
 2012 Microchip Technology Inc. DS51686E

MPLAB® XC32 C/C++ Compiler

User’s Guide

DS51686E-page 2 2012 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer’s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,

KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,

PIC32 logo, rfPIC and UNI/O are registered trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,

MXDEV, MXLAB, SEEVAL and The Embedded Control

Solutions Company are registered trademarks of Microchip

Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,

chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,

dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,

FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,

Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,

MPLINK, mTouch, Omniscient Code Generation, PICC,

PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,

rfLAB, Select Mode, Total Endurance, TSHARC,

UniWinDriver, WiperLock and ZENA are trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2012, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62076-455-8

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 3

Table of Contents

Preface ... 7

Chapter 1. Compiler Overview

1.1 Introduction ... 13

1.2 Device Description ... 13

1.3 Compiler Description and Documentation .. 13

1.4 Compiler and Other Development Tools .. 15

Chapter 2. Common C Interface

2.1 Introduction ... 17

2.2 Background – The Desire for Portable Code ... 17

2.3 Using the CCI ... 20

2.4 ANSI Standard Refinement .. 21

2.5 ANSI Standard Extensions ... 29

2.6 Compiler Features .. 43

Chapter 3. Compiler Command Line Driver

3.1 Introduction ... 45

3.2 Invoking the Compiler ... 45

3.3 The C Compilation Sequence .. 49

3.4 The C++ Compilation Sequence .. 51

3.5 Runtime Files ... 55

3.6 Start-up and Initialization .. 58

3.7 Compiler Output ... 58

3.8 Compiler Messages .. 60

3.9 Driver Option Descriptions ... 60

Chapter 4. Device-Related Features

4.1 Introduction ... 85

4.2 Device Support ... 85

4.3 Device Header Files ... 85

4.4 Stack .. 86

4.5 Using SFRs From C Code .. 88

Chapter 5. ANSI C Standard Issues

5.1 Divergence from the ANSI C Standard .. 91

5.2 Extensions to the ANSI C Standard ... 91

5.3 Implementation-defined behavior ... 92

Chapter 6. Supported Data Types and Variables

6.1 Introduction ... 93

6.2 Identifiers .. 93

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 4 2012 Microchip Technology Inc.

6.3 Data Representation .. 93

6.4 Integer Data Types ... 94

6.5 Floating-Point Data Types .. 96

6.6 Structures and Unions .. 98

6.7 Pointer Types ... 100

6.8 Complex Data Types .. 102

6.9 Constant Types and Formats ... 102

6.10 Standard Type Qualifiers .. 104

6.11 Compiler-Specific Qualifiers ... 105

6.12 Variable Attributes .. 105

Chapter 7. Memory Allocation and Access

7.1 Introduction ... 109

7.2 Address Spaces ... 109

7.3 Variables in Data Memory .. 110

7.4 Auto Variable Allocation and Access .. 112

7.5 Variables in Program Memory .. 113

7.6 Variables in Registers .. 114

7.7 Dynamic Memory Allocation ... 114

7.8 Memory Models .. 114

Chapter 8. Operators and Statements

8.1 Introduction ... 117

8.2 Integral Promotion .. 117

8.3 Type References .. 118

8.4 Labels as Values .. 119

8.5 Conditional Operator Operands ... 120

8.6 Case Ranges .. 120

Chapter 9. Register Usage

9.1 Introduction ... 121

9.2 Register Usage ... 121

9.3 Register Conventions ... 121

Chapter 10. Functions

10.1 Writing Functions .. 123

10.2 Function Attributes and Specifiers .. 123

10.3 Allocation of Function Code ... 127

10.4 Changing the Default Function Allocation .. 127

10.5 Function Size Limits ... 128

10.6 Function Parameters .. 128

10.7 Function Return Values .. 130

10.8 Calling Functions .. 130

10.9 Inline Functions .. 130

Chapter 11. Interrupts

11.1 Introduction ... 133

11.2 Interrupt Operation ... 133

 2012 Microchip Technology Inc. DS51686E-page 5

11.3 Writing an Interrupt Service Routine .. 134

11.4 Associating a Handler Function with an Exception Vector 139

11.5 Exception Handlers .. 141

11.6 Interrupt Service Routine Context Switching .. 141

11.7 Latency ... 142

11.8 Nesting Interrupts ... 142

11.9 Enabling/Disabling Interrupts ... 142

11.10 ISR Considerations .. 142

Chapter 12. Main, Runtime Start-up and Reset

12.1 Introduction ... 143

12.2 The Main Function .. 143

12.3 Runtime Start-up Code ... 143

12.4 The On Reset Routine .. 157

Chapter 13. Library Routines

13.1 Using Library Routines ... 159

Chapter 14. Mixing C/C++ and Assembly Language

14.1 Introduction ... 161

14.2 Using Inline Assembly Language ... 161

14.3 Predefined Assembly Macros ... 164

Chapter 15. Optimizations

15.1 Introduction ... 167

Chapter 16. Preprocessing

16.1 Introduction ... 169

16.2 C/C++ Language Comments .. 169

16.3 Preprocessor Directives ... 169

16.4 Pragma Directives .. 171

16.5 Predefined Macros ... 172

Chapter 17. Linking Programs

17.1 Introduction ... 175

17.2 Replacing Library Symbols ... 175

17.3 Linker-Defined Symbols ... 175

17.4 Default Linker Script ... 176

Appendix 18. Implementation-Defined Behavior

18.1 Introduction ... 191

18.2 Highlights .. 191

18.3 Overview .. 191

18.4 Translation .. 192

18.5 Environment ... 192

18.6 Identifiers .. 193

18.7 Characters .. 193

18.8 Integers .. 194

18.9 Floating-Point ... 194

18.10 Arrays and Pointers .. 196

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 6 2012 Microchip Technology Inc.

18.11 Hints ... 196

18.12 Structures, Unions, Enumerations, and Bit fields 197

18.13 Qualifiers .. 197

18.14 Declarators ... 198

18.15 Statements ... 198

18.16 Pre-Processing Directives .. 198

18.17 Library Functions .. 199

18.18 Architecture .. 202

Appendix 19. ASCII Character Set

Appendix 20. Deprecated Features

20.1 Introduction ... 205

20.2 Variables in Specified Registers ... 205

Glossary ...207

Index ...225

Worldwide Sales and Service ...238

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 7

Preface

MPLAB® XC32 C/C++ Compiler documentation and support information is discussed
in the sections below:

• Document Layout

• Conventions Used

• Recommended Reading

• myMicrochip Personalized Notification Service

• The Microchip Web Site

• Microchip Forums

• Customer Support

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documenta-
tion are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions
may differ from those in this document.

For the most up-to-date information on development tools, see the MPLAB® IDE or MPLAB X IDE
Help. Select the Help menu and then “Topics” or “Help Contents” to open a list of available Help files.

For the most current PDFs, please refer to our web site (http://www.microchip.com). Documents are
identified by “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of
the document. This number is located on the bottom of each page, in front of the page number.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 8 2012 Microchip Technology Inc.

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 32-bit
applications. The document layout is as follows:

• Chapter 1. Compiler Overview – describes the compiler, development tools and
feature set.

• Chapter 2. Common C Interface – explains what you need to know about
making code portable.

• Chapter 3. Compiler Command Line Driver – describes how to use the
compiler from the command line.

• Chapter 4. Device-Related Features – describes the compiler header and
register definition files, as well as how to use with the SFRs.

• Chapter 5. ANSI C Standard Issues – describes the differences between the
C/C++ language supported by the compiler syntax and the standard ANSI-89 C.

• Chapter 6. Supported Data Types and Variables – describes the compiler
integer and pointer data types.

• Chapter 7. Memory Allocation and Access – describes the compiler run-time
model, including information on sections, initialization, memory models, the
software stack and much more.

• Chapter 8. Operators and Statements – discusses operators and statements.

• Chapter 9. Register Usage – explains how to access and use SFRs.

• Chapter 10. Functions – details available functions.

• Chapter 11. Interrupts – describes how to use interrupts.

• Chapter 12. Main, Runtime Start-up and Reset – describes important elements
of C/C++ code.

• Chapter 13. Library Routines – explains how to use libraries.

• Chapter 14. Mixing C/C++ and Assembly Language – provides guidelines for
using the compiler with 32-bit assembly language modules.

• Chapter 15. Optimizations – describes optimization options.

• Chapter 16. Preprocessing – details the preprocessing operation.

• Chapter 17. Linking Programs – explains how linking works.

• Appendix 18. Implementation-Defined Behavior – details compiler-specific
parameters described as implementation-defined in the ANSI standard.

• Appendix 19. ASCII Character Set” – contains the ASCII character set.

• Appendix 20. Deprecated Features – details features that are considered
obsolete.

Preface

 2012 Microchip Technology Inc. DS51686E-page 9

CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or dia-
log

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Sidebar Text

Device Dependent.
This feature is not supported on
all devices. Devices supported
will be listed in the title or text.

xmemory attribute

DD

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 10 2012 Microchip Technology Inc.

RECOMMENDED READING

This documentation describes how to use the MPLAB XC32 C/C++ Compiler. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources.

Release Notes (Readme Files)

For the latest information on Microchip tools, read the associated Release Notes
(HTML files) included with the software.

MPLAB® Assembler, Linker and Utilities for PIC32 MCUs User’s Guide (DS51833)

A guide to using the 32-bit assembler, object linker, object archiver/librarian and various
utilities.

32-Bit Language Tools Libraries (DS51685)

Lists all library functions provided with the MPLAB XC32 C/C++ Compiler with detailed
descriptions of their use.

Dinkum Compleat Libraries

The Dinkum Compleat Libraries are organized into a number of headers, files that you
include in your program to declare or define library facilities. A link to the Dinkum librar-
ies is available in the MPLAB X IDE application, on the My MPLAB X IDE tab, Refer-
ences & Featured Links section.

PIC32MX Configuration Settings

Lists the Configuration Bit settings for the Microchip PIC32MX devices supported by
the MPLAB XC32 C/C++ Compiler’s #pragma config.

Device-Specific Documentation

The Microchip website contains many documents that describe 32-bit device functions
and features. Among these are:

• Individual and family data sheets

• Family reference manuals

• Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems – Programming Language – C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C++ Standards Information

Stroustrup, Bjarne, C++ Programming Language: Special Edition, 3rd Edition.
Addison-Wesley Professional; Indianapolis, Indiana, 46240.

ISO/IEC 14882 C++ Standard. The ISO C++ Standard is standardized by ISO (The
International Standards Organization) in collaboration with ANSI (The American
National Standards Institute), BSI (The British Standards Institute) and DIN (The
German national standards organization).

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C++. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C++ language programs on a
variety of computing systems.

Preface

 2012 Microchip Technology Inc. DS51686E-page 11

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

GCC Documents

http://gcc.gnu.org/onlinedocs/

http://sourceware.org/binutils/

myMICROCHIP PERSONALIZED NOTIFICATION SERVICE

Microchip's personal notification service helps keep customers current on their Micro-
chip products of interest. Subscribers will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a specified product family or develop-
ment tool.

Please visit http://www.microchip.com/pcn to begin the registration process and select
your preferences to receive personalized notifications. A FAQ and registration details
are available on the page, which can be opened by selecting the link above.

When you are selecting your preferences, choosing “Development Systems” will pop-
ulate the list with available development tools. The main categories of tools are listed
below:

• Compilers – The latest information on Microchip C/C++ compilers, assemblers,
linkers and other language tools. These include all MPLAB C/C++ compilers; all
MPLAB assemblers (including MPASM™ assembler); all MPLAB linkers (includ-
ing MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

• Emulators – The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators

• In-Circuit Debuggers – The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3
debug express.

• MPLAB IDE/MPLAB X IDE – The latest information on Microchip MPLAB IDE,
the Windows® Integrated Development Environment, or MPLAB X IDE, the open
source, cross-platform Integrated Development Environment. These lists focus on
the IDE, Project Manager, Editor and Simulator, as well as general editing and
debugging features.

• Programmers – The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3 and development (nonproduction)
programmers MPLAB ICD 2 in-circuit debugger, PICSTART® Plus and PICkit 2
and 3.

• Starter/Demo Boards – These include MPLAB Starter Kit boards, PICDEM™
demo boards, and various other evaluation boards.

http://gcc.gnu.org/onlinedocs/
http://sourceware.org/binutils/
http://support.microchip.com/pcn

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 12 2012 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at http://www.microchip.com. This
web site is used as a means to make files and information easily available to
customers. Accessible by using your favorite Internet browser, the web site contains
the following information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

MICROCHIP FORUMS

Microchip provides additional online support via our web forums at
http://www.microchip.com/forums. Currently available forums are:

• Development Tools

• 8-bit PIC® MCUs

• 16-bit PIC MCUs

• 32-bit PIC MCUs

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document. See our web site
for a complete, up-to-date listing of sales offices.

Technical support is available through the web site at http://support.microchip.com.

Documentation errors or comments may be emailed to docerrors@microchip.com.

DOCUMENT REVISION HISTORY

Revision D (January 2012)

• Changed product name from MPLAB C32 C Compiler to MPLAB XC32 C/C++
Compiler. Completely reorganized document to align with other Microchip
compiler documentation.

Revision E (July 2012)

• Added information pertaining to C++ throughout the document.

• Added new section describing the Common Compiler Interface (CCI) Standard

http://support.microchip.com
http://www.microchip.com/forums
http://support.microchip.com

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 13

Chapter 1. Compiler Overview

1.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler is defined and described in the following topics:

• Device Description

• Compiler Description and Documentation

• Compiler and Other Development Tools

1.2 DEVICE DESCRIPTION

The MPLAB XC32 C/C++ Compiler fully supports all Microchip 32-bit devices.

1.3 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC32 C/C++ Compiler is a full-featured, optimizing compiler that trans-
lates standard ANSI C programs into 32-bit device assembly language source. The
compiler also supports many command-line options and language extensions that
allow full access to the 32-bit device hardware capabilities, and affords fine control of
the compiler code generator.

The compiler is a port of the GCC compiler from the Free Software Foundation.

The compiler is available for several popular operating systems, including 32 and 64-bit
Windows®, Linux and Apple OS X.

The compiler can run in one of three operating modes: Free, Standard or PRO. The
Standard and PRO operating modes are licensed modes and require an activation key
and Internet connectivity to enable them. Free mode is available for unlicensed cus-
tomers. The basic compiler operation, supported devices and available memory are
identical across all modes. The modes only differ in the level of optimization employed
by the compiler.

1.3.1 Conventions

Throughout this manual, the term “the compiler” is often used. It can refer to either all,
or some subset of, the collection of applications that form the MPLAB XC32 C/C++
Compiler. Often it is not important to know, for example, whether an action is performed
by the parser or code generator application, and it is sufficient to say it was performed
by “the compiler”.

It is also reasonable for “the compiler” to refer to the command-line driver (or just driver)
as this is the application that is always executed to invoke the compilation process. The
driver for the MPLAB XC32 C/C++ Compiler package is called xc32-gcc. The driver
for the C/ASM projects is also xc32-gcc. The driver for C/C++/ASM projects is
xc32-g++. The drivers and their options are discussed in Section 3.9 “Driver Option

Descriptions”. Following this view, “compiler options” should be considered com-
mand-line driver options, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating
source code into an executable binary image.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 14 2012 Microchip Technology Inc.

1.3.2 ANSI C Standards

The compiler is a fully validated compiler that conforms to the ANSI C standard as
defined by the ANSI specification (ANSI x3.159-1989) and described in Kernighan and
Ritchie’s The C Programming Language (second edition). The ANSI standard includes
extensions to the original C definition that are now standard features of the language.
These extensions enhance portability and offer increased capability. In addition, lan-
guage extensions for PIC32 MCU embedded-control applications are included.

1.3.3 Optimization

The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C/C++ source. The
optimization passes include high-level optimizations that are applicable to any C/C++
code, as well as PIC32 MCU-specific optimizations that take advantage of the particu-
lar features of the device architecture.

For more on optimizations, see Chapter 15. “Optimizations”.

1.3.4 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions
have been validated and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping and math functions (trigonometric, exponential and hyperbolic). The standard
I/O functions for file handling are also included, and, as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution,
and may be used as a starting point for applications that require this capability.

1.3.5 ISO/IEC C++ Standard

The compiler is distributed with the 2003 Standard C++ Library.

1.3.6 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled and linked in a single step.

1.3.7 Documentation

The C compiler is supported under both the MPLAB IDE v8.xx or higher, and the
MPLAB X IDE. For C++, MPLAB X IDE v1.40 or higher is required. For simplicity, both
IDEs are referred to throughout the book as simply MPLAB IDE.

Features that are unique to specific devices, and therefore specific compilers, are
noted with “DD” text the column (see the Preface) and text identifying the devices to
which the information applies.

Note: Do not specify an MPLAB XC32 system include directory (e.g.
/pic32mx/include/) in your project properties. The xc32-gcc and
xc32-g++ compilation drivers automatically select the XC libc or the Din-
kumware libc and their respective include-file directory for you. Manually
adding a system include file path may disrupt this mechanism and cause
the incorrect libc include files to be compiled into your project, causing a
conflict between the include files and the library. Note that adding a system
include path to your project properties has never been a recommended
practice.

Compiler Overview

 2012 Microchip Technology Inc. DS51686E-page 15

1.4 COMPILER AND OTHER DEVELOPMENT TOOLS

The compiler works with many other Microchip tools including:

• MPLAB XC32 assembler and linker - see the “MPLAB® Assembler, Linker and

Utilities for PIC32 MCUs User’s Guide”.

• MPLAB IDE v8.xx and MPLAB X IDE (C++ required MPLAB X IDE v1.30 or
higher)

• The MPLAB Simulator

• All Microchip debug tools and programmers

• Demo boards and starter kits that support 32-bit devices

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 16 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 17

Chapter 2. Common C Interface

2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCI-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC32 MCU using the MPLAB XC32 C/C++ Compiler.

The CCI assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CCI, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

The following topics are examined in this chapter:

• Background — The Desire for Portable Code

• Using the CCI

• ANSI Standard Refinement

• ANSI Standard Extensions

• Compiler Features

2.2 BACKGROUND – THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You may only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler ver-
sion may change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 18 2012 Microchip Technology Inc.

2.2.1 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the runtime environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
int type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an int actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures may not allow the compiler to conform1.
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would loose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Implementation-defined behavior

This is unspecified behavior where each implementation documents how the choice
is made.

Unspecified behavior

The standard provides two or more possibilities and imposes no further requirements
on which possibility is chosen in any particular instance.

Undefined behavior

This is behavior for which the standard imposes no requirements.

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an
int, which we used as an example earlier, falls into the category of behavior that is
defined by implementation. That is to say, the size of an int is defined by which com-
piler is being used, how that compiler is being used, and the device that is being tar-
geted.

All the MPLAB XC compilers conform to the ANS X3.159-1989 Standard for program-
ming languages (with the exception of the XC8 compiler’s inability to allow recursion,
as mentioned in the footnote). This is commonly called the C89 Standard. Some fea-
tures from the later standard, C99, are also supported.

1. Case in point: The mid-range PIC® microcontrollers do not have a data stack. Because
a compiler targeting this device cannot implement recursion, it (strictly speaking) cannot
conform to the ANSI C Standard. This example illustrate a situation in which the stan-
dard is too strict for mid-range devices and tools.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 19

For freestanding implementations – or for what we typically call embedded applications
– the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code
portability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the ANSI C Standard

The CCI documents specific behavior for some code in which actions are implemen-
tation-defined behavior under the ANSI C Standard. For example, the result of
right-shifting a signed integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device characteristics, such as
the size of an int, are not defined by the CCI.

Consistent syntax for non-standard extensions

The CCI non-standard extensions are mostly implemented using keywords with a uni-
form syntax. They replace keywords, macros and attributes that are the native com-
piler implementation. The interpretation of the keyword may differ across each com-
piler, and any arguments to the keywords may be device specific.

Coding guidelines

The CCI may indicate advice on how code should be written so that it can be ported
to other devices or compilers. While you may choose not to follow the advice, it will
not conform to the CCI.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 20 2012 Microchip Technology Inc.

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCI is something you choose to follow and put into effect, thus it is relevant for new
projects, although you may choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.

Enable the CCI

Select the MPLAB IDE widget Use CCI Syntax in your project, or use the
command-line option that is equivalent.

Include <xc.h> in every module

Some CCI features are only enabled if this header is seen by the compiler.

Ensure ANSI compliance

Code that does not conform to the ANSI C Standard does not confirm to the CCI.

Observe refinements to ANSI by the CCI

Some ANSI implementation-defined behavior is defined explicitly by the CCI.

Use the CCI extensions to the language

Use the CCI extensions rather than the native language extensions

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are indi-
cated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses and 24-bit short long types are not part of the CCI. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate when you use a non-CCI feature and the CCI is enabled.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 21

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

2.4.1 Source File Encoding

Under the CCI, a source file must be written using characters from the 7-bit ASCII set.
Lines may be terminated using a line feed (\n) or carriage return (\r) that is immediately
followed by a line feed. Escaped characters may be used in character constants or
string literals to represent extended characters not in the basic character set.

2.4.1.1 EXAMPLE

The following shows a string constant being defined that uses escaped characters.

const char myName[] = "Bj\370rk\n";

2.4.1.2 DIFFERENCES

All compilers have used this character set.

2.4.1.3 MIGRATION TO THE CCI

No action required.

2.4.2 The Prototype for main

The prototype for the main() function is

int main(void);

2.4.2.1 EXAMPLE

The following shows an example of how main() might be defined

int main(void)
{

while(1)
process();

}

2.4.2.2 DIFFERENCES

The 8-bit compilers used a void return type for this function.

2.4.2.3 MIGRATION TO THE CCI

Each program has one definition for the main() function. Confirm the return type for
main() in all projects previously compiled for 8-bit targets.

2.4.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2.4.3.1 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 22 2012 Microchip Technology Inc.

2.4.3.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows-style separa-
tors "\" were used and the code compiled under other host operating systems. Under
the CCI, no directory specifiers should be used.

2.4.3.3 MIGRATION TO THE CCI

Any #include directives that use directory separators in the header file specifications
should be changed. Remove all but the header file name in the directive. Add the direc-
tory path to the compiler’s include search path or MPLAB IDE equivalent. This will force
the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:

#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path in your
MPLAB IDE project properties, or on the command-line as follows:

-Ilcd

2.4.4 Include Search Paths

When you include a header file under the CCI, the file should be discoverable in the
paths searched by the compiler detailed below.

For any header files specified in angle bracket delimiters < >, the search paths should
be those specified by -I options (or the equivalent MPLAB IDE option), then the stan-
dard compiler include directories. The -I options are searched in the order in which
they are specified.

For any file specified in quote characters " ", the search paths should first be the cur-
rent working directory. In the case of an MPLAB X project, the current working directory
is the directory in which the C source file is located. If unsuccessful, the search paths
should be the same directories searched when the header files is specified in angle
bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2.4.4.1 EXAMPLE

If including a header file as in the following directive

#include "myGlobals.h"

The header file should be locatable in the current working directory, or the paths spec-
ified by any -I options, or the standard compiler directories. If it is located elsewhere,
this does not conform to the CCI.

2.4.4.2 DIFFERENCES

The compiler operation under the CCI is not changed. This is purely a coding guide line.

2.4.4.3 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the -I option (or
the equivalent MPLAB IDE option), and use the -I option in place of this. Ensure the
header file can be found in the directories specified in this section.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 23

2.4.5 The Number of Significant Initial Characters in an Identifier

At least the first 255 characters in an identifier (internal and external) are significant.
This extends upon the requirement of the ANSI C Standard which states a lower num-
ber of significant characters are used to identify an object.

2.4.5.1 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2.4.5.2 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed
this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant char-
acters.

2.4.5.3 MIGRATION TO THE CCI

No action required. You may take advantage of the less restrictive naming scheme.

2.4.6 Sizes of Types

The sizes of the basic C types, for example char, int and long, are not fully defined
by the CCI. These types, by design, reflect the size of registers and other architectural
features in the target device. They allow the device to efficiently access objects of this
type. The ANSI C Standard does, however, indicate minimum requirements for these
types, as specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, e.g.,
uint8_t or int16_t. These types are consistently defined across all XC compilers,
even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes
and formats that are tailored to the device you are using; or those that have a fixed size,
regardless of the target.

2.4.6.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow
efficient access on the target device; and a variable, fixed, whose size is clearly indi-
cated and remains fixed, even though it may not allow efficient access on every device.

int native;
int16_t fixed;

2.4.6.2 DIFFERENCES

This is consistent with previous types implemented by the compiler.

2.4.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <stdint.h>.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 24 2012 Microchip Technology Inc.

2.4.7 Plain char Types

The type of a plain char is unsigned char. It is generally recommended that all def-
initions for the char type explicitly state the signedness of the object.

2.4.7.1 EXAMPLE

The following example

char foobar;

defines an unsigned char object called foobar.

2.4.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used signed char as the default plain char type. The
-funsigned-char option on those compilers changed the default type to be
unsigned char.

2.4.7.3 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers
needs review. Any plain char that was intended to be a signed quantity should be
replaced with an explicit definition, for example.

signed char foobar;

You may use the -funsigned-char option on XC16/32 to change the type of plain
char, but since this option is not supported on XC8, the code is not strictly conforming.

2.4.8 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the inte-
ger.

