating or a short circuited LIN-bus.

2. Pin Configuration

Figure 2-1. Pinning SO8

Table 2-1. Pin Description

3. Functional Description

3.1 Physical Layer Compatibility

Since the LIN physical layer is independent from higher LIN layers (e.g., LIN protocol layer), all nodes with a LIN physical layer according to revision 2.x can be mixed with LIN physical layer nodes, which are according to older versions (i.e., LIN 1.0, LIN 1.1, LIN 1.2, LIN 1.3) without any restrictions.

3.2 Supply Pin (VS)

LIN operating voltage is V_S = 5V to 27V. An undervoltage detection is implemented to disable transmission if V_S falls below 5V, in order to avoid false bus messages. After switching on V_S, the IC starts with the fail-safe mode and the voltage regulator is switched on.

The supply current in sleep mode is typically 10µA and 35µA in silent mode.

3.3 Ground Pin (GND)

The IC does not affect the LIN bus in the event of GND disconnection. It is able to handle a ground shift up to 11.5% of V_S.

3.4 Voltage Regulator Output Pin (VCC)

The internal 3.3V/5V voltage regulator is capable of driving loads up to 85mA, supplying the microcontroller and other ICs on the PCB and is protected against overload by means of current limitation and overtemperature shut-down. Furthermore, the output voltage is monitored and will cause a reset signal at the NRES output pin if it drops below a defined threshold V_{thun} .

3.5 Undervoltage Reset Output (NRES)

If the V_{CC} voltage falls below the undervoltage detection threshold V_{thun}, NRES switches to low after tres_f ([Figure 6-1 on page 15](#page-14-0)). Even if V_{CC} = 0V the NRES stays low, because it is internally driven from the V_S voltage. If V_S voltage ramps down, NRES stays low until $V_S < 1.5V$ and then becomes highly resistant.

The implemented undervoltage delay keeps NRES low for t_{Reset} = 4ms after V_{CC} reaches its nominal value.

3.6 Bus Pin (LIN)

A low-side driver with internal current limitation and thermal shutdown as well as an internal pull-up resistor according to LIN specification 2.x is implemented. The voltage range is from -27V to +40V. This pin exhibits no reverse current from the LIN bus to V_S, even in the event of a GND shift or V_{Batt} disconnection. The LIN receiver thresholds are compatible with the LIN protocol specification.

The fall time (from recessive to dominant) and the rise time (from dominant to recessive) are slope controlled.

3.7 Input/Output (TXD)

In normal mode the TXD pin is the microcontroller interface to control the state of the LIN output. TXD must be pulled to ground in order to drive the LIN bus low. If TXD is high or unconnected (internal pull-up resistor), the LIN output transistor is turned off and the bus is in the recessive state. During fail-safe mode, this pin is used as output and is signalling the fail-safe source.

3.8 Dominant Time-out Function (TXD)

The TXD input has an internal pull-up resistor. An internal timer prevents the bus line from being driven permanently in the dominant state. If TXD is forced to low longer than t_{DOM} > 27ms, the LIN bus driver is switched to the recessive state. Nevertheless, when switching to sleep mode, the actual level at the TXD pin is relevant.

To reactivate the LIN bus driver, switch TXD to high (> 10µs).

3.9 Output Pin (RXD)

This pin reports the state of the LIN bus to the microcontroller. LIN high (recessive state) is reported by a high level at RXD; LIN low (dominant state) is reported by a low level at RXD. The output has an internal pull-up resistor with typically 5kΩ to V_{CC} . The AC characteristics are measured with an external load capacitor of 20pF.

The output is short-circuit protected. In unpowered mode (that is, V_S = 0V), RXD is switched off.

3.10 Enable Input Pin (EN)

The enable input pin controls the operation mode of the device. If EN is high, the circuit is in normal mode, with transmission paths from TXD to LIN and from LIN to RXD both active. The VCC voltage regulator operates with 3.3V/5V/85mA output capability.

If EN is switched to low while TXD is still high, the device is forced to silent mode. No data transmission is then possible, and the current consumption is reduced to I_{VS} typ. 35 μ A. The VCC regulator has its full functionality.

