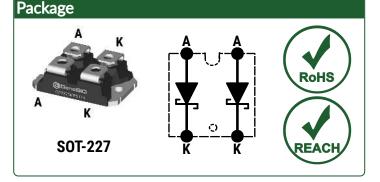
GD2X75MPS17N 1700V 150A SiC Schottky MPS[™] Diode


Silicon Carbide Schottky Diode

VRRM =	1700 V
F (Tc = 127°C) =	150 A *
Qc =	1048 nC *

Features

- Gen4 Thin Chip Technology for Low V_{F}
- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Q_C/I_F
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_F
- Low V_F for High Temperature Operation

Advantages

- Improved System Efficiency
- High System Reliability
- Optimal Price Performance
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Improved System Efficiency

Applications

- EV Fast Chargers
- Solar Inverters
- Wind Energy Converters
- Train Auxiliary Power Supplies
- High Frequency Rectifiers
- Switched Mode Power Supplies
- Motor Drives
- Pulsed Power

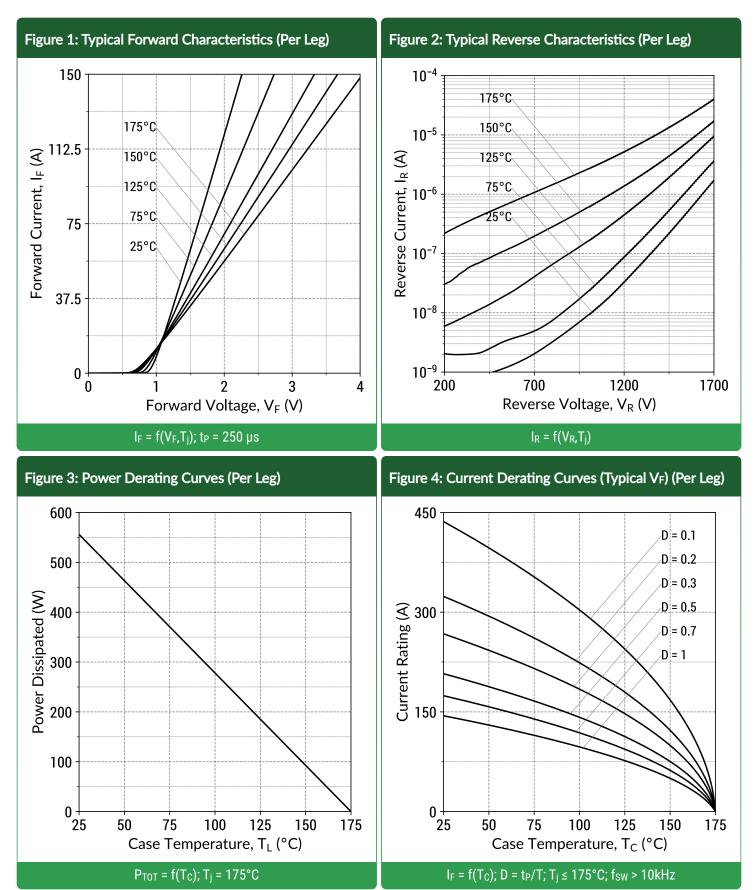
Absolute Maximum Ratings (At T_c = 25°C Unless Otherwise Stated)

Parameter	Symbol	Conditions	Values	Unit	Note
Repetitive Peak Reverse Voltage (Per Leg)	V _{RRM}		1700	V	
		T _C = 75°C, D = 1	115 / 230		
Continuous Forward Current (Per Leg / Per Device)	IF	T _C = 100°C, D = 1	97 / 194	А	Fig. 4
		T _C = 127°C, D = 1	75 / 150		
Non-Repetitive Peak Forward Surge Current, Half Sine	l=	T _C = 25°C, t _P = 10 ms	750	٨	
Wave (Per Leg)	I _{F,SM}	Tc = 150°C, t⊵ = 10 ms	600	A	
Repetitive Peak Forward Surge Current, Half Sine Wave		T _C = 25°C, t _P = 10 ms	450	٨	
(Per Leg)	I _{F,RM}	Tc = 150°C, t⊵ = 10 ms	315	А	
Non-Repetitive Peak Forward Surge Current (Per Leg)	I _{F,MAX}	T _C = 25°C, t _P = 10 μs	3750	А	
i ² t Value (Per Leg)	∫i²dt	T _C = 25°C, t _P = 10 ms	2812	A ² s	
Non-Repetitive Avalanche Energy (Per Leg)	E _{AS}	L = 0.5 mH, I _{AS} = 75 A	1270	mJ	
Diode Ruggedness (Per Leg)	dV/dt	V _R = 0 ~ 1360 V	200	V/ns	
Power Dissipation (Per Leg / Per Device)	Ртот	T _C = 25°C	556 / 1112	W	Fig. 3
Operating and Storage Temperature	T _j , T _{stg}		-55 to 175	°C	