2.4.8.1 EXAMPLE

The following shows a variable, test, that is assigned the value -28 decimal.

signed char test = 0xE4;

2.4.8.2 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2.4.8.3 MIGRATION TO THE CCI

No action required.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 25

2.4.9 Integer conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the most-significant bit to accommodate the target size.

2.4.9.1 EXAMPLE

The following shows an assignment of a value that will be truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignment will be -2 (i.e., the bit
pattern 0xFE).

2.4.9.2 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that
described in this section.

2.4.9.3 MIGRATION TO THE CCI

No action required.

2.4.10 Bit-wise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit. See also Section 2.4.11 “Right-shifting Signed Values”.

2.4.10.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND oper-
ation.

signed char output, input = -13;
output = input & 0x7E;

Under the CCI, the value of output after the assignment will be 0x72.

2.4.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that
described in this section.

2.4.10.3 MIGRATION TO THE CCI

No action required.

2.4.11 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

2.4.11.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND oper-
ation.

signed char input, output = -13;
output = input >> 3;

Under the CCI, the value of output after the assignment will be -2 (i.e., the bit pattern
0xFE).

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 26 2012 Microchip Technology Inc.

2.4.11.2 DIFFERENCES

All compilers have performed right shifting as described in this section.

2.4.11.3 MIGRATION TO THE CCI

No action required.

2.4.12 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-
fier to try to access the contents of another (whether any conversion is applied to the
result) is implementation-defined behavior in the standard. In the CCI, no conversion is
applied and the bytes of the union object are interpreted as an object of the type of the
member being accessed, without regard for alignment or other possible invalid condi-
tions.

2.4.12.1 EXAMPLE

The following shows an example of a union defining several members.

union {
signed char code;
unsigned int data;
float offset;

} foobar;

Code that attempts to extract offset by reading data is not guaranteed to read the
correct value.

float result;
result = foobbar.data;

2.4.12.2 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.4.12.3 MIGRATION TO THE CCI

No action required.

2.4.13 Default Bit-field int Type

The type of a bit-field specified as a plain int will be identical to that of one defined
using unsigned int. This is quite different to other objects where the types int,
signed and signed int are synonymous. It is recommended that the signedness of
the bit-field be explicitly stated in all bit-field definitions.

2.4.13.1 EXAMPLE

The following shows an example of a structure tag containing bit-fields which are
unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity :3;
int value :4;

};

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 27

2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type int was used for bit-fields,
but would implement the bit-field with an unsigned int type.

The 16- and 32-bit compilers have implemented bit-fields defined using int as having
a signed int type, unless the option -funsigned-bitfields was specified.

2.4.13.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plain int type should be reviewed. If the inten-
tion was for these to be signed quantities, then the type of these should be changed to
signed int, for example, in:

struct WAYPT {
int log :3;
int direction :4;

};

the bit-field type should be changed to signed int, as in:

struct WAYPT {
signed int log :3;
signed int direction :4;

};

2.4.14 Bit-fields Straddling a Storage Unit Boundary

Whether a bit-field can straddle a storage unit boundary is implementation-defined
behavior in the standard. In the CCI, bit-fields will not straddle a storage unit boundary;
a new storage unit will be allocated to the structure, and padding bits will fill the gap.

Note that the size of a storage unit differs with each compiler as this is based on the
size of the base data type (e.g., int) from which the bit-field type is derived. On 8-bit
compilers this unit is 8-bits in size; for 16-bit compilers, it is 16 bits; and for 32-bit com-
pilers, it is 32 bits in size.

2.4.14.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
 unsigned first : 6;
 unsigned second :6;
} order;

Under the CCI and using XC8, the storage allocation unit is byte sized. The bit-field
second, will be allocated a new storage unit since there are only 2 bits remaining in
the first storage unit in which first is allocated. The size of this structure, order, will
be 2 bytes.

2.4.14.2 DIFFERENCES

This allocation is identical with that used by all previous compilers.

2.4.14.3 MIGRATION TO THE CCI

No action required.

2.4.15 The Allocation Order of Bits-field

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C
Standard. In the CCI, the first bit defined will be the least significant bit of the storage
unit in which it will be allocated.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 28 2012 Microchip Technology Inc.

2.4.15.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
 unsigned lo : 1;
 unsigned mid :6;
 unsigned hi : 1;
} foo;

The bit-field lo will be assigned the least significant bit of the storage unit assigned to
the structure foo. The bit-field mid will be assigned the next 6 least significant bits, and
hi, the most significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES

This is identical with the previous operation of all compilers.

2.4.15.3 MIGRATION TO THE CCI

No action required.

2.4.16 The NULL macro

The NULL macro is defined in <stddef.h>; however, its definition is implementa-
tion-defined behavior. Under the CCI, the definition of NULL is the expression (0).

2.4.16.1 EXAMPLE

The following shows a pointer being assigned a null pointer constant via the NULL
macro.

int * ip = NULL;

The value of NULL, (0), is implicitly cast to the destination type.

2.4.16.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).

2.4.16.3 MIGRATION TO THE CCI

No action required.

2.4.17 Floating-point sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.

2.4.17.1 EXAMPLE

The following shows the definition for outY, which will be at least 32-bit in size.

float outY;

2.4.17.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit float and double types.

2.4.17.3 MIGRATION TO THE CCI

When using 8-bit compilers, the float and double type will automatically be made
32 bits in size once the CCI mode is enabled. Review any source code that may have
assumed a float or double type and may have been 24 bits in size.

No migration is required for other compilers.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 29

2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

2.5.1 Generic Header File

A single header file <xc.h> must be used to declare all compiler- and device-specific
types and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

2.5.1.1 EXAMPLE

The following shows this header file being included, thus allowing conformance with the
CCI, as well as allowing access to SFRs.

#include <xc.h>

2.5.1.2 DIFFERENCES

Some 8-bit compilers used <htc.h> as the equivalent header. Previous versions of
the 16- and 32-bit compilers used a variety of headers to do the same job.

2.5.1.3 MIGRATION TO THE CCI

Change:

#include <htc.h>

used previously in 8-bit compiler code, or family-specific header files as in the following
examples:

#include <p32xxxx.h>
#include <p30fxxxx.h>
#include <p33Fxxxx.h>
#include <p24Fxxxx.h>
#include "p30f6014.h"

to:

#include <xc.h>

2.5.2 Absolute addressing

Variables and functions can be placed at an absolute address by using the __at()
construct.qualifier Note that XC16/32 may require the variable or function to be placed
in a special section for absolute addressing to work. Stack-based (auto and parame-
ter) variables cannot use the __at() specifier.

2.5.2.1 EXAMPLE

The following shows two variables and a function being made absolute.

int scanMode __at(0x200);
const char keys[] __at(123) = { ’r’, ’s’, ’u’, ’d’};

int modify(int x) __at(0x1000) {
return x * 2 + 3;

}

2.5.2.2 DIFFERENCES

The 8-bit compilers have used an @ symbol to specify an absolute address.

The 16- and 32-bit compilers have used the address attribute to specify an object’s
address.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 30 2012 Microchip Technology Inc.

2.5.2.3 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

In XC8, change absolute object definitions such as the following example:

int scanMode @ 0x200;

to:

int scanMode __at(0x200);

In XC16/32, change code such as:

int scanMode __attribute__(address(0x200)));

to:

int scanMode __at(0x200);

2.5.2.4 CAVEATS

If the __at() and __section() specifiers are both applied to an object when using
XC8, the __section() specifier is currently ignored.

2.5.3 Far Objects and Functions

The __far qualifier may be used to indicate that variables or functions may be located
in ‘far memory’. Exactly what constitutes far memory is dependent on the target device,
but it is typically memory that requires more complex code to access. Expressions
involving far-qualified objects may generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this
qualifier will be ignored. Stack-based (auto and parameter) variables cannot use the
__far specifier.

2.5.3.1 EXAMPLE

The following shows a variable and function qualified using __far.

__far int serialNo;
__far int ext_getCond(int selector);

2.5.3.2 DIFFERENCES

The 8-bit compilers have used the qualifier far to indicate this meaning. Functions
could not be qualified as far.

The 16-bit compilers have used the far attribute with both variables and functions.

The 32-bit compilers have used the far attribute with functions, only.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 31

2.5.3.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the far qualifier, as in the following
example:

far char template[20];

to __far, i.e., __far char template[20];

In the 16- and 32-bit compilers, change any occurrence of the far attribute, as in the
following

void bar(void) __attribute__ ((far));
int tblIdx __attribute__ ((far));

to

void __far bar(void);
int __far tblIdx;

2.5.3.4 CAVEATS

None.

2.5.4 Near Objects

The __near qualifier may be used to indicate that variables or functions may be
located in ‘near memory’. Exactly what constitutes near memory is dependent on the
target device, but it is typically memory that can be accessed with less complex code.
Expressions involving near-qualified objects may be faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this
qualifier will be ignored. Stack-based (auto and parameter) variables cannot use the
__near specifier.

2.5.4.1 EXAMPLE

The following shows a variable and function qualified using __near.

__near int serialNo;
__near int ext_getCond(int selector);

2.5.4.2 DIFFERENCES

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions
could not be qualified as near.

The 16-bit compilers have used the near attribute with both variables and functions.

The 32-bit compilers have used the near attribute for functions, only.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 32 2012 Microchip Technology Inc.

2.5.4.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the near qualifier, as in the following
example:

near char template[20];

to __near, i.e., __near char template[20];

In 16- and 32-bit compilers, change any occurrence of the near attribute, as in the fol-
lowing

void bar(void) __attribute__ ((near));
int tblIdx __attribute__ ((near));

to

void __near bar(void);
int __near tblIdx;

2.5.4.4 CAVEATS

None.

2.5.5 Persistent Objects

The __persistent qualifier may be used to indicate that variables should not be
cleared by the runtime startup code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

2.5.5.1 EXAMPLE

The following shows a variable qualified using __persistent.

__persistent int serialNo;

2.5.5.2 DIFFERENCES

The 8-bit compilers have used the qualifier, persistent, to indicate this meaning.

The 16- and 32-bit compilers have used the persistent attribute with variables to
indicate they were not to be cleared.

2.5.5.3 MIGRATION TO THE CCI

With 8-bit compilers, change any occurrence of the persistent qualifier, as in the fol-
lowing example:

persistent char template[20];

to __persistent, i.e., __persistent char template[20];

For the 16- and 32-bit compilers, change any occurrence of the persistent attribute,
as in the following

int tblIdx __attribute__ ((persistent));

to

int __persistent tblIdx;

2.5.5.4 CAVEATS

None.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 33

2.5.6 X and Y Data Objects

The __xdata and __ydata qualifiers may be used to indicate that variables may be
located in special memory regions. Exactly what constitutes X and Y memory is depen-
dent on the target device, but it is typically memory that can be accessed independently
on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have such memory implemented; in which case, use of these
qualifiers will be ignored.

2.5.6.1 EXAMPLE

The following shows a variable qualified using __xdata, as well as another variable
qualified with __ydata.

__xdata char data[16];
__ydata char coeffs[4];

2.5.6.2 DIFFERENCES

The 16-bit compilers have used the xmemory and ymemory space attribute with
variables.

Equivalent specifiers have never been defined for any other compiler.

2.5.6.3 MIGRATION TO THE CCI

For 16-bit compilers, change any occurrence of the space attributes xmemory or
ymemory, as in the following example:

char __attribute__((space(xmemory)))template[20];

to __xdata, or __ydata, i.e., __xdata char template[20];

2.5.6.4 CAVEATS

None.

2.5.7 Banked Data Objects

The __bank(num) qualifier may be used to indicate that variables may be located in
a particular data memory bank. The number, num, represents the bank number. Exactly
what constitutes banked memory is dependent on the target device, but it is typically a
subdivision of data memory to allow for assembly instructions with a limited address
width field.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have banked data memory implemented, in which case, use of
this qualifier will be ignored. The number of data banks implemented will vary from one
device to another.

2.5.7.1 EXAMPLE

The following shows a variable qualified using __bank().

__bank(0) char start;
__bank(5) char stop;

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 34 2012 Microchip Technology Inc.

2.5.7.2 DIFFERENCES

The 8-bit compilers have used the four qualifiers bank0, bank1, bank2 and bank3 to
indicate the same, albeit more limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

2.5.7.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the bankx qualifiers, as in the following
example:

bank2 int logEntry;

to __bank(, i.e., __bank(2) int logEntry;

2.5.7.4 CAVEATS

None.

2.5.8 Alignment of Objects

The __align(alignment) specifier may be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of two. Positive values request that the object’s start
address be aligned; negative values imply the object’s end address be aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.8.1 EXAMPLE

The following shows variables qualified using __align() to ensure they end on an
address that is a multiple of 8, and start on an address that is a multiple of 2,
respectively.

__align(-8) int spacer;
__align(2) char coeffs[6];

2.5.8.2 DIFFERENCES

An alignment feature has never been implemented on 8-bit compilers.

The 16- and 32-bit compilers used the aligned attribute with variables.

2.5.8.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the aligned attribute, as in
the following example:

char __attribute__((aligned(4)))mode;

to __align, i.e., __align(4) char mode;

2.5.8.4 CAVEATS

This feature is not yet implemented on XC8.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 35

2.5.9 EEPROM Objects

The __eeprom qualifier may be used to indicate that variables should be positioned in
EEPROM.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices will
generate a warning. Stack-based (auto and parameter) variables cannot use the
__eeprom specifier.

2.5.9.1 EXAMPLE

The following shows a variable qualified using __eeprom.

__eeprom int serialNos[4];

2.5.9.2 DIFFERENCES

The 8-bit compilers have used the qualifier, eeprom, to indicate this meaning for some
devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory
space used for EEPROM.

2.5.9.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the eeprom qualifier, as in the following
example:

eeprom char title[20];

to __eeprom, i.e., __eeprom char title[20];

For 16-bit compilers, change any occurrence of the eedata space attribute, as in the
following

int mainSw __attribute__ ((space(eedata)));

to

int __eeprom mainSw;

2.5.9.4 CAVEATS

XC8 does not implement the __eeprom qualifiers for any PIC18 devices; this qualifier
will work as expected for other 8-bit devices.

2.5.10 Interrupt Functions

The __interrupt(type) specifier may be used to indicate that a function is to act
as an interrupt service routine. The type is a comma-separated list of keywords that
indicate information about the interrupt function.

The current interrupt types are:

<empty>

Implement the default interrupt function

low_priority

The interrupt function corresponds to the low priority interrupt source (XC8 – PIC18
only)

high_priority

The interrupt function corresponds to the high priority interrupt source (XC8)

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 36 2012 Microchip Technology Inc.

save(symbol-list)

Save on entry and restore on exit the listed symbols (XC16)

irq(irqid)

Specify the interrupt vector associated with this interrupt (XC16)

altirq(altirqid)

Specify the alternate interrupt vector associated with this interrupt (XC16)

preprologue(asm)

Specify assembly code to be executed before any compiler-generated interrupt code
(XC16)

shadow

Allow the ISR to utilise the shadow registers for context switching (XC16)

auto_psv

The ISR will set the PSVPAG register and restore it on exit (XC16)

no_auto_psv

The ISR will not set the PSVPAG register (XC16)

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some devices may not implement interrupts. Use of this qualifier for such devices will
generate a warning. If the argument to the __interrupt specifier does not make
sense for the target device, a warning or error will be issued by the compiler.

2.5.10.1 EXAMPLE

The following shows a function qualified using __interrupt.

__interrupt(low_priority) void getData(void) {
if (TMR0IE && TMR0IF) {

TMR0IF=0;
++tick_count;

}
}

2.5.10.2 DIFFERENCES

The 8-bit compilers have used the interrupt and low_priority qualifiers to indi-
cate this meaning for some devices. Interrupt routines were by default high priority.

The 16- and 32-bit compilers have used the interrupt attribute to define interrupt
functions.

2.5.10.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the interrupt qualifier, as in the
following examples:

void interrupt myIsr(void)
void interrupt low_priority myLoIsr(void)

to the following, respectively

void __interrupt(high_priority) myIsr(void)
void __interrupt(low_priority) myLoIsr(void)

For 16-bit compilers, change any occurrence of the interrupt attribute, as in the fol-
lowing example:

void __attribute__((interrupt,auto_psv,(irq(52)))) myIsr(void);

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 37

to

void __interrupt(auto_psv,(irq(52)))) myIsr(void);

For 32-bit compilers, the __interrupt() keyword takes two parameters, the vector
number and the (optional) IPL value. Change code which uses the interrupt attri-
bute, similar to these examples:

void __attribute__((vector(0), interrupt(IPL7AUTO), nomips16))
myisr0_7A(void) {}

void __attribute__((vector(1), interrupt(IPL6SRS), nomips16))
myisr1_6SRS(void) {}

/* Determine IPL and context-saving mode at runtime */
void __attribute__((vector(2), interrupt(), nomips16))
myisr2_RUNTIME(void) {}

to

void __interrupt(0,IPL7AUTO) myisr0_7A(void) {}

void __interrupt(1,IPL6SRS) myisr1_6SRS(void) {}

/* Determine IPL and context-saving mode at runtime */
void __interrupt(2) myisr2_RUNTIME(void) {}

2.5.10.4 CAVEATS

None.

2.5.11 Packing Objects

The __pack specifier may be used to indicate that structures should not use memory
gaps to align structure members, or that individual structure members should not be
aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some compilers may not pad structures with alignment gaps for some devices and use
of this specifier for such devices will be ignored.

2.5.11.1 EXAMPLE

The following shows a structure qualified using __pack as well as a structure where
one member has been explicitly packed.

__pack struct DATAPOINT {
unsigned char type;
int value;

} x-point;
struct LINETYPE {

unsigned char type;
__pack int start;
long total;

} line;

2.5.11.2 DIFFERENCES

The __pack specifier is a new CCI specifier available with XC8. This specifier has no
apparent effect since the device memory is byte addressable for all data objects.

 The 16- and 32-bit compilers have used the packed attribute to indicate that a struc-
ture member was not aligned with a memory gap.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 38 2012 Microchip Technology Inc.

2.5.11.3 MIGRATION TO THE CCI

No migration is required for XC8.

For 16- and 32-bit compilers, change any occurrence of the packed attribute, as in the
following example:

struct DOT
{

char a;
int x[2] __attribute__ ((packed));

};

to:

struct DOT
{

char a;
__pack int x[2];

};

Alternatively, you may pack the entire structure, if required.

2.5.11.4 CAVEATS

None.

2.5.12 Indicating Antiquated Objects

The __deprecate specifier may be used to indicate that an object has limited longev-
ity and should not be used in new designs. It is commonly used by the compiler vendor
to indicate that compiler extensions or features may become obsolete, or that better
features have been developed and which should be used in preference.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.12.1 EXAMPLE

The following shows a function which uses the __deprecate keyword.

void __deprecate getValue(int mode)
{
//...
}

2.5.12.2 DIFFERENCES

No deprecate feature was implemented on 8-bit compilers.

The 16- and 32-bit compilers have used the deprecated attribute (note different spell-
ing) to indicate that objects should be avoided if possible.

2.5.12.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the deprecated attribute, as
in the following example:

int __attribute__(deprecated) intMask;

to:

int __deprecate intMask;

2.5.12.4 CAVEATS

None.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 39

2.5.13 Assigning Objects to Sections

The __section() specifier may be used to indicate that an object should be located
in the named section (or psect, using the XC8 terminology). This is typically used when
the object has special and unique linking requirements which cannot be addressed by
existing compiler features.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.13.1 EXAMPLE

The following shows a variable which uses the __section keyword.

int __section("comSec") commonFlag;

2.5.13.2 DIFFERENCES

The 8-bit compilers have used the #pragma psect directive to redirect objects to a
new section, or psect. The operation of the __section() specifier is different to this
pragma in several ways, described below.

Unlike with the pragma, the new psect created with __section() does not inherit the
flags of the psect in which the object would normally have been allocated. This means
that the new psect can be linked in any memory area, including any data bank. The
compiler will also make no assumptions about the location of the object in the new sec-
tion. Objects redirected to new psects using the pragma must always be linked in the
same memory area, albeit at any address in that area.

The __section() specifier allows objects that are initialized to be placed in a different
psect. Initialization of the object will still be performed even in the new psect. This will
require the automatic allocation of an additional psect (whose name will be the same
as the new psect prefixed with the letter i), which will contain the initial values. The
pragma cannot be used with objects that are initialized.

Objects allocated a different psect with __section() will be cleared by the runtime
startup code, unlike objects which use the pragma.

You must reserve memory, and locate via a linker option, for any new psect created with
a __section() specifier in the current XC8 compiler implementation.

The 16- and 32-bit compilers have used the section attribute to indicate a different
destination section name. The __section() specifier works in a similar way to the
attribute.

2.5.13.3 MIGRATION TO THE CCI

For XC8, change any occurrence of the #pragma psect directive, such as

#pragma psect text%%u=myText
int getMode(int target) {
//...
}

to the __section() specifier, as in

int __section ("myText") getMode(int target) {
//...
}

For 16- and 32-bit compilers, change any occurrence of the section attribute, as in
the following example:

int __attribute__((section("myVars"))) intMask;

to:

int __section("myVars") intMask;

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 40 2012 Microchip Technology Inc.

2.5.13.4 CAVEATS

With XC8, the __section() specifier cannot be used with any interrupt function.

2.5.14 Specifying Configuration Bits

The #pragma config directive may be used to program the configuration bits for a
device. The pragma has the form:

#pragma config setting = state|value
#pragma config register = value

where setting is a configuration setting descriptor (e.g., WDT), state is a descriptive
value (e.g., ON) and value is a numerical value. The register token may represent a
whole configuration word register, e.g., CONFIG1L.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this directive.

2.5.14.1 EXAMPLE

The following shows configuration bits being specified using this pragma.

#pragma config WDT=ON, WDTPS = 0x1A

2.5.14.2 DIFFERENCES

The 8-bit compilers have used the __CONFIG() macro for some targets that did not
already have support for the #pragma config.

The 16-bit compilers have used a number of macros to specify the configuration set-
tings.

The 32-bit compilers supported the use of #pragma config.

2.5.14.3 MIGRATION TO THE CCI

For the 8-bit compilers, change any occurrence of the __CONFIG() macro, such as

__CONFIG(WDTEN & XT & DPROT)

to the #pragma config directive, as in

#pragma config WDTE=ON, FOSC=XT, CPD=ON

No migration is required if the #pragma config was already used.

For the 16-bit compilers, change any occurrence of the _FOSC() or _FBORPOR()
macros attribute, as in the following example:

_FOSC(CSW_FSCM_ON & EC_PLL16);

to:

#pragma config FCKSMEM = CSW_ON_FSCM_ON, FPR = ECIO_PLL16

No migration is required for 32-bit code.

2.5.14.4 CAVEATS

None.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 41

2.5.15 Manifest Macros

The CCI defines the general form for macros that manifest the compiler and target
device characteristics. These macros can be used to conditionally compile alternate
source code based on the compiler or the target device.

The macros and macro families are details in Table 2-1.

2.5.15.1 EXAMPLE

The following shows code which is conditionally compiled dependent on the device
having EEPROM memory.

#ifdef __XC16__
void __interrupt(__auto_psv__) myIsr(void)
#else
void __interrupt(low_priority) myIsr(void)
#endif

2.5.15.2 DIFFERENCES

Some of these CCI macros are new (for example __CCI__), and others have different
names to previous symbols with identical meaning (for example __18F452 is now
__18F452__).

2.5.15.3 MIGRATION TO THE CCI

Any code which uses compiler-defined macros will need review. Old macros will con-
tinue to work as expected, but they are not compliant with the CCI.

2.5.15.4 CAVEATS

None.

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example

__XC__ Compiled with an MPLAB XC compiler __XC__

__CCI__ Compiler is CCI compliant and CCI enforce-
ment is enabled

__CCI__

__XC##__ The specific XC compiler used (## can be 8,
16 or 32)

__XC8__

__DEVICEFAMILY__ The family of the selected target device __dsPIC30F__

__DEVICENAME__ The selected target device name __18F452__

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 42 2012 Microchip Technology Inc.

2.5.16 In-line Assembly

The asm() statement may be used to insert assembly code in-line with C code. The
argument is a C string literal which represents a single assembly instruction. Obviously,
the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this statement.

2.5.16.1 EXAMPLE

The following shows a MOVLW instruction being inserted in-line.

asm("MOVLW _foobar");

2.5.16.2 DIFFERENCES

The 8-bit compilers have used either the asm() or #asm ... #endasm constructs to
insert in-line assembly code.

This is the same syntax used by the 16- and 32-bit compilers.

2.5.16.3 MIGRATION TO THE CCI

For 8-bit compilers change any instance of #asm ... #endasm so that each instruction
in this #asm block is placed in its own asm() statement, for example:

#asm
MOVLW 20
MOVWF _i
CLRF Ii+1

#endasm

to

asm("MOVLW20");
asm("MOVWF _i");
asm("CLRFIi+1");

No migration is required for the 16- or 32-bit compilers.

2.5.16.4 CAVEATS

None.

Common C Interface

 2012 Microchip Technology Inc. DS51686E-page 43

2.6 COMPILER FEATURES

The following items detail compiler options and features that are not directly associated
with source code that

2.6.1 Enabling the CCI

It is assumed you are using the MPLAB X IDE to build projects that use the CCI. The
widget in the MPLAB X IDE Project Properties to enable CCI conformance is Use CCI

Syntax in the Compiler category. A widget with the same name is available in MPLAB
IDE v8 under the Compiler tab.