If EN is switched to low while TXD is low, the device is forced to sleep mode. No data transmission is possible, and the voltage regulator is switched off.

4. Modes of Operation

Figure 4-1. Modes of Operation

Table 4-1. Modes of Operation

4.1 Normal Mode

This is the normal transmitting and receiving mode of the LIN interface, in accordance with LIN specification 2.x. The V_{CC} voltage regulator operates with a 3.3V/5V output voltage, with a low tolerance of ±2% and a maximum output current of 85mA.

If an undervoltage condition occurs, NRES is switched to low and the IC changes its state to fail-safe mode.

4.2 Silent Mode

A falling edge at EN while TXD is high switches the IC into silent mode. The TXD signal has to be logic high during the mode select window [\(Figure 4-3 on page 8\)](#page-7-0). The transmission path is disabled in silent mode. The overall supply current from V_{Ratt} is a combination of the $I_{VSSilent}$ = 35µA plus the V_{CC} regulator output current I_{VCC} .

In silent mode the internal slave termination between pin LIN and pin VS is disabled to minimize the current consumption in case pin LIN is short-circuited to GND. Only a weak pull-up current (typically 10µA) between pin LIN and pin VS is present. The silent mode can be activated independently from the current level on pin LIN.

If an undervoltage condition occurs, NRES is switched to low and the Atmel® ATA6629/ATA6631 changes its state to fail-safe mode.

A voltage less than the LIN pre-wake detection V_{LINL} at pin LIN activates the internal LIN receiver and starts the wake-up detection timer.

A falling edge at the LIN pin followed by a dominant bus level maintained for a certain time period ($> t_{bus}$) and the following rising edge at pin LIN (see [Figure 4-3\)](#page-7-0) results in a remote wake-up request which is only possible if TXD is high. The device switches from silent mode to fail-safe mode, then the internal LIN slave termination resistor is switched on. The remote wake-up request is indicated by a low level at pin RXD and TXD to interrupt the microcontroller [\(Figure 4-3](#page-7-0)). EN high can be used to switch directly to normal mode.

4.3 Sleep Mode

Atmel

A falling edge at EN while TXD is low switches the IC into sleep mode. The TXD signal has to be logic low during the mode select window [\(Figure 4-5 on page 10\)](#page-9-0).

In order to avoid any influence to the LIN-pin during switching into sleep mode it is possible to switch the EN up to 3.2µs earlier to low than the TXD. Therefore, the best an easiest way are two falling edges at TXD and EN at the same time.

In sleep mode the transmission path is disabled. Supply current from V_{Batt} is typically $I_{\text{VSSleen}} = 10 \mu A$. The V_{CC} regulator is switched off; NRES and RXD are low. The internal slave termination between pin LIN and pin VS is disabled to minimize the current consumption in case pin LIN is short-circuited to GND. Only a weak pull-up current (typically 10µA) between pin LIN and pin VS is present. The sleep mode can be activated independently from the current level on pin LIN.

A voltage less than the LIN pre-wake detection V_{LINL} at pin LIN activates the internal LIN receiver and starts the wake-up detection timer.

A falling edge at the LIN pin followed by a dominant bus level maintained for a certain time period ($>$ t_{hus}) and a following rising edge at pin LIN results in a remote wake-up request. The device switches from sleep Mode to fail-safe mode.

The V_{CC} regulator is activated, and the internal LIN slave termination resistor is switched on. The remote wake-up request is indicated by a low level at RXD and TXD to interrupt the microcontroller [\(Figure 4-5 on page 10](#page-9-0)).

EN high can be used to switch directly from sleep/silent to fail-safe mode. If EN is still high after VCC ramp up and undervoltage reset time, the IC switches to normal mode.

4.4 Sleep or Silent Mode: Behavior at a Floating LIN-bus or a Short Circuited LIN to GND

In sleep or in silent mode the device has a very low current consumption even during short-circuits or floating conditions on the bus. A floating bus can arise if the master pull-up resistor is missing, e.g., if it is switched off when the LIN- master is in sleep mode or even if the power supply of the master node is switched off.