* Per Device

GD2X75MPS17N 1700V 150A SiC Schottky MPS™ Diode

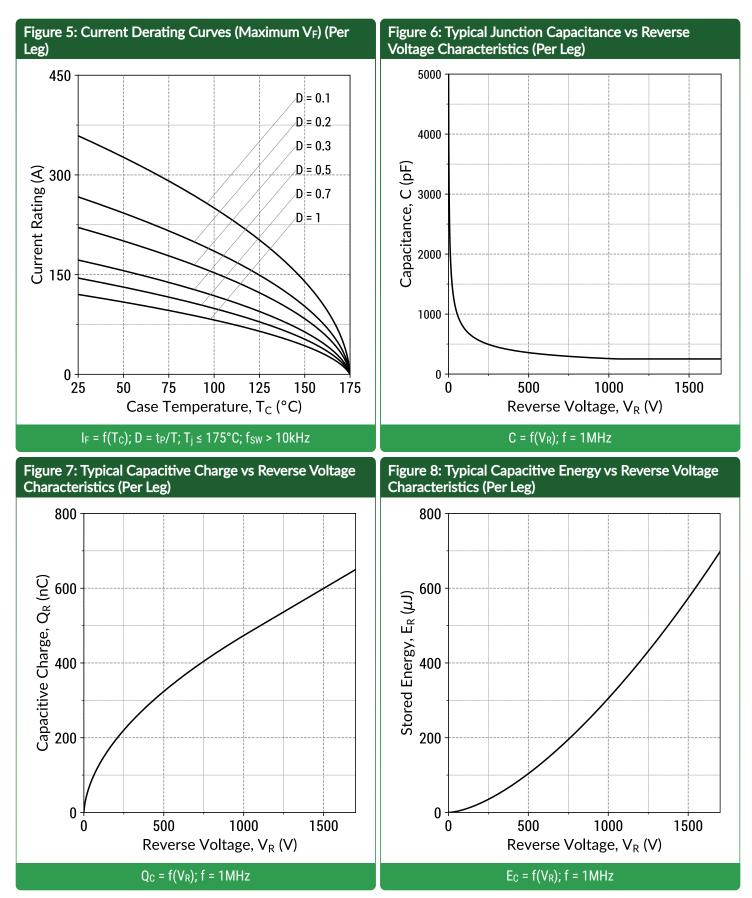
Electrical Characteristics (Per Leg)

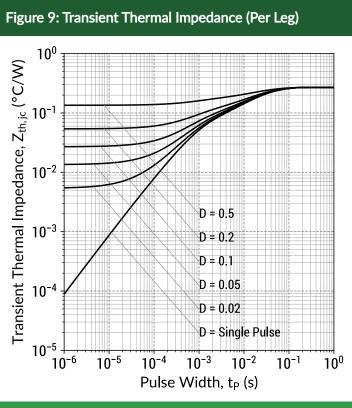

Parameter	Symbol	Conditions -		Values			11	Note
ralalletel	Symbol			Min.	Тур.	Max.	Unit	Note
Diada Forward Voltago			I _F = 75 A, T _j = 25°C		1.6	1.8	V	Fig. 1
Diode Forward Voltage	V _F	I _F = 75 A, T _j = 175°C			2.4		v	Fig. 1
Reverse Current	I-	V _R = 1700 V, T _j = 25°C			2	10		Fig. 2
Reverse Current	I _R	V _R = 1700 V, T _j = 175°C			41		μA	
Total Canacitiva Charge	0		V _R = 600 V		358		nC	Fig. 7
Total Capacitive Charge	Qc	I _F ≤ I _{F.MAX}	V _R = 1200 V		524			
Quuitaking Tinga	in a Time .	dl _F /dt = 200 A/µs	V _R = 600 V	V _R = 600 V				
Switching Time	ts		V _R = 1200 V		< 10		ns	
Tatal Canaditanaa	0	V _R = 1 V, f :	= 1MHz		4577			Fig. (
Total Capacitance	С	V _R = 1200 V, f = 1MHz			252		pF	Fig. 6

Thermal/Package Characteristics

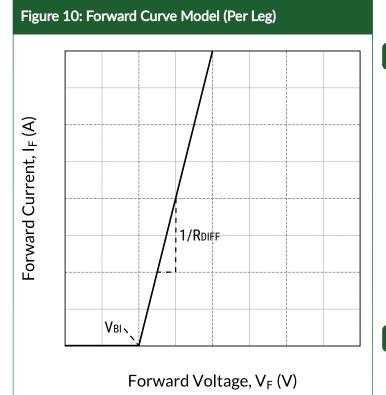
Parameter	Symbol Conditions		Values Min. Typ. Max.		Max.	Unit	Note
Thermal Resistance, Junction - Case (Per Leg)	R _{thJC}			0.27		°C/W	Fig. 9
Weight	WT			28		g	
Mounting Torque	Тм	Screws to Heatsink			1.5	Nm	
Terminal Connection Torque	Tc	M4 Screws			1.3	Nm	
Isolation Voltage(RMS)	V _{ISO}	t = 1s (50/60 Hz)	3000			V	
	VISO	t = 60s (50/60 Hz)		2500	v	v	
Creepage Distance on Surface	d _{Ctt}	Terminal to Terminal		10.5			
	d _{Ctb}	Terminal to Backside		8.5		mm	
Striking Distance Through Air	d _{Stt}	Terminal to Terminal		3.2		mm	
	d _{Stb}	Terminal to Backside		6.8		mm	