If you are not using this IDE, then the command-line options are --CCI for XC8 or
-mcci for XC16/32.

2.6.1.1 DIFFERENCES

This option has never been implemented previously.

2.6.1.2 MIGRATION TO THE CCI

Enable the option.

2.6.1.3 CAVEATS

None.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 44 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 45

Chapter 3. Compiler Command Line Driver

3.1 INTRODUCTION

The command line driver (xc32-gcc or xc32-g++) is the application that can be
invoked to perform all aspects of compilation, including C/C++ code generation,
assembly and link steps. Even if you use an IDE to assist with compilation, the IDE will
ultimately call xc32-gcc for C projects or xc32-g++ for C++ projects.

Although the internal compiler applications can be called explicitly from the command
line, using the xc32-gcc or xc32-g++ driver is the recommended way to use the
compiler as it hides the complexity of all the internal applications used and provides a
consistent interface for all compilation steps.

This chapter describes the steps the driver takes during compilation, files that the driver
can accept and produce, as well as the command line options that control the com-
piler’s operation. It also shows the relationship between these command line options
and the controls in the MPLAB IDE Build Options dialog.

Topics concerning the command line use of the driver are discussed below.

• Invoking the Compiler

• The C Compilation Sequence

• The C++ Compilation Sequence

• Runtime Files

• Start-up and Initialization

• Compiler Output

• Compiler Messages

• Driver Option Descriptions

3.2 INVOKING THE COMPILER

The compiler is invoked and runs on the command line as specified in the next section.
Additionally, environmental variables and input files used by the compiler are discussed
in the following sections.

3.2.1 Driver Command Line Format

The compilation driver program (xc32-gcc) compiles, assembles and links C and
assembly language modules and library archives. The xc32-g++ driver must be used
when the module source is written in C++. Most of the compiler command line options
are common to all implementations of the GCC toolset (MPLAB XC16 uses the GCC
toolset; XC8 does not). A few are specific to the compiler.

The basic form of the compiler command line is:

xc32-gcc [options] files
xc32-g++ [options] files

For example, to compile, assemble and link the C source file hello.c, creating the
absolute executable hello.elf,execute this command:

xc32-gcc -o hello.elf hello.c

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 46 2012 Microchip Technology Inc.

Or, to compile, assemble and link the C++ source file hello.cpp, creating the
absolute executable hello.elf, execute:

xc32-g++ -o hello.elf hello.cpp

The available options are described in Section 3.9 “Driver Option Descriptions”. It
is conventional to supply options (identified by a leading dash “-” before the
filenames), although this is not mandatory.

The files may be any mixture of C/C++ and assembler source files, relocatable
object files (.o) or archive files. The order of the files is important. It may affect the
order in which code or data appears in memory or the search order for symbols. Typi-
cally archive files are specified after source files. The file types are described in
Section 3.2.2 “Input File Types”.

Libraries is a list of user-defined object code library files that will be searched by the
linker, in addition to the standard C libraries. The order of these files will determine the
order in which they are searched. They are typically placed after the source filenames,
but this is not mandatory.

It is assumed in this manual that the compiler applications are either in the console’s
search path, the appropriate environment variables have been specified, or the full path
is specified when executing any application.

Environment Variables

The variables in this section are optional, but, if defined, they will be used by the
compiler. The compiler driver, or other subprogram, may choose to determine an
appropriate value for some of the following environment variables if they are not set.
The driver, or other subprogram, takes advantage of internal knowledge about the
installation of the compiler. As long as the installation structure remains intact, with all
subdirectories and executables remaining in the same relative position, the driver or
subprogram will be able to determine a usable value. The “XC32” variables should be
used for new projects; however, the “PIC32” variables may be used for legacy projects.

Note: Command line options and file name extensions are case sensitive.

TABLE 3-1: COMPILER-RELATED ENVIRONMENTAL VARIABLES

Option Definition

XC32_C_INCLUDE_PATH
PIC32_C_INCLUDE_PATH

This variable’s value is a semicolon-separated list of directories,
much like PATH. When the compiler searches for header files, it
tries the directories listed in the variable, after the directories
specified with -I but before the standard header file directories.
If the environment variable is undefined, the preprocessor
chooses an appropriate value based on the standard installation.
By default, the following directories are searched for include
files:
<install-path>\pic32mx\include

XC32_COMPILER_PATH
PIC32_COMPILER_PATH

The value of PIC32_COMPILER_PATH is a semicolon-separated
list of directories, much like PATH. The compiler tries the directo-
ries thus specified when searching for subprograms, if it can’t
find the subprograms using PIC32_EXEC_PREFIX.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 47

XC32_EXEC_PREFIX
PIC32_EXEC_PREFIX

If PIC32_EXEC_PREFIX is set, it specifies a prefix to use in the
names of subprograms executed by the compiler. No directory
delimiter is added when this prefix is combined with the name of
a subprogram, but you can specify a prefix that ends with a slash
if you wish. If the compiler cannot find the subprogram using the
specified prefix, it tries looking in your PATH environment
variable.
If the PIC32_EXEC_PREFIX environment variable is unset or
set to an empty value, the compiler driver chooses an appropri-
ate value based on the standard installation. If the installation
has not been modified, this will result in the driver being able to
locate the required subprograms.
Other prefixes specified with the -B command line option take
precedence over the user- or driver-defined value of
PIC32_EXEC_PREFIX.
Under normal circumstances it is best to leave this value unde-
fined and let the driver locate subprograms itself.

XC32_LIBRARY_PATH
PIC32_LIBRARY_PATH

This variable’s value is a semicolon-separated list of directories,
much like PATH. This variable specifies a list of directories to be
passed to the linker. The driver’s default evaluation of this vari-
able is:
<install-path>\lib; <install-path>\pic32mx\lib.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary
files. The compiler uses temporary files to hold the output of one
stage of compilation that is to be used as input to the next stage:
for example, the output of the preprocessor, which is the input to
the compiler proper.

TABLE 3-1: COMPILER-RELATED ENVIRONMENTAL VARIABLES

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 48 2012 Microchip Technology Inc.

3.2.2 Input File Types

The compilation driver recognizes the following file extensions, which are case
sensitive.

There are no compiler restrictions imposed on the names of source files, but be aware

of case, name-length and other restrictions imposed by your operating system. If you

are using an IDE, avoid assembly source files whose base name is the same as the

base name of any project in which the file is used. This may result in the source file

being overwritten by a temporary file during the build process.

The terms “source file” and “module” are often used when talking about computer

programs. They are often used interchangeably, but they refer to the source code at

different points in the compilation sequence.

A source file is a file that contains all or part of a program. They may contain C/C++

code, as well as preprocessor directives and commands. Source files are initially

passed to the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of any
header files (or other source files) which are specified by #include preprocessor
directives. All preprocessor directives and commands (with the possible exception of
some commands for debugging) have been removed from these files. These modules
are then passed to the remainder of the compiler applications. Thus, a module may be
the amalgamation of several source and header files. A module is also often referred
to as a translation unit. These terms can also be applied to assembly files, as they too
can include other header and source files.

TABLE 3-2: FILE NAMES

Extensions Definition

file.c A C source file that must be preprocessed.

file.cpp A C++ source file that must be preprocessed.

file.h A header file (not to be compiled or linked).

file.i A C source file that has already been pre-processed.

file.o An object file.

file.ii A C++ source file that has already been pre-processed.

file.s An assembly language source file.

file.S An assembly language source file that must be preprocessed.

other A file to be passed to the linker.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 49

3.3 THE C COMPILATION SEQUENCE

3.3.1 Single-step C Compilation

A single command-line instruction can be used to compile one file or multiple files.

3.3.1.1 COMPILING A SINGLE C FILE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler's <install-dir>/bin directory has been
added to your PATH variable. The following are other directories of note:

• <install-dir>/pic32mx/include the directory for standard C header files.

• <install-dir>/pic32mx/include/proc the directory for PIC32MX
device-specific header files.

• <install-dir>/pic32mx/lib the directory structure for standard libraries
and start-up files.

• <install-dir>/pic32mx/include/peripheral the directory for PIC32MX
peripheral library include files.

• <install-dir>/pic32mx/lib/proc the directory for device-specific linker
script fragments, register definition files and configuration data may be found.

The following is a simple C program that adds two numbers. Create the following
program with any text editor and save it as ex1.c.

#include <xc.h>
#include <plib.h>

// Device-Specific Configuration-Bit settings
// SYSCLK = 80 MHz (8MHz Crystal/ FPLLIDIV * FPLLMUL / FPLLODIV)
// PBCLK = 40 MHz
// Primary Osc w/PLL (XT+,HS+,EC+PLL)
// WDT OFF
// Other options are don't care
//
#pragma config FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1,
FWDTEN = OFF
#pragma config POSCMOD = HS, FNOSC = PRIPLL, FPBDIV = DIV_8

unsigned int x, y, z;

unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

int
main(void)
{
 /* Configure the target for maximum performance at 80 MHz. */
 SYSTEMConfigPerformance(80000000UL);
 x = 2;
 y = 5;
 z = add(x,y);
 return 0;
}

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 50 2012 Microchip Technology Inc.

The first line of the program includes the header file xc.h, which provides definitions
for all Special Function Registers (SFRs) on that part.

 Compile the program by typing the following at the prompt:

xc32-gcc –mprocessor=32MX795F512L -o ex1.out ex1.c

The command line option -o ex1.out names the output executable file (if the -o
option is not specified, then the output file is named a.out). The executable file may
be loaded into MPLAB IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command:

xc32-bin2hex ex1.out

This creates an Intel hex file named ex1.hex.

3.3.1.2 COMPILING MULTIPLE C FILES

This section demonstrates how to compile and link multiple files in a single step. Move
the Add() function into a file called add.c to demonstrate the use of multiple files in
an application. That is:

File 1

/* ex1.c */
#include <xc.h>
#include <plib.h>

// Device-Specific Configuration-Bit settings
// SYSCLK = 80 MHz (8MHz Crystal/ FPLLIDIV * FPLLMUL / FPLLODIV)
// PBCLK = 40 MHz
// Primary Osc w/PLL (XT+,HS+,EC+PLL)
// WDT OFF
// Other options are don't care
//
#pragma config FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1,
FWDTEN = OFF
#pragma config POSCMOD = HS, FNOSC = PRIPLL, FPBDIV = DIV_8

int main(void);
unsigned int add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int main(void)
{
 /* Configure the target for maximum performance at 80 MHz. */
 SYSTEMConfigPerformance(80000000UL);
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
File 2

/* add.c */
#include <xc.h>
unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 51

Compile both files by typing the following at the prompt:

xc32-gcc -mprocessor=32MX795F512L -o ex1.out ex1.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1.out is created.

3.3.2 Multi-step C Compilation

Make utilities and IDEs, such as MPLAB IDE, allow for an incremental build of projects
that contain multiple source files. When building a project, they take note of which
source files have changed since the last build and use this information to speed up
compilation.

For example, if compiling two source files, but only one has changed since the last
build, the intermediate file corresponding to the unchanged source file need not be
regenerated.

If the compiler is being invoked using a make utility, the make file will need to be con-
figured to use the intermediate files (.o files) and the options used to generate the
intermediate files (-c, see Section 3.9.2 “Options for Controlling the Kind of Out-

put”). Make utilities typically call the compiler multiple times: once for each source file
to generate an intermediate file, and once to perform the second stage compilation.

For example, the files ex1.c and add.c are to be compiled using a make utility. The
command lines that the make utility should use to compile these files might be
something like:

xc32-gcc -mprocessor=32MX795F512L -c ex1.c
xc32-gcc -mprocessor=32MX795F512L -c add.c
xc32-gcc -mprocessor=32MX795F512L -o ex1.out ex1.o add.o

3.4 THE C++ COMPILATION SEQUENCE

3.4.1 Single-step C++ Compilation

A single command-line instruction can be used to compile one file or multiple files.

3.4.1.1 COMPILING A SINGLE C++ FILE

This section demonstrates how to compile and link a single file. For the purpose of this

discussion, it is assumed the compiler's <install-dir>/bin directory has been

added to your PATH variable. The following are other directories of note:

• <install-dir>/pic32mx/include/cpp the directory for standard C++
header files.

• <install-dir>/pic32mx/include/proc the directory for
PIC32MXdevice-specific header files.

• <install-dir>/pic32mx/lib the directory structure for standard libraries
and start-up files.

• <install-dir>/pic32mx/include/peripheral the directory for PIC32
peripheral library include files.

• <install-dir>/pic32mx/lib/proc the directory for device-specific linker
script fragments, register definition files, and configuration data may be found.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 52 2012 Microchip Technology Inc.

The following is a simple C++ program. Create the following program with any
plain-text editor and save it as ex2.cpp.

/* ex2.cpp */
#include <xc.h> // __XC_UART
#include <plib.h> // SYSTEMConfigPerformance()

#include <iostream>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <string>
#include <algorithm>
#include <iterator>
#include <functional>
#include <numeric>
using namespace std;

// Device-Specific Configuration-bit settings
#pragma config FPLLMUL=MUL_20, FPLLIDIV=DIV_2, FPLLODIV=DIV_1,
FWDTEN=OFF
#pragma config POSCMOD=HS, FNOSC=PRIPLL, FPBDIV=DIV_8

template <class T>
inline void print_elements (const T& coll, const char* optcstr="")
{
 typename T::const_iterator pos;

 std::cout << optcstr;
 for (pos=coll.begin(); pos!=coll.end(); ++pos) {
 std::cout << *pos << ' ';
 }
 std::cout << std::endl;
}

template <class T>
inline void insert_elements (T& coll, int first, int last)
{
 for (int i=first; i<=last; ++i)
 {
 coll.insert(coll.end(),i);
 }
}

int main(void) {

 // Configure the target for max performance at 80 MHz.
 SYSTEMConfigPerformance (80000000UL);

 // Direct stdout to UART 1 for use with the simulator
 __XC_UART = 1;

 deque<int> coll;
 insert_elements(coll,1,9);
 insert_elements(coll,1,9);

 print_elements(coll, "on entry: ");

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 53

 //sort elements
 sort (coll.begin(), coll.end());

 print_elements(coll, "sorted: ");

 //sorted reverse
 sort (coll.begin(), coll.end(), greater<int>());

 print_elements(coll, "sorted >: ");

 while(1);
}

The first line of the program includes the header file xc.h, which provides definitions
for all Special Function Registers (SFRs) on the target device. The second file of the
program includes the header file plib.h, which provides the necessary prototypes for
the peripheral library.

Compile the program by typing the following at a command prompt.

xc32-g++ -mprocessor=32MX795F512L -Wl,--defsym=_min_heap_size=0xF000
-o ex2.elf ex2.cpp

The option -o ex2.elf names the output executable file. This elf file may be loaded
into MPLAB X IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command

xc32-bin2hex ex2.elf

This creates an Intel hex file named ex2.hex.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 54 2012 Microchip Technology Inc.

3.4.2 Compiling Multiple C and C++ files

This section demonstrates how to compile and link multiple C and C++ files in a single
step.

File 1

/* main.cpp */
#include <xc.h> // __XC_UART
#include <plib.h> // SYSTEMConfigPerformance()

#include <iostream>
using namespace std;

// Device-Specific Configuration-bit settings
#pragma config FPLLMUL=MUL_20, FPLLIDIV=DIV_2, FPLLODIV=DIV_1,
FWDTEN=OFF
#pragma config POSCMOD=HS, FNOSC=PRIPLL, FPBDIV=DIV_8

// add() must have C linkage
extern "C" {
extern unsigned int add(unsigned int a, unsigned int b);
}

int main(void) {
 int myvalue = 6;

 // Configure the target for max performance at 80 MHz.
 SYSTEMConfigPerformance (80000000UL);

 // Direct stdout to UART 1 for use with the simulator
 __XC_UART = 1;

 std::cout << "original value: " << myvalue << endl;
 myvalue = add (myvalue, 3);
 std::cout << "new value: " << myvalue << endl;

 while(1);
}

File 2

/* ex3.c */
unsigned int
add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files by typing the following at the prompt:

xc32-g++ -mprocessor=32MX795F512L -o ex3.elf main.cpp ex3.c

The command compiles the modules main.cpp and ex3.c. The compiled modules
are linked with the compiler libraries for C++ and the executable file ex3.elf is cre-
ated.

Note: Use the xc32-g++ driver (as opposed to the xc32-gcc driver) in order to link
the project with the C++ support libraries necessary for the C++ source file
in the project.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 55

3.5 RUNTIME FILES

In addition to the C/C++ and assembly source files specified on the command line,
there are also compiler-generated source files and pre-compiled library files which
might be compiled into the project by the driver. These files contain:

• C/C++ Standard library routines

• Implicitly called arithmetic routines

• User-defined library routines

• The runtime start-up code

3.5.1 Library Files

The names of the C/C++ standard library files appropriate for the selected target
device, and other driver options, are determined by the driver.

The target libraries, called multilibs, are built multiple times with a permuted set of
options. When the compiler driver is called to compile and link an application, the driver
chooses the version of the target library that has been built with the same options.

By default, the 32-bit language tools use the directory
<install-directory>/lib/gcc/ to store the specific libraries and the directory
<install-directory>/<pic32mx>/lib to store the target-specific libraries. Both
of these directory structures contain subdirectories for each of the multilib combinations
specified above. These subdirectories, respectively, are as follows:

1. .

2. ./size

3. ./speed

4. ./mips32

5. ./no-float

6. ./mips32/no-float

7. ./size/mips32

8. ./size/no-float

9. ./size/mips32/no-float

10../speed/mips32

11../speed/no-float

12../speed/mips32/no-float

The target libraries that are distributed with the compiler are built for the following
options:

• Size versus speed (-Os vs. -O3)

• 16-bit versus 32-bit (-mips16 vs. -mno-mips16)

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 56 2012 Microchip Technology Inc.

By default the 32-bit language tools compile for -O0, -mno-mips16, and
-msoft-float. Therefore, the options that we are concerned with are -Os or -O3,
-mips16, and -mno-float. Libraries built with the following command line options
are made available:

1. Default command line options

2. -Os

3. -O3

4. -mips16

5. -mno-float

6. -mips16 -mno-float

7. -Os -mips16

8. -Os -mno-float

9. -Os -mips16 -mno-float

10.-O3 -mips16

11.-O3 -mno-float

12.-O3 -mips16 -mno-float

The following examples provide details on which of the multilibs subdirectories are
chosen.

1. xc32-gcc foo.c
xc32-g++ foo.cpp

For this example, no command line options have been specified (i.e., the default
command line options are being used). In this case, the .subdirectories are
used.

2. xc32-gcc -Os foo.c
xc32-g++ -Os foo.cpp

For this example, the command line option for optimizing for size has been
specified (i.e., -Os is being used). In this case, the ./size subdirectories are
used.

3. xc32-gcc -O2 foo.c
xc32-g++ -O2 foo.cpp

For this example, the command line option for optimizing has been specified;
however, this command line option optimizes for neither size nor space (i.e., -O2
is being used). In this case, the .subdirectories are used.

4. xc32-gcc -Os -mips16 foo.c
xc32-g++ -Os -mips16 foo.cpp

For this example, the command line options for optimizing for size and for
MIPS16 code have been specified (i.e., -Os and -mips16 are being used). In
this case, the ./size/mips16 subdirectories are used.

3.5.1.1 STANDARD LIBRARIES

The C/C++ standard libraries contain a standardized collection of functions, such as
string, math and input/output routines. The range of these functions are described in
Chapter 13. “Library Routines”.

These libraries also contain C/C++ routines that are implicitly called by the output code
of the code generator. These are routines that perform tasks such as floating-point
operations and that may not directly correspond to a C/C++ function call in the source
code.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 57

3.5.1.2 USER-DEFINED LIBRARIES

User-defined libraries may be created and linked in with programs as required. Library
files are more easy to manage and may result in faster compilation times, but must be
compatible with the target device and options for a particular project. Several versions
of a library may need to be created to allow it to be used for different projects.

User-created libraries that should be searched when building a project can be listed on
the command line along with the source files.

As with Standard C/C++ library functions, any functions contained in user-defined
libraries should have a declaration added to a header file. It is common practice to cre-
ate one or more header files that are packaged with the library file. These header files
can then be included into source code when required.

3.5.2 Peripheral Library Functions

Many of the peripherals of the PIC32MX devices are supported by the peripheral library
functions provided with the compiler tools. See the “32-Bit Language Tools Libraries”
(DS51685) for details on the functions provided.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 58 2012 Microchip Technology Inc.

3.6 START-UP AND INITIALIZATION

For C:

There is only one start-up module, which initializes the C runtime environment.
The source code for this is found in
<install-directory>/pic32-libs/libpi32c/startup/crt0.S and it is
precompiled into the library <install-directory>/pic32mx/lib/crt0.o.
Multilib versions of these modules exist in order to support architectural differences
between device families.

For C++:

Code from five object files link sequentially to create a single initialization routine, which
initializes the C++ runtime environment.

The source code for this is found in
<install-directory>/pic32-libs/libpic32/startup.

The PIC32 precompiled startup objects are located in
<install-directory>/pic32mx/lib/ and the filenames are cpprt0.o,
crti.o, and crtn.o.

The GCC precompiled startup objects are located in
<install-directory>/lib/gcc/pic32mx/<gcc-version>/ and the file-
names are crtbegin.o and crtend.o. Multilib variations of these modules exist in
order to support architectural differences between device families and also optimization
settings.

For more information about what the code in these start-up modules actual does, see
Section 12.3 “Runtime Start-up Code”.

3.7 COMPILER OUTPUT

There are many files created by the compiler during the compilation. A large number of
these are intermediate files and some are deleted after compilation is complete, but
many remain and are used for programming the device, or for debugging purposes.

3.7.1 Output Files

The compilation driver can produce output files with the following extensions, which are
case-sensitive.

The names of many output files use the same base name as the source file from which
they were derived. For example the source file input.c will create an object file called
input.o.

The main output file is an ELF file called a.out, unless you override that name using
the -o option.

TABLE 3-3: FILE NAMES

Extensions Definition

file.hex Executable file

file.elf ELF debug file

file.o Object file (intermediate file)

file.s Assembly code file (intermediate file)

file.i Preprocessed C file (intermediate file)

file.ii Preprocessed C++ file (intermediate file)

file.map Map file

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 59

If you are using an IDE, such as MPLAB IDE, to specify options to the compiler, there
is typically a project file that is created for each application. The name of this project is
used as the base name for project-wide output files, unless otherwise specified by the
user. However check the manual for the IDE you are using for more details.

The compiler is able to directly produce a number of the output file formats which are
used by Microchip development tools.

The default behavior of xc32-gcc and xc32-g++ is to produce an ELF output. To make
changes to the file’s output or the file names, see Section 3.9 “Driver Option

Descriptions”.

3.7.2 Diagnostic Files

Two valuable files produced by the compiler are the assembly list file, produced by the
assembler, and the map file, produced by the linker.

The assembly list file contains the mapping between the original source code and the
generated assembly code. It is useful for information such as how C source was
encoded, or how assembly source may have been optimized. It is essential when con-
firming if compiler-produced code that accesses objects is atomic, and shows the
region in which all objects and code are placed.

The option to create a listing file in the assembler is -a (or -Wa,-a if passed to the
driver). There are many variants to this option, which may be found in the “MPLAB

Assembler, Linker and Utilities for PIC32 MCUs User’s Guide”(DS51833). To pass the
option from the compiler, see Section 3.9.9 “Options for Assembling”.

There is one list file produced for each build. There is one assembler listing file for each

translation unit. This is a pre-link assembler listing so it will not show final addresses.

Thus, if you require a list file for each source file, these files must be compiled sepa-
rately, see Section 3.3.2 “Multi-step C Compilation”. This is the case if you build
using MPLAB IDE. Each list file will be assigned the module name and extension .lst.

The map file shows information relating to where objects were positioned in memory. It
is useful for confirming that user-defined linker options were correctly processed, and
for determining the exact placement of objects and functions.

The option to create a map file in the linker is -Map file (or -Wl,-Map=file if

passed to the driver), which may be found in the “MPLAB Assembler, Linker and Utili-

ties for PIC32 User’s Guide”. To pass the option from the compiler, see
Section 3.9.10 “Options for Linking”.

There is one map file produced when you build a project, assuming the linker was
executed and ran to completion.

Note: Throughout this manual, the term project name will refer to the name of the
project created in the IDE.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 60 2012 Microchip Technology Inc.

3.8 COMPILER MESSAGES

There are three types of messages. These are described below along with the
compiler’s behavior when encountering a message of each type.

Warning Messages indicate source code or some other situation that can be
compiled, but is unusual and may lead to a runtime failure of the code. The
code or situation that triggered the warning should be investigated; however,
compilation of the current module will continue, as will compilation of any
remaining modules.

Error Messages indicate source code that is illegal or that compilation of this code
cannot take place. Compilation will be attempted for the remaining source
code in the current module, but no additional modules will be compiled and
the compilation process will then conclude.

Fatal Error Messages indicate a situation that cannot allow compilation to proceed
and which requires the compilation process to stop immediately.

For information on options that control compiler output of errors, warnings or
comments, see Section 3.9.4 “Options for Controlling the C++ Dialect”.

3.9 DRIVER OPTION DESCRIPTIONS

All single letter options are identified by a leading dash character, “-”, e.g. -c. Some
single letter options specify an additional data field which follows the option name
immediately and without any whitespace, e.g. -Idir. Options are case sensitive, so
-c is a different option to -C.