In order to minimize the current consumption I_{VS} in sleep or silent mode during voltage levels at the LIN-pin below the LIN pre-wake threshold, the receiver is activated only for a specific time tmon. If $t_{\rm{mon}}$ elapses while the voltage at the bus is lower than pre-wake detection low $(V_{L|N})$ and higher than the LIN dominant level, the receiver is switched off again and the circuit changes back to sleep respectively silent mode. The current consumption is then I_{VSsleep_short} or I_{VSsilent_short} (typ. 10µA more than I_{VSsleep} respectively I_{VSslent}). If a dominant state is reached on the bus no wake-up will occur. Even if the voltage rises above the pre-wake detection high (V_{LIMH}), the IC will stay in sleep respectively silent mode (see [Figure 4-6 on page 11](#page-10-0)).

This means the LIN-bus must be above the pre-wake detection threshold V_{LINH} for a few microseconds before a new LIN wake-up is possible.

Figure 4-6. Floating LIN-bus During Sleep or Silent Mode

If the Atmel[®] ATA6629/ATA6631 is in sleep or silent mode and the voltage level at the LIN-bus is in dominant state (V_{LIN} < V_{BUSdom}) for a time period exceeding t_{mon} (during a short circuit at LIN, for example), the IC switches back to sleep mode respectively silent mode. The V_S current consumption then is I_{VSsleep_short} or I_{VSsilent_short} (typ. 10µA more than I_{VSsleep} respectively I_{VSsilent}). After a positive edge at pin LIN the IC switches directly to fail-safe mode (see [Figure 4-7 on page 12](#page-11-0)).

Figure 4-7. Short Circuit to GND on the LIN bus During Sleep- or Silent Mode

4.5 Fail-safe Mode

The device automatically switches to fail-safe mode at system power-up. The voltage regulator is switched on (see [Figure 6-1 on page 15](#page-14-0)). The NRES output switches to low for t_{res} = 4ms and gives a reset to the microcontroller. LIN communication is switched off. The IC stays in this mode until EN is switched to high. The IC then changes to normal mode. A power down of V_{Batt} (V_S < VS_{th}) during silent or sleep mode switches the IC into fail-safe mode after power up. A low at NRES switches the IC into fail-safe mode directly. During fail-safe mode the TXD pin is an output and signals the fail-safe source.

The LIN SBC can operate in different modes, like normal, silent or sleep mode. The functionality of these modes is described in [Table 4-2](#page-11-1).

Table 4-2. TXD, RXD Depending from Operation Modes

Different Modes	TXD	RXD
Fail-safe Mode	Signalling fail-safe sources (see Table 4-3)	
Normal Mode	Follows data transmission	
Silent Mode	High	High
Sleep Mode	LOW	Low

A wake-up event from either silent or sleep mode will be signalled to the microcontroller using the two pins RXD and TXD. The coding is shown in [Table 4-3.](#page-12-0)

A wake-up event will lead the IC to the fail-safe mode.

Table 4-3. Signalling Fail-safe Sources

4.6 Unpowered Mode

If you connect battery voltage to the application circuit, the voltage at the VS pin increases according to the block capacitor (see [Figure 6-1 on page 15](#page-14-0)). After VS is higher than the VS undervoltage threshold VS_{th} , the IC mode changes from unpowered mode to fail-safe mode. The VCC output voltage reaches its nominal value after t_{VCC}. This time, t_{VCC}, depends on the VCC capacitor and the load.

The NRES is low for the reset time delay t_{reset} . During this time, t_{reset} , no mode change is possible.