GD2X75MPS17N 1700V 150A SiC Schottky MPS[™] Diode




Jul. 20 Rev 1

GD2X75MPS17N 1700V 150A SiC Schottky MPS™ Diode



GD2X75MPS17N 1700V 150A SiC Schottky MPS™ Diode

 $Z_{th,jc} = f(t_P,D); D = t_P/T$

 $I_F = f(V_F, T_j)$

Forward Curve Model Equation:

 $I_F = (V_F - V_{BI})/R_{DIFF} (A)$

Built-In Voltage (V_{BI}):

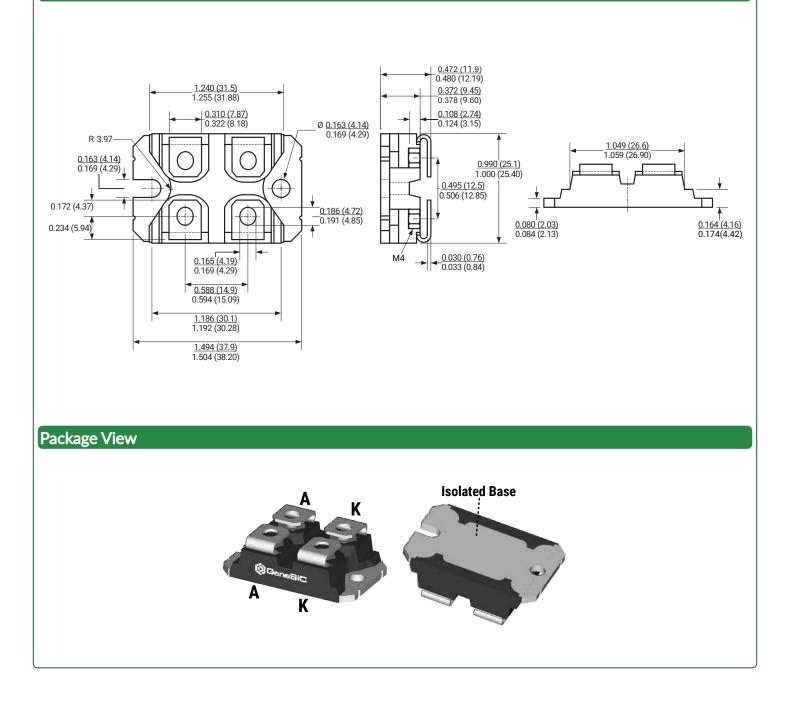
 $V_{BI}(T_j) = m \times T_j + n (V)$ m = -0.00125 (V/°C) n = 1.0 (V)

Differential Resistance (RDIFF):

 $R_{DIFF}(T_j) = a \times T_j^2 + b \times T_j + c (\Omega)$ a = 1.61e-07 (\Omega/°C^2) b = 5.53e-05 (\Omega/°C) c = 7.14e-03 (\Omega)

Forward Power Loss Equation:

 $P_{LOSS} = V_{BI}(T_j) \times I_{AVG} + R_{DIFF}(T_j) \times I_{RMS}^2$



GD2X75MPS17N 1700V 150A SiC Schottky MPS[™] Diode

Package Dimensions

SOT-227 Package Outline

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models:	https://www.genesicsemi.com/sic-schottky-mps/GD2X75MPS17N/GD2X75MPS17N_SPICE.zip
PLECS Models:	https://www.genesicsemi.com/sic-schottky-mps/GD2X75MPS17N/GD2X75MPS17N_PLECS.zip
CAD Models:	https://www.genesicsemi.com/sic-schottky-mps/GD2X75MPS17N/GD2X75MPS17N_3D.zip
• Evaluation Boards:	https://www.genesicsemi.com/technical-support
 Reliability: 	https://www.genesicsemi.com/reliability
 Compliance: 	https://www.genesicsemi.com/compliance
• Quality Manual:	https://www.genesicsemi.com/quality

Revision History							
Date	Revision	Comments	Supersedes				
Jul. 27, 2020	Rev 1	Initial Release					

www.genesicsemi.com/sic-schottky-mps/

Jul. 20 Rev 1 Copyright© 2020 GeneSiC Semiconductor Inc. All Rights Reserved. Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155, Dulles, VA 20166; USA Page 7 of 7