The compiler has many options for controlling compilation, all of which are case
sensitive.

• Options Specific to PIC32MX Devices

• Options for Controlling the Kind of Output

• Options for Controlling the C Dialect

• Options for Controlling the C++ Dialect

• Options for Debugging

• Options for Controlling Optimization

• Options for Controlling the Preprocessor

• Options for Assembling

• Options for Linking

• Options for Directory Search

• Options for Code Generation Conventions

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 61

3.9.1 Options Specific to PIC32MX Devices

These options are specific to the device, not the compiler.

TABLE 3-4: PIC32MX DEVICE-SPECIFIC OPTIONS

Option Definition

-mprocessor Selects the device for which to compile.
(e.g., -mprocessor=32MX360F512L)

-mips16
-mno-mips16

Generate (do not generate) MIPS16 code.

-mno-float Do not use software floating-point libraries.

-G num Put global and static items less than or equal to num
bytes into the small data or bss section instead of the
normal data or bss section. This allows the data to be
accessed using a single instruction.
All modules should be compiled with the same -G num
value.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if
possible, then next in the small data section if possible,
otherwise in data. This gives slightly slower code than
the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some
embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data
section. This option is only meaningful in conjunction
with -membedded-data.

-mcheck-zero-division
-mno-check-zero-division

Trap (do not trap) on integer division by zero. The
default is -mcheck-zero-division.

-mmemcpy
-mno-memcpy

Force (do not force) the use of memcpy() for non-trivial
block moves. The default is -mno-memcpy, which
allows GCC to inline most constant-sized copies.

-mlong-calls
-mno-long-calls

Disable (do not disable) use of the jal instruction.
Calling functions using jal is more efficient but
requires the caller and callee to be in the same 256
megabyte segment.
This option has no effect on abicalls code. The default
is -mno-long-calls.

-mno-peripheral-libs -mno-peripheral-libs is now the default.
-mperipheral-libs is optional. By default, the
peripheral libraries are linked specified via the
device-specific linker script. Do not use the standard
peripheral libraries when linking.

-msmart-io=[0|1|2] This option attempts to statically analyze format strings
passed to printf, scanf and the ‘f’ and ‘v’ variations
of these functions. Uses of nonfloating-point format
arguments will be converted to use an integer-only
variation of the library function. For many applications,
this feature can reduce program-memory usage.
-msmart-io=0 disables this option, while
-msmart-io=2 causes the compiler to be optimistic
and convert function calls with variable or unknown
format arguments. -msmart-io=1 is the default and
will convert only when the compiler can prove that
floating-point support is not required.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 62 2012 Microchip Technology Inc.

3.9.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.

-mappio-debug Enable the APPIN/APPOUT debugging library
functions for the MPLAB® ICD 3 debugger and MPLAB
REAL ICE™ in-circuit emulator. This feature allows you
to use the DBPRINTF and related functions and
macros as described in the “32-bit Language Tool

Libraries” document (DS51685). Enable this option
only when using a target PIC32 device that supports
the APPIN/APPOUT feature.

-mcci Enables the Microchip Common C Interface
compilation mode.

TABLE 3-5: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file
extension is .o.

-E Stop after the preprocessing stage (i.e., before running the compiler
proper). The default output file is stdout.

-fexceptions Enable exception handling. You may need to enable this option when
compiling C code that needs to interoperate properly with exception
handlers written in C++.

-o file Place the output in file.

-S Stop after compilation proper (i.e., before invoking the assembler). The
default output file extension is .s.

-v Print the commands executed during each stage of compilation.

-x You can specify the input language explicitly with the -x option:
-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option
applies to all following input files until the next -x option. The following
values are supported by the compiler:
c
c++
c-header
cpp-output
assembler
assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default behavior
but is needed if another -x option has been used. For example:
xc32-gcc -x assembler foo.asm bar.asm -x none main.c
mabonga.s

Without the -x none, the compiler assumes all the input files are for the
assembler.

--help Print a description of the command line options.

TABLE 3-4: PIC32MX DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 63

3.9.3 Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 3-6: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C programs.

-aux-info filename Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently ignored
in any language other than C. Besides declarations, the file
indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit,
prototyped or unprototyped (I, N for new or O for old,
respectively, in the first character after the line number and
the colon), and whether it came from a declaration or a
definition (C or F, respectively, in the following character). In
the case of function definitions, a K&R-style list of arguments
followed by their declarations is also provided, inside
comments, after the declaration.

-fcheck-new /
-fno-check-new
(default)

Check that the pointer returned by operator new is non-null.

-fenforce-eh-specs
(default) /
-fno-enforce-eh-specs

Generate/Do not generate code to check for violation of
exception specifications at runtime. The
-fno-enforce-eh-specs option violates the C++
standard, but may be useful for reducing code size in
production builds, much like defining `NDEBUG'. This does
not give user code permission to throw exceptions in
violation of the exception specifications; the compiler will still
optimize based on the specifications, so throwing an
unexpected exception will result in undefined behavior.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding
environment is one in which the standard library may not
exist, and program start-up may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__ and __typeof__
instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with
__builtin_ as prefix.

-fno-exceptions Disable C++ exception handling. This option disables the
generation of extra code needed to propagate exceptions.

-fno-rtti Enable/Disable runtime type-identification features. The
-fno-rtti option disables generation of information about
every class with virtual functions for use by the C++ runtime
type identification features ('dynamic_cast' and 'typeid'). If
you don't use those parts of the language, you can save
some space by using this flag. Note that exception handling
uses the same information, but it will generate it as needed.
The 'dynamic_cast' operator can still be used for casts that
do not require runtime type information, i.e. casts to void *
or to unambiguous base classes.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 64 2012 Microchip Technology Inc.

3.9.4 Options for Controlling the C++ Dialect

The following options define the kind of C++ dialect used by the compiler.

-fsigned-char Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always
unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.

-fwritable-strings Store strings in the writable data segment and do not make
them unique.

TABLE 3-7: C++ DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C++ programs.

-aux-info filename Output to the given filename prototyped declarations for all
functions declared and/or defined in a translation unit,
including those in header files. This option is silently ignored
in any language other than C++. Besides declarations, the
file indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit,
prototyped or unprototyped (I, N for new or O for old,
respectively, in the first character after the line number and
the colon), and whether it came from a declaration or a
definition (C or F, respectively, in the following character). In
the case of function definitions, a K&R-style list of arguments
followed by their declarations is also provided, inside
comments, after the declaration.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding
environment is one in which the standard library may not
exist, and program start-up may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__ and __typeof__
instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with
__builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always
unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.

-fwritable-strings Store strings in the writable data segment and do not make
them unique.

TABLE 3-6: C DIALECT CONTROL OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 65

3.9.5 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently
erroneous, but that are risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W; for example,
-Wimplicit, to request warnings on implicit declarations. Each of these specific
warning options also has a negative form beginning -Wno- to turn off warnings; for
example, -Wno-implicit. This manual lists only one of the two forms, whichever is
not the default.

The following options control the amount and kinds of warnings produced by the
compiler.

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.

-pedantic Issue all the warnings demanded by strict ANSI C. Reject all
programs that use forbidden extensions.

-pedantic-errors Like -pedantic, except that errors are produced rather than
warnings.

-w Inhibit all warning messages.

-Wall This enables all the warnings about constructions that some
users consider questionable, and that are easy to avoid (or
modify to prevent the warning), even in conjunction with macros.
Note that some warning flags are not implied by -Wall. Some of
them warn about constructions that users generally do not
consider questionable, but which occasionally you might wish to
check for; others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to
modify the code to suppress the warning. Some of them are
enabled by -Wextra but many of them must be enabled
individually.

-Waddress Warn about suspicious uses of memory addresses. These
include using the address of a function in a conditional
expression, such as void func(void); if (func), and
comparisons against the memory address of a string literal, such
as if (x == "abc"). Such uses typically indicate a programmer
error: the address of a function always evaluates to true, so their
use in a conditional usually indicates that the programmer forgot
the parentheses in a function call; and comparisons against
string literals result in unspecified behavior and are not portable
in C, so they usually indicate that the programmer intended to
use strcmp.

-Wchar-subscripts Warn if an array subscript has type char.

-Wcomment Warn whenever a comment-start sequence /* appears in a /*
comment, or whenever a Backslash-Newline appears in a //
comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit the
warning messages, use -Wno-div-by-zero. Floating-point
division by zero is not warned about, as it can be a legitimate
way of obtaining infinities and NaNs.
(This is the default.)

-Wformat Check calls to printf and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format string
specified.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 66 2012 Microchip Technology Inc.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being
declared.

-Wimplicit-int Warn when a declaration does not specify a type.

-Wmain Warn if the type of main is suspicious. main should be a
function with external linkage, returning int, taking either zero,
two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for a is not fully bracketed,
but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

-Wno-multichar Warn if a multi-character character constant is used. Usually,
such constants are typographical errors. Since they have
implementation-defined values, they should not be used in
portable code. The following example illustrates the use of a
multi-character character constant:
char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value is
expected, or when operators are nested whose precedence
people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with no
return-value in a function whose return-type is not void.

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 67

-Wsequence-point Warn about code that may have undefined semantics because
of violations of sequence point rules in the C standard.
The C standard defines the order in which expressions in a C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of the
program: those executed before the sequence point and those
executed after it. These occur after the evaluation of a full
expression (one which is not part of a larger expression), after
the evaluation of the first operand of a &&, ||, ? : or , (comma)
operator, before a function is called (but after the evaluation of its
arguments and the expression denoting the called function), and
in certain other places. Other than as expressed by the
sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a
partial order rather than a total order, since, for example, if two
functions are called within one expression with no sequence
point between them, the order in which the functions are called is
not specified. However, the standards committee has ruled that
function calls do not overlap.
It is not specified when between sequence points modifications
to the values of objects take effect. Programs whose behavior
depends on this have undefined behavior. The C standard
specifies that “Between the previous and next sequence point,
an object shall have its stored value modified, at most once, by
the evaluation of an expression. Furthermore, the prior value
shall be read only to determine the value to be stored.” If a
program breaks these rules, the results on any particular
implementation are entirely unpredictable.
Examples of code with undefined behavior are a = a++;,
a[n] = b[n++] and a[i++] = i;. Some more complicated
cases are not diagnosed by this option, and it may give an
occasional false positive result, but in general it has been found
fairly effective at detecting this sort of problem in programs.

-Wswitch Warn whenever a switch statement has an index of enumeral
type and lacks a case for one or more of the named codes of that
enumeration. (The presence of a default label prevents this
warning.) case labels outside the enumeration range also
provoke warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system header
files. Warnings from system headers are normally suppressed
on the assumption that they usually do not indicate real
problems and would only make the compiler output harder to
read. Using this command line option tells the compiler to emit
warnings from system headers as if they occurred in user code.
However, note that using -Wall in conjunction with this option
does not warn about unknown pragmas in system headers. For
that, -Wunknown-pragmas must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are
enabled).

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 68 2012 Microchip Technology Inc.

The following -W options are not implied by -Wall. Some of them warn about
constructions that users generally do not consider questionable, but which you might
occasionally wish to check for. Others warn about constructions that are necessary or
hard to avoid in some cases, and there is no simple way to modify the code to suppress
the warning.

-Wuninitialized Warn if an automatic variable is used without first being
initialized.
These warnings are possible only when optimization is enabled,
because they require data flow information that is computed only
when optimizing.
These warnings occur only for variables that are candidates for
register allocation. Therefore, they do not occur for a variable
that is declared volatile, or whose address is taken, or whose
size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used
only to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the
warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not
understood by the compiler. If this command line option is used,
warnings will even be issued for unknown pragmas in system
header files. This is not the case if the warnings were only
enabled by the -Wall command line option.

-Wunused Warn whenever a variable is unused aside from its declaration,
whenever a function is declared static but never defined,
whenever a label is declared but not used, and whenever a
statement computes a result that is explicitly not used.
In order to get a warning about an unused function parameter,
both -W and -Wunused must be specified.
Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined or a
non-inline static function is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress
this warning, use the unused attribute.

-Wunused-parameter Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning, use the unused attribute.

-Wunused-variable Warn whenever a local variable or non-constant static variable is
unused aside from its declaration. To suppress this warning, use
the unused attribute.

-Wunused-value Warn whenever a statement computes a result that is explicitly
not used. To suppress this warning, cast the expression to void.

TABLE 3-8: WARNING AND ERROR OPTIONS IMPLIED BY ALL WARNINGS

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 69

TABLE 3-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL
WARNINGS

Option Definition

-W Print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a
call to longjmp. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to setjmp. It cannot know where longjmp will be called.
In fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because longjmp
cannot in fact be called at the place that would cause a
problem.

• A function could exit both via return value; and
return;. Completing the function body without passing
any return statement is treated as return;.

• An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[i,j] causes a
warning, but x[(void)i,j] does not.

• An unsigned value is compared against zero with < or <=.

• A comparison like x<=y<=z appears, This is equivalent
to (x<=y ? 1 : 0) <= z, which is a different
interpretation from that of ordinary mathematical notation.

• Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about
unused arguments.

• A comparison between signed and unsigned values
could produce an incorrect result when the signed value
is converted to unsigned. (But don’t warn if
-Wno-sign-compare is also specified.)

• An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for
x.h:
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x.h would be implicitly
initialized to zero:

struct s { int f, g, h; };
struct s x = { 3, 4 };

-Waggregate-return Warn if any functions that return structures or unions are
defined or called.

-Wbad-function-cast Warn whenever a function call is cast to a non-matching type.
For example, warn if int foof() is cast to anything *.

-Wcast-align Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char * is cast to an int *.

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type
qualifier from the target type. For example, warn if a
const char * is cast to an ordinary char *.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 70 2012 Microchip Technology Inc.

-Wconversion Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.
Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.

-Winline Warn if a function can not be inlined, and either it was
declared as inline, or else the -finline-functions option
was given.

-Wlarger-than-len Warn whenever an object of larger than len bytes is defined.

-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the
warning messages, use -Wno-long-long. Flags
-Wlong-long and -Wno-long-long are taken into account
only when -pedantic flag is used.

-Wmissing-declarations Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

-Wmissing-
 format-attribute

If -Wformat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only
possible candidates, not absolute ones. This option has no
effect unless -Wformat is enabled.

-Wmissing-noreturn Warn about functions that might be candidates for attribute
noreturn. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions. In
fact, do not ever return before adding the noreturn attribute,
otherwise subtle code generation bugs could be introduced.

-Wmissing-prototypes Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header
files.)

-Wnested-externs Warn if an extern declaration is encountered within a
function.

-Wno-deprecated-
 declarations

Do not warn about uses of functions, variables and types
marked as deprecated by using the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Wpointer-arith Warn about anything that depends on the size of a function
type or of void. The compiler assigns these types a size of 1,
for convenience in calculations with void * pointers and
pointers to functions.

-Wredundant-decls Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wshadow Warn whenever a local variable shadows another local
variable.

TABLE 3-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL
WARNINGS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 71

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by -W. To get the other warnings of -W without this warning,
use -W -Wno-sign-compare.

-Wstrict-prototypes Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wtraditional Warn about certain constructs that behave differently in
traditional and ANSI C.

• Macro arguments occurring within string constants in the
macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

• A function declared external in one block and then used
after the end of the block.

• A switch statement has an operand of type long.

• A nonstatic function declaration follows a static one. This
construct is not accepted by some traditional C
compilers.

-Wundef Warn if an undefined identifier is evaluated in an #if
directive.

-Wunreachable-code Warn if the compiler detects that code will never be executed.
It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

-Wwrite-strings Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
gets a warning. At compile time, these warnings help you find
code that you can try to write into a string constant, but only if
you have been very careful about using const in declarations
and prototypes. Otherwise, it’s just a nuisance, which is why
-Wall does not request these warnings.

TABLE 3-9: WARNING AND ERROR OPTIONS NOT IMPLIED BY ALL
WARNINGS (CONTINUED)

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 72 2012 Microchip Technology Inc.

3.9.6 Options for Debugging

The following options are used for debugging.

3.9.7 Options for Controlling Optimization

The following options control compiler optimizations.

TABLE 3-10: DEBUGGING OPTIONS

Option Definition

-g Produce debugging information.
The compiler supports the use of -g with -O making it possible to
debug optimized code. The shortcuts taken by optimized code may
occasionally produce surprising results:

• Some declared variables may not exist at all

• Flow of control may briefly move unexpectedly

• Some statements may not be executed because they compute
constant results or their values were already at hand

• Some statements may execute in different places because they
were moved out of loops

Nevertheless it proves possible to debug optimized output. This makes
it reasonable to use the optimizer for programs that might have bugs.

-Q Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.

-save-temps
-save-temps=cwd

Don’t delete intermediate files. Place them in the current directory and
name them based on the source file. Thus, compiling foo.c with -c
-save-temps would produce the following files:
foo.i (preprocessed file)
foo.s (assembly language file)
foo.o (object file)

-save-temps=obj Similar to -save-temps=cwd, but if the -o option is specified, the
temporary files are based on the object file. If the -o option is not
specified, the -save-temps=obj switch behaves like –save-temps.
For example:
 xc32-gcc -save-temps=obj -c foo.c
 xc32-gcc -save-temps=obj -c bar.c -o dir/xbar.o
 xc32-gcc -save-temps=obj foobar.c -o dir2/yfoobar
would create foo.i, foo.s, dir/xbar.i, dir/xbar.s,
dir2/yfoobar.i, dir2/yfoobar.s, and dir2/yfoobar.o.

TABLE 3-11: GENERAL OPTIMIZATION OPTIONS

Option Definition

-O0 Do not optimize. (This is the default.)

Without -O, the compiler’s goal is to reduce the cost of compilation and to make
debugging produce the expected results. Statements are independent: if you stop
the program with a breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any other statement in
the function and get exactly the results you would expect from the source code.
The compiler only allocates variables declared register in registers.

-O
-O1

Optimization level 1. Optimizing compilation takes somewhat longer, and a lot
more host memory for a large function.
With -O, the compiler tries to reduce code size and execution time.
When -O is specified, the compiler turns on -fthread-jumps and
-fdefer-pop. The compiler turns on -fomit-frame-pointer.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 73

The following options control specific optimizations. The -O2 option turns on all of
these optimizations except -funroll-loops, -funroll-all-loops and
-fstrict-aliasing.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to
be performed is desired.

-O2 Optimization level 2. The compiler performs nearly all supported optimizations
that do not involve a space-speed trade-off. -O2 turns on all optional
optimizations except for loop unrolling (-funroll-loops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing). It also turns on force copy of memory operands
(-fforce-mem) and Frame Pointer elimination (-fomit-frame-pointer). As
compared to -O, this option increases both compilation time and the performance
of the generated code.

-O3 Optimization level 3. -O3 turns on all optimizations specified by -O2 and also
turns on the inline-functions option.

-Os Optimize for size. -Os enables all -O2 optimizations that do not typically increase
code size. It also performs further optimizations designed to reduce code size.

TABLE 3-12: SPECIFIC OPTIMIZATION OPTIONS

Option Definition

-falign-functions
-falign-functions=
n

Align the start of functions to the next power-of-two greater than n,
skipping up to n bytes. For instance, -falign-functions=32
aligns functions to the next 32-byte boundary, but
-falign-functions=24 would align to the next 32-byte
boundary only if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are
equivalent and mean that functions are not aligned.
The assembler only supports this flag when n is a power of two, so
n is rounded up. If n is not specified, use a machine-dependent
default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to
n bytes like -falign-functions. This option can easily make
code slower, because it must insert dummy operations for when the
branch target is reached in the usual flow of the code.
If -falign-loops or -falign-jumps are applicable and are
greater than this value, then their values are used instead.
If n is not specified, use a machine-dependent default which is very
likely to be 1, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
-falign-functions. The hope is that the loop is executed many
times, which makes up for any execution of the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that are clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code than would otherwise be produced.

-fcse-follow-jumps In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by any other
path. For example, when CSE encounters an if statement with an
else clause, CSE follows the jump when the condition tested is
false.

TABLE 3-11: GENERAL OPTIMIZATION OPTIONS (CONTINUED)

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 74 2012 Microchip Technology Inc.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple if statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around the
body of the if.

-fexpensive-
 optimizations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-section
s
-fdata-sections

Place each function or data item into its own section in the output
file. The name of the function or the name of the data item
determines the section's name in the output file.
Only use these options when there are significant benefits for doing
so. When you specify these options, the assembler and linker may
create larger object and executable files and is also slower.

-fgcse Perform a global common subexpression elimination pass. This
pass also performs global constant and copy propagation.

-fgcse-lm When -fgcse-lm is enabled, global common subexpression
elimination attempts to move loads which are only killed by stores
into themselves. This allows a loop containing a load/store
sequence to change to a load outside the loop, and a copy/store
within the loop.

-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts to
move stores out of loops. When used in conjunction with
-fgcse-lm, loops containing a load/store sequence can change to
a load before the loop and a store after the loop.

-fmove-all-movable
s

Forces all invariant computations in loops to be moved outside the
loop.

-fno-defer-pop Always pop the arguments to each function call as soon as that
function returns. The compiler normally lets arguments accumulate
on the stack for several function calls and pops them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.
-fno-peephole disables peephole optimization on machine
instructions, while -fno-peephole2 disables high level peephole
optimizations. To disable peephole entirely, use both options.

-foptimize-
 register-move
-fregmove

Attempt to reassign register numbers in move instructions and as
operands of other simple instructions in order to maximize the
amount of register tying.
-fregmove and -foptimize-register-moves are the same
optimization.

-freduce-all-givs Forces all general-induction variables in loops to be strength
reduced.
These options may generate better or worse code. Results are
highly dependent on the structure of loops within the source code.

-frename-registers Attempt to avoid false dependencies in scheduled code by making
use of registers left over after register allocation. This optimization
most benefits processors with lots of registers. It can, however,
make debugging impossible, since variables no longer stay in a
“home register”.

-frerun-cse-after-
 loop

Rerun common subexpression elimination after loop optimizations
has been performed.

-frerun-loop-opt Run the loop optimizer twice.

TABLE 3-12: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 75

-fschedule-insns Attempt to reorder instructions to eliminate instruction stalls due to
required data being unavailable.

-fschedule-insns2 Similar to -fschedule-insns, but requests an additional pass of
instruction scheduling after register allocation has been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules applicable
to the language being compiled. For C, this activates optimizations
based on the type of expressions. In particular, an object of one
type is assumed never to reside at the same address as an object
of a different type, unless the types are almost the same. For
example, an unsigned int can alias an int, but not a void* or
a double. A character type may alias any other type.
Pay special attention to code like this:
union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}
The practice of reading from a different union member than the one
most recently written to (called “type-punning”) is common. Even
with -fstrict-aliasing, type-punning is allowed, provided the
memory is accessed through the union type. So, the code above
works as expected. However, this code might not:
int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

-fthread-jumps Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed by the
first is found. If so, the first branch is redirected to either the
destination of the second branch or a point immediately following it,
depending on whether the condition is known to be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done for
loops whose number of iterations can be determined at compile
time or run time. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all loops
and usually makes programs run more slowly.
-funroll-all-loops implies -fstrength-reduce, as well as
-frerun-cse-after-loop.

TABLE 3-12: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 76 2012 Microchip Technology Inc.

Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 3-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option Definition

-fforce-mem Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common
subexpressions, instruction combination should eliminate
the separate register load. The -O2 option turns on this
option.

-finline-functions Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
static, then the function is normally not output as
assembler code in its own right.

-finline-limit=n By default, the compiler limits the size of functions that
can be inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline (i.e., marked
with the inline keyword). n is the size of functions that
can be inlined in number of pseudo instructions (not
counting parameter handling). The default value of n is
10000. Increasing this value can result in more inlined
code at the cost of compilation time and memory
consumption.
Decreasing usually makes the compilation faster and
less code is inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In
no way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

-fkeep-inline-functions Even if all calls to a given function are integrated, and the
function is declared static, output a separate run time
callable version of the function. This switch does not
affect extern inline functions.

-fkeep-static-consts Emit variables are declared static const when
optimization isn't turned on, even if the variables are not
referenced.
The compiler enables this option by default. If you want
to force the compiler to check if the variable was
referenced, regardless of whether or not optimization is
turned on, use the -fno-keep-static-consts
option.

-fno-function-cse Do not put function addresses in registers. Make each
instruction that calls a constant function contain the
function's address explicitly.
This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this
option is not used.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 77

-fno-inline Do not pay attention to the inline keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fomit-frame-pointer Do not keep the Frame Pointer in a register for functions
that don't need one. This avoids the instructions to save,
set up and restore Frame Pointers. It also makes an
extra register available in many functions.

-foptimize-sibling-calls Optimize sibling and tail recursive calls.

TABLE 3-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 78 2012 Microchip Technology Inc.

3.9.8 Options for Controlling the Preprocessor

The following options control the compiler preprocessor.

TABLE 3-14: PREPROCESSOR OPTIONS

Option Definition

-C Tell the preprocessor not to discard comments. Used with the -E
option.

-dD Tell the preprocessor to not remove macro definitions into the output,
in their proper sequence.

-Dmacro Define macro macro with string 1 as its definition.

-Dmacro=defn Define macro macro as defn. All instances of -D on the command
line are processed before any -U options.

-dM Tell the preprocessor to output only a list of the macro definitions that
are in effect at the end of preprocessing. Used with the -E option.

-dN Like -dD except that the macro arguments and contents are omitted.
Only #define name is included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand
the column numbers, such as DejaGnu.