IF VS drops below VS_{th}, then the IC switches to unpowered mode. The behaviour of VCC, NRES and LIN is shown in [Figure 4-8.](#page-12-1)

Figure 4-8. VCC versus VS for the VCC = 3.3V Regulator

5. Fail-safe Features

- During a short-circuit at LIN to V_{Batter} , the output limits the output current to $I_{\text{BUS LIM}}$. Due to the power dissipation, the chip temperature exceeds T_{L1Noff} and the LIN output is switched off. The chip cools down and after a hysteresis of T_{NNS} , switches the output on again. RXD stays on high because LIN is high. During LIN overtemperature switch-off, the V_{CC} regulator is working independently.
- During a short-circuit from LIN to GND the IC can be switched into sleep or Silent mode and even in this case the current consumption is lower than 30µA in sleep mode and lower than 70µA in silent mode. If the short-circuit disappears, the IC starts with a remote wake-up.
- Sleep or silent mode: During a floating condition on the bus the IC switches back to sleep mode/silent mode automatically and thereby the current consumption is lower than 30µA/70µA.
- The reverse current is $\lt 2\mu A$ at pin LIN during loss of V_{Ratt} . This is optimal behavior for bus systems where some slave nodes are supplied from battery or ignition.
- During a short circuit at VCC, the output limits the output current to I_{VCClim} . Because of undervoltage, NRES switches to low and sends a reset to the microcontroller. The IC switches into fail-safe mode. If the chip temperature exceeds the value T_{VCC off, the V_{CC} output switches off. The chip cools down and after a hysteresis of T_{hvs} , switches the output on again. Because of fail-safe mode, the V_{CC} voltage will switch on again although EN is switched off from the microcontroller.The microcontroller can then start with normal operation.
- Pin EN provides a pull-down resistor to force the transceiver into recessive mode if EN is disconnected.
- Pin RXD is set floating if V_{Batt} is disconnected.
- Pin TXD provides a pull-up resistor to force the transceiver into recessive mode if TXD is disconnected.
- After switching the IC into normal mode the TXD pin must be pulled to high longer than 10µs in order to activate the LIN driver. This feature prevents the bus from being driven into dominant state when the IC is switched into normal mode and TXD is low.
- If TXD is short-circuited to GND, it is possible to switch to sleep mode via ENABLE after t > tdom.

6. Voltage Regulator

Figure 6-1. V_{cc} Voltage Regulator: Ramp Up and Undervoltage

The voltage regulator needs an external capacitor for compensation and to smooth the disturbances from the microcontroller. It is recommended to use an electrolytic capacitor with C > 1.8µF and a ceramic capacitor with C = 100nF. The values of these capacitors can be varied by the customer, depending on the application.

With this special SO8 package (fused lead frame to pin 3) an R_{thia} of 80K/W is achieved.

Therefore, it is recommended to connect pin 3 with a wide GND plate on the printed board to get a good heat sink.

The main power dissipation of the IC is created from the V_{CC} output current I_{VCC} , which is needed for the application.

Figure $6-2$ shows the safe operating area of the Atmel® ATA6631.

Figure 6-2. Power Dissipation: Safe Operating Area: VCC Output Current versus Supply Voltage V^S at Different Ambient Temperatures Due to Rthja = 80K/W

For programming purposes of the microcontroller, it is potentionally necessary to supply the V_{CC} output via an external power supply while the V_S Pin of the system basis chip is disconnected. This will not affect the system basis chip.

Atmel

7. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

8. Thermal Characteristics

9. Electrical Characteristics

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

 $5V < V_S < 27V$, -40° C < T_j < 150°C; unless otherwise specified all values refer to GND pins.

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Atmel

 $5V < V_S < 27V$, -40° C < T_j < 150°C; unless otherwise specified all values refer to GND pins.

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Atmel

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

 $5V < V_S < 27V$, -40° C < T_j < 150°C; unless otherwise specified all values refer to GND pins.

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Figure 9-1. Definition of Bus Timing Characteristics

Atmel

10. Ordering Information

11. Package Information

12. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

Atmel Enabling Unlimited Possibilities®

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA **T:** (+1)(408) 441.0311 **F:** (+1)(408) 436.4200 **[| www.atmel.com](www.atmel.com)**

© 2014 Atmel Corporation. / Rev.: 9165F-AUTO-10/14

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OU BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically pro

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written
consent. Safety-Critical Applications not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.