-H Print the name of each header file used, in addition to other normal
activities.

-I- Any directories you specify with -I options before the -I- options are
searched only for the case of #include “file”. They are not
searched for #include <file>.
If additional directories are specified with -I options after the -I-,
these directories are searched for all #include directives. (Ordinarily
all -I directories are used this way.)
In addition, the -I- option inhibits the use of the current directory
(where the current input file came from) as the first search directory for
#include “file”. There is no way to override this effect of -I-.
With -I. you can specify searching the directory that was current
when the compiler was invoked. That is not exactly the same as what
the preprocessor does by default, but it is often satisfactory.
-I- does not inhibit the use of the standard system directories for
header files. Thus, -I- and -nostdinc are independent.

-Idir Add the directory dir to the head of the list of directories to be
searched for header files. This can be used to override a system
header file, substituting your own version, since these directories are
searched before the system header file directories. If you use more
than one -I option, the directories are scanned in left-to-right order.
The standard system directories come after.

-idirafter dir Add the directory dir to the second include path. The directories on
the second include path are searched when a header file is not found
in any of the directories in the main include path (the one that -I adds
to).

-imacros file Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated from
the file is discarded, the only effect of -imacros file is to make the
macros defined in file available for use in the main input.
Any -D and -U options on the command line are always processed
before -imacros file, regardless of the order in which they are
written. All the -include and -imacros options are processed in the
order in which they are written.

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 79

-include file Process file as input before processing the regular input file. In effect,
the contents of file are compiled first. Any -D and -U options on the
command line are always processed before -include file,
regardless of the order in which they are written. All the -include
and -imacros options are processed in the order in which they are
written.

-M Tell the preprocessor to output a rule suitable for make describing the
dependencies of each object file. For each source file, the
preprocessor outputs one make-rule whose target is the object file
name for that source file and whose dependencies are all the
#include header files it uses. This rule may be a single line or may
be continued with \-newline if it is long. The list of rules is printed
on standard output instead of the preprocessed C program.
-M implies -E (see Section 3.9.2 “Options for Controlling the Kind

of Output”).

-MD Like -M but the dependency information is written to a file and
compilation continues. The file containing the dependency information
is given the same name as the source file with a .d extension.

-MF file When used with -M or -MM, specifies a file in which to write the
dependencies. If no -MF switch is given, the preprocessor sends the
rules to the same place it would have sent preprocessed output.
When used with the driver options, -MD or -MMD, -MF, overrides the
default dependency output file.

-MG Treat missing header files as generated files and assume they live in
the same directory as the source file. If -MG is specified, then either -M
or -MM must also be specified. -MG is not supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files included
with #include “file”. System header files included with #include
<file> are omitted.

-MMD Like -MD except mention only user header files, not system header
files.

-MP This option instructs CPP to add a phony target for each dependency
other than the main file, causing each to depend on nothing. These
dummy rules work around errors make gives if you remove header
files without updating the make-file to match.
This is typical output:
test.o: test.c test.h
test.h:

-MQ Same as -MT, but it quotes any characters which are special to make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o: foo.c
The default target is automatically quoted, as if it were given with -MQ.

-MT target Change the target of the rule emitted by dependency generation. By
default, CPP takes the name of the main input file, including any path,
deletes any file suffix such as .c, and appends the platform’s usual
object suffix. The result is the target.
An -MT option sets the target to be exactly the string you specify. If you
want multiple targets, you can specify them as a single argument to
-MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o: foo.c

TABLE 3-14: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 80 2012 Microchip Technology Inc.

-nostdinc Do not search the standard system directories for header files. Only
the directories you have specified with -I options (and the current
directory, if appropriate) are searched. (See Section 3.9.11 “Options

for Directory Search”) for information on -I.
By using both -nostdinc and -I-, the include-file search path can
be limited to only those directories explicitly specified.

-P Tell the preprocessor not to generate #line directives. Used with the
-E option (see Section 3.9.2 “Options for Controlling the Kind of

Output”).

-trigraphs Support ANSI C trigraphs. The -ansi option also has this effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D options,
but before any -include and -imacros options.

-undef Do not predefine any nonstandard macros (including architecture
flags).

TABLE 3-14: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 81

3.9.9 Options for Assembling

The following options control assembler operations.

3.9.10 Options for Linking

If any of the options -c, -S or -E are used, the linker is not run and object file names
should not be used as arguments.

TABLE 3-15: ASSEMBLY OPTIONS

Option Definition

-Wa,option Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

TABLE 3-16: LINKING OPTIONS

Option Definition

-fill=<options A memory-fill option to be passed on to the linker.

-Ldir Add directory dir to the list of directories to be searched for libraries
specified by the command line option -l.

-llibrary Search the library named library when linking.
The linker searches a standard list of directories for the library, which
is actually a file named liblibrary.a. The linker then uses this file
as if it had been specified precisely by name.
It makes a difference where in the command you write this option.
The linker processes libraries and object files in the order they are
specified. Thus, foo.o -lz bar.o searches library z after file
foo.o but before bar.o. If bar.o refers to functions in libz.a,
those functions may not be loaded.
The directories searched include several standard system
directories, plus any that you specify with -L.
Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by
scanning through it for members which define symbols that have
been referenced but not defined yet. But if the file found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an -l option (e.g., -lmylib) and
specifying a file name (e.g., libmylib.a) is that -l searches
several directories, as specified.
By default the linker is directed to search:
<install-path>\lib
for libraries specified with the -l option. For a compiler installed into
the default location, this would be:
Program Files\Microchip\mplab32\<version>\lib
This behavior can be overridden using the environment variables.
See also the INPUT and OPTIONAL linker script directives.

-nodefaultlibs Do not use the standard system libraries when linking. Only the
libraries you specify are passed to the linker. The compiler may
generate calls to memcmp, memset and memcpy. These entries are
usually resolved by entries in the standard compiler libraries. These
entry points should be supplied through some other mechanism
when this option is specified.

-nostdlib Do not use the standard system start-up files or libraries when
linking. No start-up files and only the libraries you specify are passed
to the linker. The compiler may generate calls to memcmp, memset
and memcpy. These entries are usually resolved by entries in
standard compiler libraries. These entry points should be supplied
through some other mechanism when this option is specified.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 82 2012 Microchip Technology Inc.

3.9.11 Options for Directory Search

The following options specify to the compiler where to find directories and files to
search.

-s Remove all symbol table and relocation information from the
executable.

-u symbol Pretend symbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use -u multiple times with
different symbols to force loading of additional library modules.

-Wl,option Pass option as an option to the linker. If option contains commas,
it is split into multiple options at the commas.

-Xlinker option Pass option as an option to the linker. You can use this to supply
system-specific linker options that the compiler does not know how to
recognize.

TABLE 3-17: DIRECTORY SEARCH OPTIONS

Option Definition

-Bprefix This option specifies where to find the executables, libraries,
include files and data files of the compiler itself.
The compiler driver program runs one or more of the
sub-programs xc32-cpp, xc32-as and xc32-ld. It tries
prefix as a prefix for each program it tries to run.
For each sub-program to be run, the compiler driver first tries the
-B prefix, if any. Lastly, the driver searches the current PATH
environment variable for the subprogram.
-B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into -L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into -isystem options for the preprocessor. In this case,
the compiler appends include to the prefix.

-specs=file Process file after the compiler reads in the standard specs file, in
order to override the defaults that the xc32-gcc driver program
uses when determining what switches to pass to xc32-as,
xc32-ld, etc. More than one -specs=file can be specified on
the command line, and they are processed in order, from left to
right.

TABLE 3-16: LINKING OPTIONS (CONTINUED)

Option Definition

Compiler Command Line Driver

 2012 Microchip Technology Inc. DS51686E-page 83

3.9.12 Options for Code Generation Conventions

Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms. The negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default).

TABLE 3-18: CODE GENERATION CONVENTION OPTIONS

Option Definition

-fargument-alias
-fargument-noalias
-fargument-
 noalias-global

Specify the possible relationships among parameters and between
parameters and global data.
-fargument-alias specifies that arguments (parameters) may
alias each other and may alias global storage.
-fargument-noalias specifies that arguments do not alias
each other, but may alias global storage.
-fargument-noalias-global specifies that arguments do not
alias each other and do not alias global storage.
Each language automatically uses whatever option is required by
the language standard. You should not need to use these options
yourself.

-fcall-saved-reg Treat the register named reg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way saves and
restores the register reg if they use it.
It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.
A different sort of disaster results from the use of this flag for a
register in which function values are returned.
This flag should be used consistently through all modules.

-fcall-used-reg Treat the register named reg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register reg.
It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine’s execution model produces
disastrous results.
This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register. Generated code
should never refer to it (except perhaps as a Stack Pointer, Frame
Pointer or in some other fixed role).
reg must be the name of a register (e.g., -ffixed-$0).

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 84 2012 Microchip Technology Inc.

-finstrument-
 functions

Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site.
void __cyg_profile_func_enter
 (void *this_fn, void *call_site);
void __cyg_profile_func_exit
 (void *this_fn, void *call_site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.
Function instrumentation requires the use of a Frame Pointer.
Some optimization levels disable the use of the Frame Pointer.
Using -fno-omit-frame-pointer prevents this.
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls indicates where, conceptually,
the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use extern inline in
your C code, an addressable version of such functions must be
provided.
A function may be given the attribute
no_instrument_function, in which case this instrumentation
is not done.

-fno-ident Ignore the #ident directive.

-fpack-struct Pack all structure members together without holes. Usually you
would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won’t agree with
system libraries.

-fpcc-struct-
 return

Return short struct and union values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between 32-bit compiled
files and files compiled with other compilers.
Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-double By default, the compiler uses a double type equivalent to float.
This option makes double equivalent to long double. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the
declared range of possible values. Specifically, the enum type is
equivalent to the smallest integer type that has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code
to make it more readable.
-fno-verbose-asm, the default, causes the extra information to
be omitted and is useful when comparing two assembler files.

-fvolatile Consider all memory references through pointers to be volatile.

-fvolatile-global Consider all memory references to external and global data items
to be volatile. The use of this switch has no effect on static data.

-fvolatile-static Consider all memory references to static data to be volatile.

TABLE 3-18: CODE GENERATION CONVENTION OPTIONS (CONTINUED)

Option Definition

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 85

Chapter 4. Device-Related Features

4.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler supports a number of special features and exten-
sions to the C/C++ language which are designed to ease the task of producing
ROM-based applications. This chapter documents the special language features which
are specific to these devices.

• Device Support

• Device Header Files

• Stack

• Using SFRs From C Code

4.2 DEVICE SUPPORT

MPLAB XC32 C/C++ Compiler aims to support all PIC32 devices. However, new
devices in these families are frequently released. Check the readme document for a full
list of all available devices.

4.3 DEVICE HEADER FILES

There is one header file that is recommended be included into each source file you
write. The file is <xc.h> and is a generic file that will include other device-specific
header files when you build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as
#defines which allow the use of conventional register names from within assembly
language files.

4.3.1 CP0 Register Definitions Header File

The CP0 register definitions header file (cp0defs.h) is a file that contains definitions
for the CP0 registers and their fields. In addition, it contains macros for accessing the
CP0 registers.

The CP0 register definitions header file is located in the pic32mx/include directory
of your compiler installation directory. The CP0 register definitions header file is
automatically included when you include the generic device header file, xc.h.

The CP0 register definitions header file was designed to work with either Assembly or
C/C++ files. The CP0 register definitions header file is dependent on macros defined
within the processor generic header file).

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 86 2012 Microchip Technology Inc.

4.4 STACK

The PIC32 devices use what is referred to in this user’s guide as a “software stack”.
This is the typical stack arrangement employed by most computers and is ordinary data
memory accessed by a push-and-pop type instruction and a stack pointer register. The
term “hardware stack” is used to describe the stack employed by Microchip 8-bit
devices, which is only used for storing function return addresses.

The PIC32 devices use a dedicated stack pointer register sp (register 29) for use as a
software Stack Pointer. All processor stack operations, including function calls, inter-
rupts and exceptions, use the software stack. It points to the next free location on the
stack. The stack grows downward, towards lower memory addresses.

By default, the size of the stack is 1024 bytes. The size of the stack may be changed

by specifying the size on the linker command line using the

--defsym_min_stack_size linker command line option. An example of allocating

a stack of 2048 bytes using the command line is:
xc32-gcc foo.c -Wl,--defsym,_min_stack_size=2048

The run-time stack grows downward from higher addresses to lower addresses. Two

working registers are used to manage the stack:

• Register 29 (sp) – This is the Stack Pointer. It points to the next free location on

the stack.

• Register 30 (fp) – This is the Frame Pointer. It points to the current function’s

frame.

No stack overflow detection is supplied.

The C/C++ run-time start-up module initializes the stack pointer during the start-up

and initialization sequence, see Section 12.3.2 “Initialize Stack Pointer and Heap”.

4.4.1 Configuration Bit Access

The PIC32 devices have several locations which contain the Configuration bits or
fuses. These bits specify fundamental device operation, such as the oscillator mode,
watchdog timer, programming mode and code protection. Failure to correctly set these
bits may result in code failure, or a non-running device.

The #pragma config directive specifies the processor-specific configuration
settings (i.e., Configuration bits) to be used by the application. Refer to the “PIC32MX
Configuration Settings” online help (found under MPLAB
IDE>Help>Topics>Language Tools) for more information. (If using the compiler from
the command line, this help file is located at the default location at:
Program Files/Microchip/<install-dir>/doc/hlpPIC32MXConfigSet.chm.)

Configuration settings may be specified with multiple #pragma config directives.
The compiler verifies that the configuration settings specified are valid for the processor
for which it is compiling. If a given setting in the Configuration word has not been
specified in any #pragma config directive, the bits associated with that setting
default to the unprogrammed value. Configuration settings should be specified in only

a single translation unit (a C/C+ + file with all of its include files after preprocessing).

For each Configuration word for which a setting is specified with the #pragma config
directive, the compiler generates a read-only data section named .config_address,
where address is the hexadecimal representation of the address of the Configuration
word. For example, if a configuration setting was specified for the Configuration word
located at address 0xBFC02FFC, a read-only data section named
.config_BFC02FFC would be created.

• Syntax

• Example

Device-Related Features

 2012 Microchip Technology Inc. DS51686E-page 87

4.4.1.1 SYNTAX

The following shows the meta syntax notation for the different forms the pragma may
take.

pragma-config-directive:
 # pragma config setting-list

setting-list:
 setting

 | setting-list, setting

setting:
 setting-name = value-name

The setting-name and value-name are device specific and can be determined by
utilizing the PIC32MX Configuration Settings document.

All #pragma config directives should be placed outside of a function definition as
they do not define executable code.

4.4.1.2 EXAMPLE

The following example shows how the #pragma config directive might be utilized.
The example does the following:

• Enables the Watchdog Timer

• Sets the Watchdog Postscaler to 1:128

• Selects the HS Oscillator for the Primary Oscillator

#pragma config FWDTEN = ON, WDTPS = PS128

#pragma config POSCMOD = HS

...

int main (void)

{

...

}

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 88 2012 Microchip Technology Inc.

4.5 USING SFRS FROM C CODE

The Special Function Registers (SFRs) are registers which control aspects of the MCU
operation or that of peripheral modules on the device. These registers are memory
mapped, which means that they appear at specific addresses in the device memory
map. With some registers, the bits within the register control independent features.

Memory-mapped SFRs are accessed by special C variables that are placed at the
addresses of the registers and use special attributes. These variables can be accessed
like any ordinary C variable so that no special syntax is required to access SFRs.

The SFR variables are predefined in header files and will be accessible once the
<xc.h> header file (see Section 4.3 “Device Header Files”) has been included into
your source code. Structures are also defined by these header files to allow access to
bits within the SFR.

The names given to the C variables, which map over the registers and bit variables, or
bit fields, within the registers are based on the names specified in the device data
sheet. The names of the structures that hold the bit fields will typically be those of the
corresponding register followed by bits. For example, the following shows code that
includes the generic header file, clears PORTB as a whole and sets bit 2 of PORTB
using the structure/bit field definitions.

#include <xc.h>
int main(void)
{

PORTB = 0x00;
PORTBbits.RB2 = 1;

}

For use with assembly, the PORTB register is declared as: .extern PORTB.

To confirm the names that are relevant for the device you are using, check the device
specific header file that <xc.h> will include for the definitions of each variable. These
files will be located in the pic32mx/include/proc directory of the compiler and will
have a name that represents the device. There is a one-to-one correlation between
device and header file name that will be included by <xc.h>, e.g. when compiling for
a PIC32MX360F512L device, the <xc.h> header file will include
<p32mx360f512l.h>. Remember that you do not need to include this chip-specific
file into your source code; it is automatically included by <xc.h>.

Some of the PIC32 SFRs have associated registers that allow the bits within the SFR
to be set, cleared or toggled atomically. For example, the PORTB SFR has the write-only
registers PORTBSET, PORTBCLR and PORTBINV associated with it. Writing a ‘1’ to a bit
location in these registers sets, clears or toggles, respectively, the corresponding bit in
the PORTB SFR. So to set bit 1 in PORTB, you can use the following code:

PORTBSET = 0x2;

or alternatively, using macros provided in the device header files:

PORTBSET = _PORTB_RB1_MASK;

The same operation can also be achieved using the peripheral library functions, for
example

mPORTBSetBits(BIT_1);

Always ensure that you confirm the operation of peripheral modules from the device
data sheet.

Note: The symbols PORTB and PORTBbits refer to the same register and resolve
to the same address. Writing to one register will change the values held by
both.

Device-Related Features

 2012 Microchip Technology Inc. DS51686E-page 89

4.5.1 CP0 Register Definitions

When the CP0 register definitions header file is included from an Assembly file, the
CP0 registers are defined as:

#define _CP0_register_name $register_number, select_number

For example, the IntCtl register is defined as:

#define _CP0_INTCTL $12, 1

When the CP0 register definitions header file is included from a C file, the CP0 registers
and selects are defined as:

#define _CP0_register_name register_number
#define _CP0_register_name_SELECT select_number

For example, the IntCtl register is defined as:

#define _CP0_INTCTL 12
#define _CP0_INTCTL_SELECT 1

4.5.2 CP0 Register Field Definitions

When the CP0 register definitions header file is included from either an Assembly or a
C/C++ file, three #defines exist for each of the CP0 register fields.

_CP0_register_name_field_name_POSITION – the starting bit location

_CP0_register_name_field_name_MASK – the bits that are part of this field are
set

_CP0_register_name_field_name_LENGTH – the number of bits that this field
occupies

For example, the vector spacing field of the IntCtl register has the following defines:

#define _CP0_INTCTL_VS_POSITION 0x00000005
#define _CP0_INTCTL_VS_MASK 0x000003E0
#define _CP0_INTCTL_VS_LENGTH 0x00000005

4.5.3 CP0 Access Macros

When the CP0 register definitions header file is included from a C file, CP0 access
macros are defined. Each CP0 register may have up to six different access macros
defined:

_CP0_GET_register_name () Returns the value for register, register_name.

_CP0_SET_register_name (val) Sets the register, register_name, to val, and
returns void. Only defined for registers that contain a
writable field.

_CP0_XCH_register_name (val) Sets the register, register_name, to val, and
returns the previous register value. Only defined for
registers that contain a writable field.

_CP0_BIS_register_name (set) Sets the register, register_name, to (reg |= set),
and returns the previous register value. Only defined
for registers that contain writable bit fields.

_CP0_BIC_register_name (clr) Sets the register, register_name, to (reg &= ~clr),
and returns the previous register value. Only defined
for registers that contain writable bit fields.

_CP0_BCS_register_name (clr,
set)

Sets the register, register_name, to
(reg = (reg & ~clr) | set), and returns the previous
register value. Only defined for registers that contain
writable bit fields.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 90 2012 Microchip Technology Inc.

4.5.4 Address Translation Macros

System code may need to translate between virtual and physical addresses, as well as
between kernel segment addresses. Macros are provided to make these translations
easier and to determine the segment an address is in.

KVA_TO_PA(v) Translate a kernel virtual address to a physical address.

PA_TO_KVA0(pa) Translate a physical address to a KSEG0 virtual address.

PA_TO_KVA1(pa) Translate a physical address to a KSEG1 virtual address.

KVA0_TO_KVA1(v) Translate a KSEG0 virtual address to a KSEG1 virtual address.

KVA1_TO_KVA0(v) Translate a KSEG1 virtual address to a KSEG0 virtual address.

IS_KVA(v) Evaluates to 1 if the address is a kernel segment virtual address, zero
otherwise.

IS_KVA0(v) Evaluate to 1 if the address is a KSEG0 virtual address, zero otherwise.

IS_KVA1(v) Evaluate to 1 if the address is a KSEG1 virtual address, zero otherwise.

IS_KVA01(v) Evaluate to 1 if the address is either a KSEG0 or a KSEG1 virtual
address, zero otherwise.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 91

Chapter 5. ANSI C Standard Issues

This compiler conforms to the ANS X3.159-1989 Standard for programming languages.
This is commonly called the C89 Standard. It is referred to as the ANSI C Standard in
this manual. Some features from the later standard C99 are also supported.

• Divergence from the ANSI C Standard

• Extensions to the ANSI C Standard

• Implementation-defined behavior

5.1 DIVERGENCE FROM THE ANSI C STANDARD

There are no divergences from the ANSI C standard.

5.2 EXTENSIONS TO THE ANSI C STANDARD

C/C++ code for the MPLAB XC32 C/C++ Compiler differs from the ANSI C standard in
these areas: keywords, statements and expressions.

5.2.1 Keyword Differences

The new keywords are part of the base GCC implementation and the discussions in the
referenced sections are based on the standard GCC documentation, tailored for the
specific syntax and semantics of the 32-bit compiler port of GCC.

• Specifying Attributes of Variables – Section 6.12 “Variable Attributes”

• Specifying Attributes of Functions – Section 10.2 “Function Attributes and

Specifiers”

• Inline Functions – Section 10.9 “Inline Functions”

• Variables in Specified Registers – Section 6.12 “Variable Attributes”

• Complex Numbers – Section 6.8 “Complex Data Types”

• Referring to a Type with typeof – Section 6.10 “Standard Type Qualifiers”

5.2.2 Statement Differences

The statement differences are part of the base GCC implementation, and the discus-
sions in the referenced sections are based on the standard GCC documentation,
tailored for the specific syntax and semantics of the 32-bit compiler port of GCC.

• Labels as Values – Section 8.4 “Labels as Values”

• Conditionals with Omitted Operands – Section 8.5 “Conditional Operator Oper-

ands”

• Case Ranges – Section 8.6 “Case Ranges”

5.2.3 Expression Differences

Expression differences are:

• Binary constants – Section 6.9 “Constant Types and Formats”.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 92 2012 Microchip Technology Inc.

5.3 IMPLEMENTATION-DEFINED BEHAVIOR

Certain features of the ANSI C standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler. The
exact behavior of the MPLAB XC32 C/C++ Compiler is detailed throughout this docu-
mentation, and is fully summarized in Appendix 18. “Implementation-Defined

Behavior”.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 93

Chapter 6. Supported Data Types and Variables

6.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler supports a variety of data types and attributes.
These data types and variables are discussed here. For information on where variables
are stored in memory, see Chapter 7. “Memory Allocation and Access”.

• Data Representation

• Integer Data Types

• Floating-Point Data Types

• Structures and Unions

• Pointer Types

• Complex Data Types

• Constant Types and Formats

• Standard Type Qualifiers

• Compiler-Specific Qualifiers

• Variable Attributes

6.2 IDENTIFIERS

A C/C++ variable identifier (the following is also true for function identifiers) is a
sequence of letters and digits, where the underscore character “_” counts as a letter.
Identifiers cannot start with a digit. Although they may start with an underscore, such
identifiers are reserved for the compiler’s use and should not be defined by your pro-
grams. Such is not the case for assembly domain identifiers, which often begin with an
underscore

Identifiers are case sensitive, so main is different than Main.

All characters are significant in an identifier, although identifiers longer than 31 charac-
ters in length are less portable.

6.3 DATA REPRESENTATION

The compiler stores multibyte values in little-endian format. That is, the Least
Significant Byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

Address 0x100 0x101 0x102 0x103

Data 0x78 0x56 0x34 0x12

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 94 2012 Microchip Technology Inc.

6.4 INTEGER DATA TYPES

Integer values in the compiler are represented in 2’s complement and vary in size from
8 to 64 bits. These values are available in compiled code via limits.h.

6.4.1 Signed and Unsigned Character Types

By default, values of type plain char are signed values. This behavior is
implementation-defined by the C standard, and some environments1 define a plain
C/C++ char value to be unsigned. The command line option -funsigned-char can
be used to set the default type to unsigned for a given translation unit.

6.4.2 limits.h

The limits.h header file defines the ranges of values which can be represented by
the integer types.

Type Bits Min Max

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int, long, signed long 32 -231 231-1

unsigned int, unsigned long 32 0 232-1

long long, signed long long 64 -263 263-1

unsigned long long 64 0 264-1

1. Notably, PowerPC and ARM.

Macro name Value Description

CHAR_BIT 8 The size, in bits, of the smallest non-bit field
object.

SCHAR_MIN -128 The minimum value possible for an object of
type signed char.

SCHAR_MAX 127 The maximum value possible for an object of
type signed char.

UCHAR_MAX 255 The maximum value possible for an object of
type unsigned char.

CHAR_MIN -128 (or 0, see
Section 6.4.1 “Signed

and Unsigned

Character Types”)

The minimum value possible for an object of
type char.

CHAR_MAX 127 (or 255, see
Section 6.4.1 “Signed

and Unsigned

Character Types”)

The maximum value possible for an object of
type char.

MB_LEN_MAX 16 The maximum length of multibyte character in
any locale.

SHRT_MIN -32768 The minimum value possible for an object of
type short int.

SHRT_MAX 32767 The maximum value possible for an object of
type short int.

USHRT_MAX 65535 The maximum value possible for an object of
type unsigned short int.

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 95

INT_MIN -231 The minimum value possible for an object of
type int.

INT_MAX 231-1 The maximum value possible for an object of
type int.

UINT_MAX 232-1 The maximum value possible for an object of
type unsigned int.

LONG_MIN -231 The minimum value possible for an object of
type long.

LONG_MAX 231-1 The maximum value possible for an object of
type long.

ULONG_MAX 232-1 The maximum value possible for an object of
type unsigned long.

LLONG_MIN -263 The minimum value possible for an object of
type long long.

LLONG_MAX 263-1 The maximum value possible for an object of
type long long.

ULLONG_MAX 264-1 The maximum value possible for an object of
type unsigned long long.

Macro name Value Description

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 96 2012 Microchip Technology Inc.

6.5 FLOATING-POINT DATA TYPES

The compiler uses the IEEE-754 floating-point format. Detail regarding the
implementation limits is available to a translation unit in float.h.

Variables may be declared using the float, double and long double keywords,
respectively, to hold values of these types. Floating-point types are always signed and
the unsigned keyword is illegal when specifying a floating-point type. All floating-point
values are represented in little endian format with the Least Significant Byte at the
lower address.

This format is described in Table 6-1, where:

• Sign is the sign bit which indicates if the number is positive or negative

• For 32-bit floating point values, the exponent is 8 bits which is stored as excess
127 (i.e. an exponent of 0 is stored as 127).

• For 64-bit floating point values, the exponent is 11 bits which is stored as excess
1023 (i.e. an exponent of 0 is stored as 1023).

• Mantissa is the mantissa, which is to the right of the radix point. There is an
implied bit to the left of the radix point which is always 1 except for a zero value,
where the implied bit is zero. A zero value is indicated by a zero exponent.

The value of this number for 32-bit floating point values is:

(-1)sign x 2(exponent-127) x 1. mantissa

and for 64-bit values

(-1)sign x 2(exponent-1023) x 1. mantissa.

Here is an example of the IEEE 754 32-bit format shown in Table 6-1. Note that the
Most Significant bit of the mantissa column (i.e. the bit to the left of the radix point) is
the implied bit, which is assumed to be 1 unless the exponent is zero (in which case
the float is zero).

The example in Table 6-1 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take
the binary number to the right of the decimal point in the mantissa. Convert this to dec-
imal and divide it by 223 where 23 is the number of bits taken up by the mantissa, to
give 0.302447676659. Add 1 to this fraction. The floating-point number is then given
by:

-1021241.302447676659

which becomes:

12.126764793256e+371.302447676659

which is approximately equal to:

2.77000e+37

Type Bits

float 32

double 32

long double 64

TABLE 6-1: FLOATING-POINT FORMAT EXAMPLE IEEE 754

Format Number Biased exponent 1.mantissa Decimal

32-bit 7DA6B69Bh

11111011b 1.0100110101101101
0011011b

2.77000e+37

(251) (1.302447676659) —

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 97

Binary floating-point values are sometimes misunderstood. It is important to remember
that not every floating-point value can be represented by a finite sized floating-point
number. The size of the exponent in the number dictates the range of values that the
number can hold, and the size of the mantissa relates to the spacing of each value that
can be represented exactly. Thus the 64-bit floating-point format allows for values with
a larger range of values and that can be more accurately represented.

So, for example, if you are using a 32-bit wide floating-point type, it can exactly store
the value 95000.0. However, the next highest number it can represent is (approxi-
mately) 95000.00781 and it is impossible to represent any value in between these two
in such a type as it will be rounded. This implies that C/C++ code which compares float-
ing-point type may not behave as expected. For example:

volatile float myFloat;
myFloat = 95000.006;
if(myFloat == 95000.007) // value will be rounded

LATA++; // this line will be executed!

in which the result of the if() expression will be true, even though it appears the two
values being compared are different.

The characteristics of the floating-point formats are summarized in Table 6-2. The sym-
bols in this table are preprocessor macros which are available after including
<float.h> in your source code. Two sets of macros are available for float and
double types, where XXX represents FLT and DBL, respectively. So, for example,
FLT_MAX represents the maximum floating-point value of the float type. DBL_MAX
represents the same values for the double type. As the size and format of float-
ing-point data types are not fully specified by the ANSI Standard, these macros allow
for more portable code which can check the limits of the range of values held by the
type on this implementation.

TABLE 6-2: RANGES OF FLOATING-POINT TYPE VALUES

Symbol Meaning 32-bit Value 64-bit Value

XXX_RADIX Radix of exponent representation 2 2

XXX_ROUNDS Rounding mode for addition 1

XXX_MIN_EXP Min. n such that FLT_RADIXn-1 is
a normalized float value

-125 -1021

XXX_MIN_10_E
XP

Min. n such that 10n is a
normalized float value

-37 -307

XXX_MAX_EXP Max. n such that FLT_RADIXn-1
is a normalized float value

128 1024

XXX_MAX_10_E
XP

Max. n such that 10n is a
normalized float value

38 308

XXX_MANT_DIG Number of FLT_RADIX mantissa
digits

24 53

XXX_EPSILON The smallest number which
added to 1.0 does not yield 1.0

1.1920929e-07 2.22044604925
03131e-16

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 98 2012 Microchip Technology Inc.

6.6 STRUCTURES AND UNIONS

MPLAB XC32 C/C++ Compiler supports struct and union types. Structures and
unions only differ in the memory offset applied to each member.

These types will be at least 1 byte wide. Bit fields are fully supported.

No padding of structure members is added.

Structures and unions may be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

6.6.1 Structure and Union Qualifiers

The MPLAB XC32 C/C++ Compiler supports the use of type qualifiers on structures.
When a qualifier is applied to a structure, all of its members will inherit this qualification.
In the following example the structure is qualified const.

const struct {
 int number;
 int *ptr;
} record = { 0x55, &i };

In this case, the entire structure will be placed into the program memory and each
member will be read-only. Remember that all members are usually initialized if a struc-
ture is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const, but the structure was
not, then the structure would be positioned into RAM, but each member would be
read-only. Compare the following structure with the above.

struct {
 const int number;
 int * const ptr;
} record = { 0x55, &i};

6.6.2 Bit Fields in Structures

MPLAB XC32 C/C++ Compiler fully supports bit fields in structures.

Bit fields are always allocated within 8-bit storage units, even though it is usual to use
the type unsigned int in the definition. Storage units are aligned on a 32-bit bound-
ary, although this can be changed using the packed attribute.

The first bit defined will be the Least Significant bit of the word in which it will be stored.
When a bit field is declared, it is allocated within the current 8-bit unit if it will fit; other-
wise, a new byte is allocated within the structure. Bit fields can never cross the bound-
ary between 8-bit allocation units. For example, the declaration:

struct {
 unsigned lo : 1;
 unsigned dummy : 6;
 unsigned hi : 1;
} foo;

will produce a structure occupying 1 byte. If foo was ultimately linked at address 10H,
the field lo will be bit 0 of address 10H; hi will be bit 7 of address 10H. The Least Sig-
nificant bit of dummy will be bit 1 of address 10H and the Most Significant bit of dummy
will be bit 6 of address 10h.

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 99

Unnamed bit fields may be declared to pad out unused space between active bits in
control registers. For example, if dummy is never referenced, the structure above could
have been declared as:

struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo;

A structure with bit fields may be initialized by supplying a comma-separated list of ini-
tial values for each field. For example:

struct {
 unsigned lo : 1;
 unsigned mid : 6;
 unsigned hi : 1;
} foo = {1, 8, 0};

Structures with unnamed bit fields may be initialized. No initial value should be supplied
for the unnamed members, for example:

struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo = {1, 0};

will initialize the members lo and hi correctly.

The MPLAB XC compiler supports anonymous unions. These are unions with no iden-
tifier and whose members can be accessed without referencing the enclosing union.
These unions can be used when placing inside structures. For example:

struct {
union {
int x;
double y;

};
} aaa;

int main(void)
{

aaa.x = 99;
// ...}

Here, the union is not named and its members accessed as if they are part of the struc-
ture. Anonymous unions are not part of any C Standard and so their use limits the por-
tability of any code.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 100 2012 Microchip Technology Inc.

6.7 POINTER TYPES

There are two basic pointer types supported by the MPLAB XC32 C/C++ Compiler:
data pointers and function pointers. Data pointers hold the addresses of variables
which can be indirectly read, and possible indirectly written, by the program. Function
pointers hold the address of an executable function which can be called indirectly via
the pointer.

6.7.1 Combining Type Qualifiers and Pointers

It is helpful to first review the ANSI C/C++ standard conventions for definitions of
pointer types.

Pointers can be qualified like any other C/C++ object, but care must be taken when
doing so as there are two quantities associated with pointers. The first is the actual
pointer itself, which is treated like any ordinary C/C++ variable and has memory
reserved for it. The second is the target, or targets, that the pointer references, or to
which the pointer points. The general form of a pointer definition looks like the following:

target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;

Any qualifiers to the right of the * (i.e. next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.

Here are three examples of pointer definitions using the volatile qualifier. The fields
in the definitions have been highlighted with spacing:

volatile int * vip ;
int * volatile ivp ;
volatile int * volatile vivp ;

The first example is a pointer called vip. It contains the address of int objects that
are qualified volatile. The pointer itself — the variable that holds the address — is
not volatile; however, the objects that are accessed when the pointer is derefer-
enced are treated as being volatile. In other words, the target objects accessible via
the pointer may be externally modified.

The second example is a pointer called ivp which also contains the address of int
objects. In this example, the pointer itself is volatile, that is, the address the pointer
contains may be externally modified; however, the objects that can be accessed when
dereferencing the pointer are not volatile.

The last example is of a pointer called vivp which is itself qualified volatile, and
which also holds the address of volatile objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

6.7.2 Data Pointers

Pointers in the compiler are all 32 bits in size. These can hold an address which can
reach all memory locations.

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 101

6.7.3 Function Pointers

The MPLAB XC compiler fully supports pointers to functions, which allows functions to
be called indirectly. These are often used to call one of several function addresses
stored in a user-defined C/C++ array, which acts like a lookup table.

Function pointers are always 32 bits in size and hold the address of the function to be
called.

Any attempt to call a function with a function pointer containing NULL will result in an
ifetch Bus Error.

6.7.3.1 SPECIAL POINTER TARGETS

Pointers and integers are not interchangeable. Assigning an integer constant to a
pointer will generate a warning to this effect. For example:

const char * cp = 0x123; // the compiler will flag this as bad code

There is no information in the integer constant, 0x123, relating to the type or size of the
destination. This code is also not portable and there is a very good chance of code fail-
ure if pointers are assigned integer addresses and dereferenced, particularly for PIC®
devices that have more than one memory space.

Always take the address of a C/C++ object when assigning an address to a pointer. If
there is no C/C++ object defined at the destination address, then define or declare an
object at this address which can be used for this purpose. Make sure the size of the
object matches the range of the memory locations that can be accessed.

For example, a checksum for 1000 memory locations starting at address 0xA0001000
is to be generated. A pointer is used to read this data. You may be tempted to write
code such as:

int * cp;
cp = 0xA0001000; // what resides at 0xA0001000???

and increment the pointer over the data. A much better solution is this:

int * cp;
int __attribute__((address(0xA0001000))) inputData [1000];
cp = &inputData;
// cp is incremented over inputData and used to read values there

In this case, the compiler can determine the size of the target and the memory space.
The array size and type indicates the size of the pointer target.

Take care when comparing (subtracting) pointers. For example:

if(cp1 == cp2)
 ; take appropriate action

The ANSI C standard only allows pointer comparisons when the two pointer targets are
the same object. The address may extend to one element past the end of an array.

Comparisons of pointers to integer constants are even more risky, for example:

if(cp1 == 0xA0000100)
 ; take appropriate action

A NULL pointer is the one instance where a constant value can be assigned to a pointer
and this is handled correctly by the compiler. A NULL pointer is numerically equal to 0
(zero), but this is a special case imposed by the ANSI C standard. Comparisons with
the macro NULL are also allowed.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 102 2012 Microchip Technology Inc.

6.8 COMPLEX DATA TYPES

Complex data types are currently not implemented in MPLAB XC32 C/C++ Compiler.

6.9 CONSTANT TYPES AND FORMATS

A constant is used to represent a numerical value in the source code, for example 123
is a constant. Like any value, a constant must have a C/C++ type. In addition to a con-
stant’s type, the actual value can be specified in one of several formats. The format of
integral constants specifies their radix. MPLAB XC32 C supports the ANSI standard
radix specifiers as well as ones which enables binary constants to be specified in C
code.

The formats used to specify the radices are given in Table 6-3. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

Any integral constant will have a type of int, long int or long long int, so that
the type can hold the value without overflow. Constants specified in octal or hexadeci-
mal may also be assigned a type of unsigned int, unsigned long int or
unsigned long long int if the signed counterparts are too small to hold the value.

The default types of constants may be changed by the addition of a suffix after the dig-
its, e.g. 23U, where U is the suffix. Table 6-4 shows the possible combination of suffixes
and the types that are considered when assigning a type. So, for example, if the suffix
l is specified and the value is a decimal constant, the compiler will assign the type
long int, if that type will hold the constant; otherwise, it will assigned long long
int. If the constant was specified as an octal or hexadecimal constant, then unsigned
types are also considered.

Here is an example of code that may fail because the default type assigned to a con-
stant is not appropriate:

unsigned long int result;

TABLE 6-3: RADIX FORMATS

Radix Format Example

binary 0b number or 0B number 0b10011010

octal 0 number 0763

decimal number 129

hexadecimal 0x number or 0X number 0x2F

TABLE 6-4: SUFFIXES AND ASSIGNED TYPES

Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 103

unsigned char shifter;

int main(void)
{

shifter = 40;
result = 1 << shifter;
// code that uses result

}

The constant 1 will be assigned an int type hence the result of the shift operation will
be an int and the upper bits of the long variable, result, can never be set, regard-
less of how much the constant is shifted. In this case, the value 1 shifted left 40 bits will
yield the result 0, not 0x10000000000.

The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsigned long type.

result = 1UL << shifter;

Floating-point constants have double type unless suffixed by f or F, in which case it
is a float constant. The suffixes l or L specify a long double type.

Character constants are enclosed by single quote characters, ’, for example ’a’. A
character constant has int type, although this may be optimized to a char type later
in the compilation.

Multi-byte character constants are accepted by the compiler but are not supported by
the standard libraries.

String constants, or string literals, are enclosed by double quote characters “, for exam-
ple “hello world”. The type of string constants is const char * and the character
that make up the string are stored in the program memory, as are all objects qualified
const.

To comply with the ANSI C standard, the compiler does not support the extended char-
acter set in characters or character arrays. Instead, they need to be escaped using the
backslash character, as in the following example:

const char name[] = "Bj\370rk";
printf(“%s's Resum\351”, name); \\ prints “Bjørk's Resumé”

Assigning a string literal to a pointer to a non-const char will generate a warning from
the compiler. This code is legal, but the behavior if the pointer attempts to write to the
string will fail. For example:

char * cp= “one”; // “one” in ROM, produces warning
const char * ccp= “two”; // “two” in ROM, correct

Defining and initializing a non-const array (i.e. not a pointer definition) with a string,
for example:

char ca[]= “two”; // “two” different to the above

is a special case and produces an array in data space which is initialized at start-up
with the string “two” (copied from program space), whereas a string constant used in
other contexts represents an unnamed const -qualified array, accessed directly in pro-
gram space.

The MPLAB XC32 C/C++ Compiler will use the same storage location and label for
strings that have identical character sequences. For example, in the code snippet

if(strncmp(scp, “hello world”, 6) == 0)
fred = 0;

if(strcmp(scp, “hello world”) == 0)
fred++;

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 104 2012 Microchip Technology Inc.

the two identical character string greetings will share the same memory locations. The
link-time optimization must be enabled to allow this optimization when the strings may
be located in different modules.

Two adjacent string constants (i.e. two strings separated only by white space) are con-
catenated by the compiler. Thus:

const char * cp = “hello” “ world”;

will assign the pointer with the address of the string “hello world “.

6.10 STANDARD TYPE QUALIFIERS

Type qualifiers provide additional information regarding how an object may be used.
The MPLAB XC32 C/C++ Compiler supports both ANSI C qualifiers and additional spe-
cial qualifiers which are useful for embedded applications and which take advantage of
the PIC MCU architecture.

6.10.1 Const Type Qualifier

The MPLAB XC32 C/C++ Compiler supports the use of the ANSI type qualifiers const
and volatile.

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const, the com-
piler will issue a warning or error.

Usually a const object must be initialized when it is declared, as it cannot be assigned
a value at any point at runtime. For example:

const int version = 3;

will define version as being an int variable that will be placed in the program mem-
ory, will always contain the value 3, and which can never be modified by the program.

Objects qualified const are placed into the program memory unless the
-mno-embedded-data option is used.

6.10.2 Volatile Type Qualifier

The volatile type qualifier is used to tell the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This prevents the optimizer
from eliminating apparently redundant references to objects declared volatile
because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as
volatile, and any variables which may be modified by interrupt routines should use
this qualifier as well. For example:

extern volatile unsigned int WDTCON __attribute__((section("sfrs")));

The volatile qualifier does not guarantee that any access will be atomic, but the
compiler will try to implement this.

The code produced by the compiler to access volatile objects may be different than
that to access ordinary variables, and typically the code will be longer and slower for
volatile objects, so only use this qualifier if it is necessary. However failure to use
this qualifier when it is required may lead to code failure.

Another use of the volatile keyword is to prevent variables from being removed if
they are not used in the C/C++ source. If a non-volatile variable is never used, or
used in a way that has no effect on the program’s function, then it may be removed
before code is generated by the compiler.

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 105

A C/C++ statement that consists only of a volatile variable’s name will produce code
that reads the variable’s memory location and discards the result. For example the
entire statement:

PORTB;

will produce assembly code the reads PORTB, but does nothing with this value. This is
useful for some peripheral registers that require reading to reset the state of interrupt
flags. Normally such a statement is not encoded as it has no effect.

6.11 COMPILER-SPECIFIC QUALIFIERS

There are no non-standard qualifiers implemented in MPLAB XC32 C/C++ Compiler.
Attributes are used to control variables and functions.

6.12 VARIABLE ATTRIBUTES

The compiler keyword attribute allows you to specify special attributes of variables
or structure fields. This keyword is followed by an attribute specification inside double
parentheses.

To specify multiple attributes, separate them by commas within the double
parentheses, for example:

 attribute ((aligned (16), packed)).

address (addr)

Specify an absolute virtual address for the variable. This attribute can be used in
conjunction with a section attribute. For data variables, the address is typically in the
range [0xA0000000,0xA00FFFFC], as defined in the linker script as the
‘kseg1_data_mem’ region. This attribute can be used to start a group of variables at a
specific address:

 int foo __attribute__((section(“mysection”),address(0xA0001000)));
 int bar __attribute__((section(“mysection”)));
 int baz __attribute__((section(“mysection”)));

Keep in mind that the compiler performs no error checking on the specified address.
The section will be located at the specified address regardless of the memory-region
ranges listed in the linker script or the actual ranges on the target device. This
application code is responsible for ensuring that the address is valid for the target
device and application.

Also, be aware that variables attributed with an absolute address are not accessed via
GP-relative addressing. This means that they may be more expensive to access than
non-address attributed variables.

In addition, to make effective use of absolute sections and the new best-fit allocator,
standard program-memory and data-memory sections should not be mapped in the
linker script. The built-in linker script does not map most standard sections such as the
.text, .data, .bss, or .ramfunc section. By not mapping these sections in the
linker script, we allow these sections to be allocated using the best-fit allocator rather
than the sequential allocator. Sections that are unmapped in the linker script can flow
around absolute sections whereas sections that are linker-script mapped are grouped
together and allocated sequentially, potentially causing conflicts with absolute sections.

Note: It is important to use variable attributes consistently throughout a project.
For example, if a variable is defined in file A with the aligned attribute, and
declared extern in file B without aligned, then a link error may result.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 106 2012 Microchip Technology Inc.

Finally, note that “small” data and bss (.sdata, .sbss, etc.) sections are still mapped
in the built-in default linker script. This is because “small” data variables must be
grouped together so that they are within range of the more efficient GP-relative
addressing mode. To avoid conflict with these linker-script mapped sections, choose

high addresses for your absolute-address variables.

aligned (n)

The attributed variable will be aligned on the next n byte boundary.

The aligned attribute can also be used on a structure member. Such a member will
be aligned to the indicated boundary within the structure.

If the alignment value n is omitted, the alignment of the variable is set 8 (the largest
alignment value for a basic data type).

Note that the aligned attribute is used to increase the alignment of a variable, not
reduce it. To decrease the alignment value of a variable, use the packed attribute.

cleanup (function)

Indicate a function to call when the attributed automatic function scope variable goes
out of scope.

The indicated function should take a single parameter, a pointer to a type compatible
with the attributed variable, and have void return type.

deprecated

deprecated (msg)

When a variable specified as deprecated is used, a warning is generated. The
optional msg argument, which must be a string, will be printed in the warning, if present.

packed

The attributed variable or structure member will have the smallest possible alignment.
That is, no alignment padding storage will be allocated for the declaration. Used in
combination with the aligned attribute, packed can be used to set an arbitrary
alignment restriction greater or lesser than the default alignment for the type of the
variable or structure member.

section (“section-name”)

Place the variable into the named section.

For example,

unsigned int dan __attribute__ ((section (“.quixote”)))

Variable dan will be placed in section .quixote.

The -fdata-sections command line option has no effect on variables defined with
a section attribute unless unique_section is also specified.

Note: In almost all cases, you will want to combine the address attribute with the
space attribute to indicate code or data.

Supported Data Types and Variables

 2012 Microchip Technology Inc. DS51686E-page 107

space (space)
The space attribute can be used to direct the compiler to allocate a variable in

specific memory spaces.

unique_section

Place the variable in a uniquely named section, just as if -fdata-sections had been
specified. If the variable also has a section attribute, use that section name as the
prefix for generating the unique section name.

For example,

int tin __attribute__ ((section (“.ofcatfood”), unique_section)

Variable tin will be placed in section .ofcatfood.

unused

Indicate to the compiler that the variable may not be used. The compiler will not issue
a warning for this variable if it is not used.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol indicates that if a global version of the same symbol is available, that version
should be used instead.

When weak is applied to a reference to an external symbol, the symbol is not required
for linking. For example:

extern int __attribute__((__weak__)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise ‘0’ is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 108 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 109

Chapter 7. Memory Allocation and Access

7.1 INTRODUCTION

There are two broad groups of RAM-based variables: auto/parameter variables, which
are allocated to some form of stack, and global/static variables, which are positioned
freely throughout the data memory space. The memory allocation of these two groups
is discussed separately in the following sections.

• Address Spaces

• Variables in Data Memory

• Auto Variable Allocation and Access

• Variables in Program Memory

• Variables in Registers

• Dynamic Memory Allocation

• Memory Models

7.2 ADDRESS SPACES

Unlike the 8- and 16-bit PIC devices, the PIC32 has a unified programming model.
PIC32 devices provide a single 32-bit wide address space for all code, data, peripher-
als and Configuration bits.

Memory regions within this single address space are designated for different purposes;
for example, as memory for instruction code or memory for data. Internally the device
uses separate buses1 to access the instructions and data in these regions, thus allow-
ing for parallel access. The terms program memory and data memory, which are used
on the 8- and 16-bit PIC devices, are still relevant on PIC32 devices, but the smaller
parts implement these in different address spaces.

All addresses used by the CPU within the device are virtual addresses. These are
mapped to physical addresses by the system control processor (CP0).

1.The device can be considered a Harvard architecture in terms of its internal bus arrangement.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 110 2012 Microchip Technology Inc.

7.3 VARIABLES IN DATA MEMORY

Most variables are ultimately positioned into the data memory. The exceptions are
non-auto variables which are qualified as const, which are placed in the program
memory space, see Section 6.10.1 “Const Type Qualifier”.

Due to the fundamentally different way in which auto variables and non-auto vari-
ables are allocated memory, they are discussed separately. To use the C/C++ language
terminology, these two groups of variables are those with automatic storage duration
and those with permanent storage duration, respectively.

7.3.1 Non-auto Variable Allocation

Non-auto variables (those with permanent storage duration) are located by the com-
piler into any of the available data banks. This is done in a two-stage process: placing
each variable into an appropriate section and later linking that section into data mem-
ory.

The compiler considers three categories of non-auto variable, which all relate to the
value the variable should contain by the time the program begins. The following sec-
tions are used for the categories described.

.pbss These sections are used to store variables which use the persistent attri-
bute, whose values should not be altered by the runtime start-up code. They
are not cleared or otherwise modified at start-up.

.bss These sections (also .sbss) contain any uninitialized variables, which are not
assigned a value when they are defined, or variables which should be
cleared by the runtime start-up code.

.data These sections (also .sdata) contain the RAM image of any initialized vari-
ables, which are assigned a non-zero initial value when they are defined and
which must have a value copied to them by the runtime start-up code.

Note that the data section used to hold initialized variables is the section that holds the
RAM variables themselves. There is a corresponding section (called .dinit) that is
placed into program memory (so it is non-volatile) and which is used to hold the initial
values that are copied to the RAM variables by the runtime start-up code.

7.3.2 Static Variables

All static variables have permanent storage duration, even those defined inside a
function which are “local static” variables. Local static variables only have scope in
the function or block in which they are defined, but unlike auto variables, their memory
is reserved for the entire duration of the program. Thus, they are allocated memory like
other non-auto variables. Static variables may be accessed by other functions via
pointers since they have permanent duration.

Note: The terms “local” and “global” are commonly used to describe variables, but
are not ones defined by the language standard. The term “local variable” is
often taken to mean a variable which has scope inside a function, and
“global variable” is one which has scope throughout the entire program.
However, the C/C++ language has three common scopes: block, file (i.e.
internal linkage) and program (i.e. external linkage), so using only two
terms to describe these can be confusing. For example, a static variable
defined outside a function has scope only in that file, so it is not globally
accessible, but it can be accessed by more than one function inside that
file, so it is not local to any one function either. In terms of memory alloca-
tion, variables are allocated space based on whether it is an auto or not,
hence the grouping in the following sections.

Memory Allocation and Access

 2012 Microchip Technology Inc. DS51686E-page 111

Variables which are static are guaranteed to retain their value between calls to a
function, unless explicitly modified via a pointer.

Variables which are static and which are initialized only have their initial value
assigned once during the program’s execution. Thus, they may be preferable over ini-
tialized auto objects which are assigned a value every time the block they are defined
in begins execution. Any initialized static variables are initialized in the same way as
other non-auto initialized objects by the runtime start-up code, see
Section 3.5.2 “Peripheral Library Functions”. Static variables are located in the
same sections as their non-static counterparts.

7.3.3 Non-auto Variable Size Limits

Arrays of any type (including arrays of aggregate types) are fully supported by the com-
piler. So too are the structure and union aggregate types, see Section 6.6 “Structures

and Unions”. There are no theoretical limits as to how large these objects can be
made.

7.3.4 Changing the Default Non-auto Variable Allocation

There are several ways in which non-auto variables can be located in locations other
than the default.

Variables can be placed in other device memory spaces by the use of qualifiers. For
example if you wish to place variables in the program memory space, then the const
specifier should be used (see Section 6.10.1 “Const Type Qualifier”).

If you wish to prevent all variables from using one or more data memory locations so
that these locations can be used for some other purpose, you are best defining a vari-
able (or array) using the address attribute so that it consumes the memory space, see
Section 6.12 “Variable Attributes”.

If only a few non-auto variables are to be located at specific addresses in data space
memory, then the variables can be located using the address attribute. This attribute is
described in Section 6.12 “Variable Attributes”.

7.3.5 Data Memory Allocation Macros

Macros are provided for many commonly used attributes in order to enhance user code
readability.

__section__(s) Apply the section attribute with section name s.

__unique_section__ Apply the unique_section attribute.

__ramfunc__ Locate the attributed function in the RAM function code
section.

__longramfunc__ Locate the attributed function in the RAM function code
section and apply the longcall attribute.

__longcall__ Apply the longcall attribute.

__ISR(v,ipl) Apply the interrupt attribute with priority level ipl
and the vector attribute with vector number v.

__ISR_AT_VECTOR(v,ipl) Apply the interrupt attribute with priority level ipl
and the at_vector attribute with vector number v.

__ISR_SINGLE__ Specifies a function as an Interrupt Service Routine in
single-vector mode. This places a jump at the
single-vector location to the interrupt handler.

__ISR_SINGLE_AT_VECTOR_
_

Places the entire single-vector interrupt handler at the
vector 0 location. When used, ensure that the vector
spacing is set to accommodate the size of the handler.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 112 2012 Microchip Technology Inc.

7.4 AUTO VARIABLE ALLOCATION AND ACCESS

This section discusses allocation of auto variables (those with automatic storage dura-
tion). This also includes function parameter variables, which behave like auto vari-
ables, as well as temporary variables defined by the compiler.

The auto (short for automatic) variables are the default type of local variable. Unless
explicitly declared to be static, a local variable will be made auto. The auto
keyword may be used if desired.

The auto variables, as their name suggests, automatically come into existence when
a function is executed, then disappear once the function returns. Since they are not in
existence for the entire duration of the program, there is the possibility to reclaim mem-
ory they use when the variables are not in existence and allocate it to other variables
in the program.

The PIC32’s software stack is used to store all auto variables. Functions are reentrant
and each instance of the function has its own area of memory on the stack for its auto
and parameter variables, as described below. See Section 4.4 “Stack” and
Section 12.3.2 “Initialize Stack Pointer and Heap” for more information on the stack.

The compiler dedicates General Purpose Register 29 as the software Stack Pointer. All
processor stack operations, including function call, interrupts and exceptions use the
software stack. The stack grows downward from high addresses to low addresses.

By default, the size of the stack is 1024 bytes. The size of the stack may be changed
by specifying the size on the linker command line using the
--defsym_min_stack_size linker command line option. An example of allocating
a stack of 2048 bytes using the command line is:

xc32-gcc foo.c -Wl,--defsym,_min_stack_size=2048

The run-time stack grows downward from higher addresses to lower addresses (see
Figure 7-1). The compiler uses two working registers to manage the stack:

• Register 29 (sp) – This is the Stack Pointer. It points to the next free location on
the stack.

• Register 30 (fp) – This is the Frame Pointer. It points to the current function’s
frame. Each function, if required, creates a new frame from which automatic and
temporary variables are allocated. Compiler optimization may eliminate Stack
Pointer references via the Frame Pointer to equivalent references via the Stack
Pointer. This optimization allows the Frame Pointer to be used as a General
Purpose Register.

Memory Allocation and Access

 2012 Microchip Technology Inc. DS51686E-page 113

FIGURE 7-1: STACK FRAME

The the standard qualifiers const and volatile may both be used with auto vari-
ables and these do not affect how they are positioned in memory. This implies that a
local const-qualified object is still an auto object and, as such, will be allocated mem-
ory on the stack in the data memory, not in the program memory like with non-auto
const objects.

7.4.1 Local Variable Size Limits

There is no theoretical maximum size for auto variables.

7.5 VARIABLES IN PROGRAM MEMORY

The only variables that are placed into program memory are those that are not auto
and which have been qualified const. If the -mno-embedded-data option is used,
then even const objects are placed in RAM rather than the program memory. Any
auto variables qualified const are placed on the stack along with other auto vari-
ables.

Any const-qualified (auto or non-auto) variable will always be read-only and any
attempt to write to these in your source code will result in an error being issued by the
compiler.

A const object is usually defined with initial values, as the program cannot write to
these objects at runtime. However this is not a requirement. An uninitialized const
object is allocated space in the bss section, along with other uninitialized RAM vari-
ables, but is still read-only.

const char IOtype = ’A’; // initialized const object
const char buffer[10]; // I just reserve memory in RAM

Stack grows
toward
lower
addresses

FP

Caller

Space for more

arguments if

necessary

Space for argument 4

Space for argument 3

Space for argument 2

Space for argument 1

Local variables and

temporary values

Register save area

Space for arguments

used in function calls

Callee

SP

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 114 2012 Microchip Technology Inc.

7.5.1 Size Limitations of const Variables

There is no theoretical maximum size for const variables.

7.5.2 Changing the Default Allocation

If you only intend to prevent all variables from using one or more program memory loca-
tions so that you can use those locations for some other purpose, you are best reserv-
ing the memory using the memory adjust options.

If only a few non-auto const variables are to be located at specific addresses in
program space memory, then the variables should use the address attribute to locate
them at the desired location. This attribute is described in Section 6.12 “Variable

Attributes”.

7.6 VARIABLES IN REGISTERS

Allocating variables to registers, rather than to a memory location, can make code more
efficient. With MPLAB XC32 C/C++ Compiler, variables may be allocated to registers
as part of code optimizations. For optimization levels 1 and higher, the values assigned
to variables may cached in a register. During this time, the memory location associated
with the variable may not hold a valid value.

The register keyword may be used to indicate your preference for the variable to be
allocated a register, but this is just a recommendation and may not be honored. The
specific register may be indicated as well, but this is not recommended as your register
choice may conflict with the needs of the compiler. For example:

register unsigned int foo __asm__("at");

will attempt to allocate foo to the at register. As indicated in Section 10.6 “Function

Parameters”, parameters may be passed to a function via a register.

7.7 DYNAMIC MEMORY ALLOCATION

The run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc along with the C++ new operator. Most C++
applications will require a heap.

If you do not use any of these functions, then you do not need to allocate a heap. By
default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library function that
uses one of these functions, then a heap must be created. A heap is created by
specifying its size on the linker command line using the --defsym_min_heap_size
linker command line option. An example of allocating a heap of 512 bytes using the
command line is:

xc32-gcc foo.c -Wl,--defsym,_min_heap_size=512

An example of allocating a heap of 0xF000 bytes using the xc32-g++ driver is:

xc32-g++ vector.cpp -Wl,--defsym,_min_heap_size=0xF000

The linker allocates the heap immediately before the stack.

7.8 MEMORY MODELS

MPLAB XC32 C/C++ Compiler does not use fixed memory models to alter allocation of
variables to memory.

Memory Allocation and Access

 2012 Microchip Technology Inc. DS51686E-page 115

The -G option (see Section 3.9.1 “Options Specific to PIC32MX Devices”), which
controls the gp-relative addressing threshold, is similar to the
small-data/large-data/scalar-data memory models offered by the Microchip MPLAB
XC16 compiler. The value specified with this option indicates the maximum size of
objects that will be allocated to the small data sections, e.g. sbss, sdata, etc.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 116 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 117

Chapter 8. Operators and Statements

8.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler supports all ANSI operators. The exact results of
some of these are implementation defined. Implementation-defined behavior is fully
documented in Appendix 18. “Implementation-Defined Behavior”. The following
sections illustrate code operations that are often misunderstood, as well as additional
operations that the compiler is capable of performing.

• Integral Promotion

• Type References

• Labels as Values

• Conditional Operator Operands

• Case Ranges

8.2 INTEGRAL PROMOTION

When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they do have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code behavior to what is
sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion and is part of Standard C behavior. The MPLAB XC32
C/C++ Compiler performs these integral promotions where required, and there are no
options that can control or disable this operation. If you are not aware that the type has
changed, the results of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or
unsigned varieties of char, short int or bit field types to either signed int or
unsigned int. If the result of the conversion can be represented by an signed int,
then that is the destination type, otherwise the conversion is to unsigned int.

Consider the following example:

unsigned char count, a=0, b=50;
if(a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and
b are converted to signed int via integral promotion before the subtraction takes
place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the if() statement is executed.

If the result of the subtraction is to be an unsigned quantity, then apply a cast. For
example:

if((unsigned int)(a - b) < 10)
 count++;

The comparison is then done using unsigned int, in this case, and the body of the
if() would not be executed.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 118 2012 Microchip Technology Inc.

Another problem that frequently occurs is with the bitwise compliment operator, ~. This
operator toggles each bit within a value. Consider the following code:

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
 count++;

If c contains the value 0x55, it often assumed that ~c will produce 0xAA, however the
result is 0xFFFFFFAA and so the comparison in the above example would fail. The
compiler may be able to issue a mismatched comparison error to this effect in some
circumstances. Again, a cast could be used to change this behavior.

The consequence of integral promotion as illustrated above is that operations are not
performed with char -type operands, but with int -type operands. However there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char or int. In these cases, the MPLAB XC32 C/C++ Compiler
will not perform the integral promotion so as to increase the code efficiency. Consider
the following example:

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted
to unsigned int, the addition performed, the result of the addition cast to the type of
a, and then the assignment can take place. Even if the result of the unsigned int
addition of the promoted values of b and c was different to the result of the unsigned
char addition of these values without promotion, after the unsigned int result was
converted back to unsigned char, the final result would be the same. If an 8-bit addi-
tion is more efficient than a 32-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion
would have to be performed to comply with the ANSI C standard.

8.3 TYPE REFERENCES

Another way to refer to the type of an expression is with the typeof keyword. This is
a non-standard extension to the language. Using this feature reduces your code
portability.

The syntax for using this keyword looks like sizeof, but the construct acts
semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of
the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is a pointer to int.

If you are writing a header file that must work when included in ANSI C programs, write
__typeof__ instead of typeof.

A typeof construct can be used anywhere a typedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.

• This declares y with the type of what x points to:
typeof (*x) y;

• This declares y as an array of such values:
typeof (*x) y[4];

Operators and Statements

 2012 Microchip Technology Inc. DS51686E-page 119

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of four pointers to char.

8.4 LABELS AS VALUES

You can get the address of a label defined in the current function (or a containing
function) with the unary operator ‘&&’. This is a non-standard extension to the language.
Using this feature reduces your code portability.

The value returned has type void *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the
computed goto statement, goto *exp;. For example:

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Such an array of label values serves a purpose much like that of the switch
statement. The switch statement is cleaner and therefore preferable to an array.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for fast dispatching.

This mechanism can be misused to jump to code in a different function. The compiler
cannot prevent this from happening, so care must be taken to ensure that target
addresses are valid for the current function.

Note: This does not check whether the subscript is in bounds. (Array indexing in
C never does.)

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 120 2012 Microchip Technology Inc.

8.5 CONDITIONAL OPERATOR OPERANDS

The middle operand in a conditional expression may be omitted. Then if the first
operand is nonzero, its value is the value of the conditional expression. This is a
non-standard extension to the language. Using this feature reduces your code
portability.

Therefore, the expression:

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to:

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When
it becomes useful is when the first operand does, or may (if it is a macro argument),
contain a side effect. Then repeating the operand in the middle would perform the side
effect twice. Omitting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

8.6 CASE RANGES

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one for each
integer value from low to high, inclusive. This is a non-standard extension to the lan-
guage. Using this feature reduces your code portability.

This feature is especially useful for ranges of ASCII character codes:

case 'A' ... 'Z':

Be careful: Write spaces around the ..., otherwise it may be parsed incorrectly when
you use it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 121

Chapter 9. Register Usage

9.1 INTRODUCTION

This chapter examines registers used by the compiler to generate assembly from
C/C++ source code.

• Register Usage

• Register Conventions

9.2 REGISTER USAGE

The assembly generated from C/C++ source code by the compiler will use certain reg-
isters that are present on the PIC MCU device. The compiler assumes that nothing
other than code it generates can alter the contents of these registers, but an extended
assembly language format can be used to indicate to the compiler registers used in
assembly code so that code can be adjusted accordingly.

9.3 REGISTER CONVENTIONS

The 32 general purpose registers contained in the PIC32 are shown in Table 9-1. Some
of these registers are assigned a dedicated task by the compiler. The name used in
assembly code and the usage is indicated.

TABLE 9-1: REGISTER CONVENTIONS

Register

Number

Software

Name
Use

$0 zero Always 0 when read.

$1 at Assembler temporary variable.

$2-$3 v0-v1 Return value from functions.

$4-$7 a0-a3 Used for passing arguments to functions.

$8-$15 t0-t7 Temporary registers used by compiler for expression evaluation.
Values not saved across function calls.

$16-$23 s0-s7 Temporary registers whose values are saved across function
calls.

$24-$25 t8-t9 Temporary registers used by compiler for expression evaluation.
Values not saved across function calls.

$26-$27 k0-k1 Reserved for interrupt/trap handler.

$28 gp Global Pointer.

$29 sp Stack Pointer.

$30 fp or s8 Frame Pointer if needed. Additional temporary saved register if
not.

$31 ra Return address for functions.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 122 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 123

Chapter 10. Functions

The following sections describe how function definitions are written, and specifically
how they can be customized to suit your application. The conventions used for param-
eters and return values, as well as the assembly call sequences are also discussed.

• Writing Functions

• Function Attributes and Specifiers

• Allocation of Function Code

• Changing the Default Function Allocation

• Function Size Limits

• Function Parameters

• Function Return Values

• Calling Functions

• Inline Functions

10.1 WRITING FUNCTIONS

Functions may be written in the usual way in accordance with the C/C++ language.

The only specifier that has any effect on function is static. Interrupt functions are
defined with the use of the interrupt attribute, see Section 10.2 “Function Attributes

and Specifiers”.

A function defined using the static specifier only affects the scope of the function, i.e.
limits the places in the source code where the function may be called. Functions that
are static may only be directly called from code in the file in which the function is
defined. The equivalent symbol used in assembly code to represent the function may
change if the function is static, see Section 7.3.2 “Static Variables”. This specifier
does not change the way the function is encoded.

10.2 FUNCTION ATTRIBUTES AND SPECIFIERS

10.2.1 Function Attributes

address(addr)

The address attribute specifies an absolute virtual address for the function. Be sure to
specify the address attribute using an appropriate virtual address for the target device.
The address is typically in the range [0x9D000000,0x9D0FFFFC], as defined in the
linker script as the ‘kseg0_program_mem’ memory region. For example,

__attribute__((address(0x9D008000))) void bar (void);

The compiler performs no error checking on the address. The section containing the
function will be located at the specified address regardless of the memory-regions
specified in the linker script or the actual memory ranges on the target device. The
application code must ensure that the address is valid for the target device.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 124 2012 Microchip Technology Inc.

To make effective use of absolute sections and the new best-fit allocator, standard
program-memory and data-memory sections should not be mapped in the linker script.
The built-in linker script does not map most standard sections such as the .text,
.data, .bss, or .ramfunc sections. By not mapping these sections in the linker
script, we allow these sections to be allocated using the best-fit allocator rather than
the sequential allocator. Sections that are unmapped in the linker script can flow around
absolute sections, whereas sections that are linker-script mapped are grouped
together and allocated sequentially, potentially causing conflicts with absolute sections.

alias (“symbol”)

Indicates that the function is an alias for another symbol. For example:

void foo (void) { /* stuff */ }
__attribute__ ((alias(“foo”))) void bar (void);

Symbol bar is considered to be an alias for the symbol foo.

always_inline

If the function is declared inline, always inline the function, even if no optimization
level was specified.

at_vector

Place the body of the function at the indicated exception vector address.
See Chapter 11. “Interrupts” and Section 11.5 “Exception Handlers”.

const

If a pure function determines its return value exclusively from its parameters (i.e., does
not examine any global variables), it may be declared const, allowing for even more
aggressive optimization. Note that a function which de-references a pointer argument
is not const since the pointer de-reference uses a value which is not a parameter,
even though the pointer itself is a parameter.

deprecated

deprecated (msg)

When a function specified as deprecated is used, a warning is generated. The
optional msg argument, which must be a string, will be printed in the warning if present.
The deprecated attribute may also be used for variables and types.

far

Always invoke the function by first loading its address into a register and then using the
contents of that register. This allows calling a function located beyond the 28-bit
addressing range of the direct CALL instruction.

format (type, format_index, first_to_check)

The format attribute indicates that the function takes a printf, scanf, strftime,
or strfmon style format string and arguments and that the compiler should type check
those arguments against the format string, just as it does for the standard library
functions.

The type parameter is one of printf, scanf, strftime or strfmon (optionally with
surrounding double underscores, e.g., __printf__) and determines how the format
string will be interpreted.

The format_index parameter specifies which function parameter is the format string.
Function parameters are numbered from the left-most parameter, starting from 1.

Functions

 2012 Microchip Technology Inc. DS51686E-page 125

The first_to_check parameter specifies which parameter is the first to check
against the format string. If first_to_check is zero, type checking is not performed,
and the compiler only checks the format string for consistency (e.g., vfprintf).

format_arg (index)

The format_arg attribute specifies that a function manipulates a printf style format
string and that the compiler should check the format string for consistency. The function
attribute which is a format string is identified by index.

interrupt (priority)

Generate prologue and epilogue code for the function as an interrupt handler function.
See Chapter 11. “Interrupts”. The argument specifies the interrupt priority using the
symbols ip1 to ip7 to represent the 7 levels of priority.

longcall

Functionally equivalent to far.

malloc

Any non-Null Pointer return value from the indicated function will not alias any other
pointer which is live at the point when the function returns. This allows the compiler to
improve optimization.

mips16

Generate code for the function in the MIPS16 instruction set.

naked

Generate no prologue or epilogue code for the function.

near

Always invoke the function with an absolute CALL instruction, even when the
-mlong-calls command line option is specified.

noinline

The function will never be considered for inlining.

nomips16

Always generate code for the function in the MIPS32® instruction set, even when
compiling the translation unit with the -mips16 command line option.

nonnull (index, ...)

Indicate to the compiler that one or more pointer arguments to the function must be
non-null. If the compiler determines that a Null Pointer is passed as a value to a
non-null argument, and the -Wnonnull command line option was specified, a warning
diagnostic is issued.

If no arguments are given to the nonnull attribute, all pointer arguments of the
function are marked as non-null.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 126 2012 Microchip Technology Inc.

noreturn

Indicate to the compiler that the function will never return. In some situations, this can
allow the compiler to generate more efficient code in the calling function since
optimizations can be performed without regard to behavior if the function ever did
return. Functions declared as noreturn should always have a return type of void.

pure

If a function has no side effects other than its return value, and the return value is
dependent only on parameters and/or (nonvolatile) global variables, the compiler can
perform more aggressive optimizations around invocations of that function. Such
functions can be indicated with the pure attribute.

ramfunc

Treat the function as if it was in data memory. Allocate the function at the highest
appropriately aligned address for executable code. Note that due to ramfunc
alignment and placement requirements, the address attribute should not be used with
the ramfunc attribute. The presence of the ramfunc section causes the linker to emit
the symbols necessary for the crt0.S start-up code to initialize the bus matrix
appropriately for executing code out of data memory. Use this attribute along with the
far/longcall attribute and the section attribute. For example:

 __attribute__((ramfunc,section(“.ramfunc”),far,unique_section))
 unsigned int myramfunct (void_
 { /* code */ }

A macro in the sys/attribs.h header file makes the ramfunc attribute simple to use:

 #include <sys/attribs.h>
 __longramfunc__ unsigned int myramfunct (void)
 { /* code */ }

section(“name”)

Place the function into the named section.

For example:

void __attribute__ ((section (“.wilma”))) baz () {return;}

Function baz will be placed in section .wilma.

The -ffunction-sections command line option has no effect on functions defined
with a section attribute.

unique_section

Place the function in a uniquely named section, as if -ffunction-sections had
been specified. If the function also has a section attribute, use that section name as
the prefix for generating the unique section name.

For example:

void __attribute__ ((section (“.fred”), unique_section) foo (void)
{return;}

Function foo will be placed in section .fred.foo.

unused

Indicate to the compiler that the function may not be used. The compiler will not issue
a warning for this function if it is not used.

Functions

 2012 Microchip Technology Inc. DS51686E-page 127

used

Indicate to the compiler that the function is always used and code must be generated
for the function even if the compiler cannot see a reference to the function. For
example, if inline assembly is the only reference to a static function.

vector

Generate a branch instruction at the indicated exception vector which targets the
function. See Chapter 11. “Interrupts” and Section 11.5 “Exception Handlers”.

warn_unused_result

A warning will be issued if the return value of the indicated function is unused by a
caller.

weak

A weak symbol indicates that if another version of the same symbol is available, that
version should be used instead. For example, this is useful when a library function is
implemented such that it can be overridden by a user written function.

10.3 ALLOCATION OF FUNCTION CODE

Code associated with C/C++ functions is normally always placed in the program Flash
memory of the target device.

Functions may be located in and executed from RAM rather than Flash by using the
__ramfunc__ and __longramfunc__ macros.

Functions specified as a RAM function will be copied to RAM by the start-up code and
all calls to those functions will reference the RAM location. Functions located in RAM
will be in a different 512MB memory segment than functions located in program
memory, so the longcall attribute should be applied to any RAM function, which will
be called from a function not in RAM. The __longramfunc__ macro will apply the
longcall attribute as well as place the function in RAM1.

#include <sys/attribs.h>
/* function ‘foo’ will be placed in RAM */
void __ramfunc__ foo (void)
{
}

/* function ‘bar’ will be placed in RAM and will be invoked
 using the full 32 bit address */
void __longramfunc__ bar (void)
{
}

10.4 CHANGING THE DEFAULT FUNCTION ALLOCATION

The assembly code associated with a C/C++ function can be placed at an absolute
address. This can be accomplished by using the address attribute and specifying the
virtual address of the function, see Section 6.12 “Variable Attributes”.

Functions can also be placed at specific positions by placing them in a user-defined
section and then linking this section at an appropriate address, see
Section 6.12 “Variable Attributes”.

1. Specifying __longramfunc__ is functionally equivalent to specifying both __ramfunc__ and

__longcall__.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 128 2012 Microchip Technology Inc.

10.5 FUNCTION SIZE LIMITS

 There are no theoretical limits as to how large functions can be made.

10.6 FUNCTION PARAMETERS

MPLAB XC uses a fixed convention to pass arguments to a function. The method used
to pass the arguments depends on the size and number of arguments involved.

The Stack Pointer is always aligned on an 8-byte boundary.

• All integer types smaller than a 32-bit integer are first converted to a 32-bit value.
The first four 32 bits of arguments are passed via registers a0-a3 (see Table 10-1
for how many registers are required for each data type).

• Although some arguments may be passed in registers, space is still allocated on
the stack for all arguments to be passed to a function (see Figure 10-1). Applica-
tion code should not assume that the current argument value is on the stack, even
when space is allocated.

• When calling a function:

- Registers a0-a3 are used for passing arguments to functions. Values in these
registers are not preserved across function calls.

- Registers t0-t7 and t8-t9 are caller saved registers. The calling function
must push these values onto the stack for the registers’ values to be saved.

- Registers s0-s7 are called saved registers. The function being called must
save any of these registers it modifies.

- Register s8 is a saved register if the optimizer eliminates its use as the Frame
Pointer. s8 is a reserved register otherwise.

- Register ra contains the return address of a function call.

Note: The names “argument” and “parameter” are often used interchangeably,
but typically an argument is the actual value that is passed to the function
and a parameter is the variable defined by the function to store the argu-
ment.

TABLE 10-1: REGISTERS REQUIRED

Data Type Number of Registers Required

char 1

short 1

int 1

long 1

long long 2

float 1

double 1

long double 2

structure Up to 4, depending on the size of the struct.

Functions

 2012 Microchip Technology Inc. DS51686E-page 129

FIGURE 10-1: PASSING ARGUMENTS

Example 1:

int add (int, int)

a= add (5, 10);

SP + 4

SP

a0

a1

undefined

undefined

5

10

Example 2:

void foo (long double, long double)

call= foo (10.5, 20.1);

SP + 12

SP

undefined

SP + 8

SP + 4
undefined

a0

a3

10.5

a1

a2
20.1

void calculate (long double, long double, int)

calculate (50.3, 100.0, .10);

SP + 12

SP

undefined
SP + 8

SP + 4
undefined

a0

a3
100.0

a1

a2

.10

50.3

SP + 16

Example 3:

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 130 2012 Microchip Technology Inc.

10.7 FUNCTION RETURN VALUES

Function return values are returned in registers.

If a function needs to return an actual structure or union — not a pointer to such an
object — the called function copies this object to an area of memory that is reserved by
the caller. The caller passes the address of this memory area in register $4 when the
function is called. The function also returns a pointer to the returned object in register
v0. Having the caller supply the return object’s space allows re-entrance.

10.8 CALLING FUNCTIONS

By default, functions are called using the direct form of the call (jal) instruction. This
allows calls to destinations within a 256 MB segment. This operation can be changed
through the use of attributes applied to functions or command-line options so that a lon-
ger, but unrestricted, call is made.

The -mlong-calls option, see Section 3.9.1 “Options Specific to PIC32MX

Devices”, forces a register form of the call to be employed by default. Generated code
is longer, but calls are not limited in terms of the destination address.

The attributes longcall or far can be used with a function definition to always
enforce the longer call sequence for that function. The near attribute can be used with
a function so that calls to it use the shorter direct call, even if the -mlong-calls option
is in force.

10.9 INLINE FUNCTIONS

By declaring a function inline, you can direct the compiler to integrate that function’s
code into the code for its callers. This usually makes execution faster by eliminating the
function-call overhead. In addition, if any of the actual argument values are constant,
their known values may permit simplifications at compile time, so that not all of the
inline function’s code needs to be included. The effect on code size is less predictable.
Machine code may be larger or smaller with inline functions, depending on the
particular case.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
 (*a)++;
}

(If you are using the -traditional option or the -ansi option, write __inline__
instead of inline.) You can also make all “simple enough” functions inline with the
command-line option -finline-functions. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way, based on an
estimate of the function’s size.

Note: Function inlining will only take place when the function’s definition is visible
(not just the prototype). In order to have a function inlined into more than
one source file, the function definition may be placed into a header file that
is included by each of the source files.

Note: The inline keyword will only be recognized with -finline or
optimizations enabled.

Functions

 2012 Microchip Technology Inc. DS51686E-page 131

Certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable-sized data,
use of computed goto and use of nonlocal goto. Using the command-line option
-Winline will warn when a function marked inline could not be substituted, and will
give the reason for the failure.

In compiler syntax, the inline keyword does not affect the linkage of the function.

When a function is both inline and static, if all calls to the function are integrated
into the caller and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not actually output
assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons
(in particular, calls that precede the function’s definition cannot be integrated and
neither can recursive calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also be compiled
as usual if the program refers to its address, because that can’t be inlined. The compiler
will only eliminate inline functions if they are declared to be static and if the func-
tion definition precedes all uses of the function.

When an inline function is not static, then the compiler must assume that there
may be calls from other source files. Since a global symbol can be defined only once
in any program, the function must not be defined in the other source files, so the calls
therein cannot be integrated. Therefore, a non-static inline function is always
compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you
refer to its address explicitly. Such an address becomes an external reference, as if you
had only declared the function and had not defined it.

This combination of inline and extern has a similar effect to a macro. Put a function
definition in a header file with these keywords and put another copy of the definition
(lacking inline and extern) in a library file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 132 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 133

Chapter 11. Interrupts

11.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended,
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.

PIC32MX devices support multiple interrupts, from both internal and external sources.
The devices allow high-priority interrupts to override any lower priority interrupts that
may be in progress.

The compiler provides full support for interrupt processing in C/C++ or inline assembly
code. This chapter presents an overview of interrupt processing.

• Interrupt Operation

• Writing an Interrupt Service Routine

• Associating a Handler Function with an Exception Vector

• Exception Handlers

• Interrupt Service Routine Context Switching

• Latency

• Nesting Interrupts

• Enabling/Disabling Interrupts

• ISR Considerations

11.2 INTERRUPT OPERATION

The compiler incorporates features allowing interrupts to be fully handled from C/C++
code. Interrupt functions are often called interrupt handlers or Interrupt Service Rou-

tines (ISRs).

Each interrupt source typically has a control bit in an SFR which can disable that inter-
rupt source. Check your device data sheet for full information how your device handles
interrupts.

Interrupt code is the name given to any code that executes as a result of an interrupt
occurring. Interrupt code completes at the point where the corresponding return from
interrupt instruction is executed. This contrasts with main-line code, which, for a free-
standing application, is usually the main part of the program that executes after reset.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 134 2012 Microchip Technology Inc.

11.3 WRITING AN INTERRUPT SERVICE ROUTINE

An interrupt handler function is different to an ordinary function in that it handles the
context save and restore to ensure that upon return from interrupt, the program context
is maintained.A different code sequence is used to return from these functions as well.

Several attributes can be used to ensure that the compiler generates the correct code
for an ISR. Macros are provided so that this is easier to accomplish, see the following
sections.

There are several actions that the compiler needs to take to generate an interrupt ser-
vice routine. The compiler has to be told to use an alternate form of return code. The
function also needs to be linked to the interrupt vector. Only the mip32 instruction set
can be used in ISRs, so the compiler must be told to generate code using this instruc-
tion set, even if the option to generate mip16 instructions has been used.

An interrupt function must be declared as type void and may not have parameters.
This is the only function prototype that makes sense for an interrupt function since they
are never directly called in the source code.

Interrupt functions must not be called directly from C/C++ code (due to the different
return instruction that is used), but they themselves may call other functions, both
user-defined and library functions, but be aware that this may use additional registers
which will need to be saved and restored by the context switch code.

A function is marked as an interrupt handler function (also known as an Interrupt
Service Routine or ISR) via either the interrupt attribute or the interrupt pragma1. While
each method is functionally equivalent to the other, the interrupt attribute is more
commonly used and therefore the recommended method. The interrupt is specified as
handling interrupts of a specific priority level or for operating in single vector mode.

11.3.1 Interrupt Attribute

__attribute__((interrupt([IPLn[SRS|SOFT|AUTO]])))

Where n is in the range of 0..7, inclusive.

Use the interrupt attribute to indicate that the specified function is an interrupt handler.
The compiler generates function entry and exit sequences suitable for use in an
interrupt handler when this attribute is present. The generated code preserves context
by either using a shadow register set (SRS) or using generated software instructions
(SOFT) to push context onto the stack. See Example 11-1 for an interrupt attribute.

EXAMPLE 11-1: INTERRUPT ATTRIBUTE

void __attribute__((interrupt(IPL7SRS))) bambam (void);

Many PIC32 devices allow us to specify, via configuration-bit settings, which interrupt
priority level will use the shadow register set (e.g., #pragma config
FSRSSEL=PRIORITY_7). Refer to the device data sheet to determine if your PIC32
target device supports this feature. This means we must specify which context-saving
mechanism to use for each interrupt handler. The compiler will generate interrupt
function prologue and epilogue code utilizing shadow register context saving for the
IPLnSRS Interrupt Priority Level (IPL) specifier. It will use software context saving for
the IPLnSOFT IPL specifier.

1. Note that pre-processor macros are not expanded in pragma directives.

Note: Application code is responsible for applying the correct value to the
matching handler routine.

Interrupts

 2012 Microchip Technology Inc. DS51686E-page 135

The compiler also supports an IPLnAUTO IPL specifier that uses the run-time value in
SRSCTL to determine whether it should use software or SRS context-saving code. The
compiler defaults to using IPLnAUTO when the IPL specifier is omitted from the
interrupt() attribute.

For devices that do not support a shadow register set for interrupt context saving, use
IPLnSOFT for all interrupt handlers.

11.3.2 Interrupt Pragma

pragma interrupt function-name IPLn[AUTO|SOFT|SRS] [vector
[@]vector-number [, vector-number-list]]
pragma interrupt function-name single [vector [@] 0

Where n is in the range of 0..7, inclusive.

The IPLn [AUTO|SOFT|SRS] IPL specifier may be all uppercase or all lowercase.

The function definition for a handler function indicated by an interrupt pragma must
follow in the same translation unit as the pragma itself.

The interrupt attribute will also indicate that a function definition is an interrupt
handler. It is functionally equivalent to the interrupt pragma.

For example, the definitions of foo below both indicate that it is an interrupt handler
function for an interrupt of priority 4 that uses software context saving.

#pragma interrupt foo IPL4SOFT
void foo (void)

is functionally equivalent to

void __attribute__ ((interrupt(IPL4SOFT))) foo (void)

11.3.3 __ISR Macros

The <sys/attribs.h> header file provides macros intended to simplify the
application of attributes to interrupt functions. There are also vector macros defined in
the processor header files. (See the appropriate header file in the compiler’s
/pic32mx/include/proc directory.)

• __ISR(V, IPL)

• __ISR_AT_VECTOR(v, IPL)

• Interrupt-Vector Macros

11.3.3.1 __ISR(V, IPL)

Use the __ISR(v, IPL) macro to assign the vector-number location and associate it
with the specified IPL. This will place a jump to the interrupt handler at the associated
vector location. This macro also applies the nomips16 attribute since PIC32MX
devices require that interrupt handlers must use the MIPS32 instruction set.

Note: SRS has the shortest latency and SOFT has a longer latency due to
registers saved on the stack. AUTO adds a few cycles to test if SRS or SOFT
should be used.

Note: The interrupt pragma is provided only for compatibility when porting code
from other compilers. The interrupt function attribute is the preferred and
more common way to write an interrupt service routine.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 136 2012 Microchip Technology Inc.

EXAMPLE 11-2: CORE TIMER VECTOR, IPL2SOFT

#include <xc.h>
#include <sys/attribs.h>
void __ISR(_CORE_TIMER_VECTOR, IPL2SOFT) CoreTimerHandler(void);

Example 11-2 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places a dispatch function at the
associated vector location. To reach this function, the core timer interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of two. The
compiler generates software context-saving code for this handler function.

EXAMPLE 11-3: CORE SOFTWARE 0 VECTOR, IPL3SRS

#include <xc.h>
#include <sys/attribs.h>
void __ISR(_CORE_SOFTWARE_0_VECTOR,IPL3SRS)
CoreSoftwareInt0Handler(void);

Example 11-3 creates an interrupt handler function for the core software interrupt 0 that
has an interrupt priority level of three. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt flag and
enable bits must be set, and the interrupt priority should be set to a level of three. The
device configuration fuses must assign Shadow Register Set 1 to interrupt priority level
three. The compiler generates code that assumes that register context will be saved in
SRS1.

EXAMPLE 11-4: CORE SOFTWARE 1 VECTOR, IPL0AUTO

#include <xc.h>
#include <sys/attribs.h>
void __ISR(_CORE_SOFTWARE_1_VECTOR, IPL0AUTO)
CoreSoftwareInt1Handler(void);

Example 11-4 creates an interrupt handler function for the core software interrupt 1 that
has an interrupt priority level of zero. The compiler places a dispatch function at the
associated vector location. To reach this function, the core software interrupt 1 flag and
enable bits must be set, and the interrupt priority should be set to a level of zero. The
compiler generates code that determines at run time whether software context saving
is required.

EXAMPLE 11-5: CORE SOFTWARE 1 VECTOR, DEFAULT

#include <xc.h>
#include <sys/attribs.h>
void __ISR(_CORE_SOFTWARE_1_VECTOR) _CoreSoftwareInt1Handler(void);

Example 11-5 is functionally equivalent to Example 3. Because the IPL specifier is
omitted, the compiler assumes IPL0AUTO.

11.3.3.2 __ISR_AT_VECTOR(v, IPL)

Use the __ISR_AT_VECTOR(v, IPL) to place the entire interrupt handler at the
vector location and associate it with the software-assigned interrupt priority. Application
code is responsible for making sure that the vector spacing is set to accommodate the
size of the handler. This macro also applies the nomips16 attribute since ISR functions
are required to be MIPS32.

Interrupts

 2012 Microchip Technology Inc. DS51686E-page 137

EXAMPLE 11-6: CORE TIMER VECTOR, IPL2SOFT

#include <xc.h>
#include <sys/attribs.h>
void __ISR_AT_VECTOR(_CORE_TIMER_VECTOR, IPL2SOFT)
CoreTimerHandler(void);

Example 11-6 creates an interrupt handler function for the core timer interrupt that has
an interrupt priority level of two. The compiler places the entire interrupt handler at the
vector location. It does not use a dispatch function. To reach this function, the core timer
interrupt flag and enable bits must be set, and the interrupt priority should be set to a
level of two. The compiler generates software context-saving code for this handler
function.

11.3.3.3 INTERRUPT-VECTOR MACROS

Each processor-support header file provides a macro for each interrupt-vector number
(for example, /pic32mx/include/proc/p32mx360f512l.h. See the appropriate
header file in the compiler install directory). When used in conjunction with the
__ISR() macro provided by the sys\attribs.h header file, these macros help
make an Interrupt Service Routine easier to write and maintain.

EXAMPLE 11-7: INTERRUPT-VECTOR WITH HANDLER

#include <xc.h>
#include <sys/attribs.h>
void __ISR (_TIMER_1_VECTOR, IPL7SRS) Timer1Handler (void);

Example 11-7 creates an interrupt handler function for the Timer 1 interrupt that has an
interrupt priority level of seven. The compiler places a dispatch function at the vector
location associated with macro _TIMER_1_VECTOR as defined in the device-specific
header file. To reach this function, the Timer 1 interrupt flag and enable bits must be
set, and the interrupt priority should be set to a level of seven. For devices that allow
assignment of shadow registers to specific IPL values, the device Configuration bit
settings must assign Shadow Register Set 1 to interrupt priority level seven. The
compiler generates code that assumes that register context will be saved in SRS1.

Example 11-8 uses the peripheral library provided with the compiler to set up Timer 1

for an interrupt using priority level 7. The code is written to toggle pin RD0.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 138 2012 Microchip Technology Inc.

EXAMPLE 11-8: FULL TIMER 1 EXAMPLE WITH PERIPHERAL LIBRARY

/* Blink an LED on the PIC32MX Ethernet Starter Kit using the
 * PIC32MX795F512L target device.
 */
#include <xc.h>
#include <plib.h>
#include <sys/attribs.h>

// Configuration Bit settings using the config pragma
// SYSCLK = 80 MHz (8MHz Crystal/ FPLLIDIV * FPLLMUL / FPLLODIV)
// PBCLK = 10 MHz
// Primary Osc w/PLL (XT+,HS+,EC+PLL)
// WDT OFF
// Other options are “do not care”
//
#pragma config FPLLMUL=MUL_20, FPLLIDIV=DIV_2, FPLLODIV=DIV_1, FWDTEN=OFF
#pragma config POSCMOD=HS, FNOSC=PRIPLL, FPBDIV=DIV_8

// Calculate the PR1 (period) at compile time
#define SYS_FREQ (80000000L)
#define PB_DIV 8
#define PRESCALE 256
#define TOGGLES_PER_SEC 1
#define T1_TICK (SYS_FREQ/PB_DIV/PRESCALE/TOGGLES_PER_SEC)

int main(void)
{
 // STEP 1
 // Configure the device for maximum performance but do not change the PBDIV
 // Given the options, this function will change the flash wait states, RAM
 // wait state and enable prefetch cache but will not change the PBDIV.
 // The PBDIV value is already set via the config pragma FPBDIV option above.
 SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

 //~~~
 // STEP 2. configure Timer 1 using internal clock, 1:256 prescale
 OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_256, T1_TICK);
 // set up the timer interrupt with a priority of 7
 ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_7);

 // enable multi-vector interrupts
 INTEnableSystemMultiVectoredInt();

 // configure PORTDbits.RD0 = output
 mPORTDSetPinsDigitalOut(BIT_0);
 while(1);
}

//~~~
// STEP 3. configure the Timer 1 interrupt handler
// Determine shadow-register or software-stack context saving at
// runtime by using the IPL7AUTO priority specifier.
// Note that the n value in IPLnAUTO _must_ match the priority
// of the timer1 interrupt source configured above.

#ifdef __cplusplus
 // For C linkage when compiling for C++
 extern "C" {
#endif /* __cplusplus */

Interrupts

 2012 Microchip Technology Inc. DS51686E-page 139

void __ISR(_TIMER_1_VECTOR, IPL7AUTO) Timer1Handler(void)
{
 // clear the interrupt flag
 mT1ClearIntFlag();
 // .. things to do
 // .. in this case, toggle the LED
 mPORTDToggleBits(BIT_0);
}

#ifdef __cplusplus
 }
#endif

11.4 ASSOCIATING A HANDLER FUNCTION WITH AN EXCEPTION VECTOR

For PIC32MX devices, there are 64 exception vectors, numbered 0..63 inclusive. Each
interrupt source is mapped to an exception vector as specified in the device data sheet.
By default, four words of space are reserved at each vector address for a dispatch to
the handler function for that exception source.

An interrupt handler function can be associated with an interrupt vector either as the
target of a dispatch function located at the exception vector address, or as being
located directly at the exception vector address. A single handler function can be the
target of multiple dispatch functions.

The association of a handler function to one or more exception vector addresses is
specified via a vector attribute on the function declaration. For compatibility purposes,
you may also associate a handler function to a vector address using a clause of the
interrupt pragma, a separate vector pragma, or a vector attribute on the function
declaration.

11.4.1 Vector Attribute

A handler function can be associated with one or more exception vector addresses via
an attribute. The at_vector attribute indicates that the handler function should itself
be placed at the exception vector address. The vector attribute indicates that a dis-
patch function should be created at the exception vector address(es) which will transfer
control to the handler function.

For example, the following declaration specifies that function foo will be created as an
interrupt handler function of priority four. foo will be located at the address of exception
vector 54.

void __attribute__ ((interrupt(IPL4SOFT))) __attribute__
((at_vector(54))) foo (void)

The following declaration specifies that function foo will be created as an interrupt
handler function of priority four. Define dispatch functions targeting foo at exception
vector addresses 52 and 53.

void __attribute__ ((interrupt(IPL4SOFT))) __attribute__
((vector(53, 52))) foo (void)

Handler functions that are linked directly to the vector will be executed faster. Although
the vector spacing can be adjusted, there is limited space between vectors and linking
a substantial handler function directly at a vector may cause it to overlap the higher vec-
tor locations, preventing their use. In such situations, using a dispatch function is a
safer option.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 140 2012 Microchip Technology Inc.

11.4.2 Interrupt Pragma Clause

The interrupt pragma has an optional vector clause following the priority specifier.

pragma interrupt function-name IPL-specifier [vector
[@]vector-number [, vector-number-list]]

A dispatch function targeting the specified handler function will be created at the
exception vector address for the specified vector numbers. If the first vector number is
specified with a preceding “@” symbol, the handler function itself will be located there
directly.

For example, the following pragma specifies that function foo will be created as an
interrupt handler function of priority four. foo will be located at the address of exception
vector 54. A dispatch function targeting foo will be created at exception vector address
34.

#pragma interrupt foo IPL4AUTO vector @54, 34

The following pragma specifies that function bar will be created as an interrupt handler
function of priority five. bar will be located in general purpose program memory (.text
section). A dispatch function targeting bar will be created at exception vector address
23.

#pragma interrupt bar IPL5SOFT vector 23

11.4.3 Vector Pragma

The vector pragma creates one or more dispatch functions targeting the indicated
function. For target functions specified with the interrupt pragma, this functions as
if the vector clause had been used. The target function of a vector pragma can be
any function, including external functions implemented in assembly or by other means.

pragma vector function-name vector vector-number [,
vector-number-list]

The following pragma defines a dispatch function targeting foo at exception vector
address 54.

#pragma vector foo 54

Note: The interrupt pragma and its vector clause are provided only for compatibil-
ity when porting code from other compilers. The vector function attribute is
the preferred way to associate a handler function to an exception vector
address.

Note: The vector pragma is provided only for compatibility when porting code
from other compilers. The vector function attribute is the preferred way to
associate a handler function to an exception vector address.

Interrupts

 2012 Microchip Technology Inc. DS51686E-page 141

11.5 EXCEPTION HANDLERS

The PIC32MX devices also have two exception vectors for non-interrupt exceptions.
These exceptions are grouped into bootstrap exceptions and general exceptions.

11.5.1 Bootstrap Exception

A reset exception is any exception which occurs while bootstrap code is running
(StatusBEV=1). All reset exceptions are vectored to 0xBFC00380.

At this location, the 32-bit toolchain places a branch instruction targeting a function
named _bootstrap_exception_handler(). In the standard library, a default
weak version of this function is provided which merely goes into an infinite loop. If the
user application provides an implementation of
_bootstrap_exception_handler(), that implementation will be used instead.

11.5.2 General Exception

A general exception is any non-interrupt exception which occurs during program
execution outside of bootstrap code (StatusBEV=0). General exceptions are vectored
to offset 0x180 from EBase.

At this location, the 32-bit toolchain places a branch instruction targeting a function
named _general_exception_context(). The provided implementation of this
function saves context, calls an application handler function, restores context and
performs a return from the exception instruction. The context saved is the hi and lo
registers and all General Purpose Registers except s0-s8, which are defined to be
preserved by all called functions and so are not necessary to actively save here again.
The values of the Cause and Status registers are passed to the application handler
function (_general_exception_handler()). If the user application provides an
implementation of _general_exception_context(), that implementation will be
used instead.

void _general_exception_handler (unsigned cause, unsigned status);

A weak default implementation of _general_exception_handler() is provided in
the standard library which merely goes into an infinite loop. If the user application
provides an implementation of _general_exception_handler(), that
implementation will be used instead.

11.6 INTERRUPT SERVICE ROUTINE CONTEXT SWITCHING

The standard calling convention for C/C++ functions will already preserve zero,
s0-s7, gp, sp, and fp. k0 and k1 are used by the compiler to access and preserve
non-GPR context, but are always accessed atomically (i.e., in sequences with global
interrupts disabled), so they need not be preserved actively. A handler function will
actively preserve the a0-a3, t0-t9, v0, v1 and ra registers in addition to the
standard registers.

An interrupt handler function will also actively save and restore processor status
registers that are utilized by the handler function. Specifically, the EPC, SR, hi and lo
registers are preserved as context.

Handler functions may use a shadow register set to preserve the General Purpose
Registers, enabling lower latency entry into the application code of the handler
function. On some devices, the shadow register set is assigned to an interrupt priority
level (IPL) using the device Configuration bit settings (e.g., #pragma config
FSRSSEL=PRIORITY_6). While on other devices, the shadow register set may be hard
wired to IPL7. Consult the target device’s data sheet for more information on the
shadow register set.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 142 2012 Microchip Technology Inc.

11.6.1 Context Restoration

Any objects saved by software are automatically restored by software before the inter-
rupt function returns. The order of restoration is the reverse to that used when context
is saved.

11.7 LATENCY

There are two elements that affect the number of cycles between the time the interrupt
source occurs and the execution of the first instruction of your ISR code. These are:

• Processor Servicing of Interrupt – The amount of time it takes the processor to
recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value, refer to the processor data sheet for the specific processor
and interrupt source being used.

• ISR Code – The compiler saves the registers that were used by the ISR. This
includes the TODO registers. Moreover, if the ISR calls an ordinary function, then
the compiler will save all the working registers, even if they are not all used explic-
itly in the ISR itself. This must be done, because the compiler cannot know, in
general, which resources are used by the called function.

11.8 NESTING INTERRUPTS

Interrupts may be nested. The interrupt priority scheme implemented in the PIC32
architecture allows you to specify which interrupt sources may be interruptible by
others. See your device data sheet for explicit details on interrupt operation.

11.9 ENABLING/DISABLING INTERRUPTS

Macros are available in the PIC32 peripheral library to control aspects of interrupt
operation. See the Microchip PIC32MX Peripheral Library documentation for more
information.

11.10 ISR CONSIDERATIONS

There are few issues arising with interrupt functions.

As with all compilers, limiting the number of registers used by the interrupt function, or
any functions called by the interrupt function, may result in less context switch code
being generated and executed by the compiler, see Section 11.7 “Latency”. Keeping
interrupt functions small and simple will help you achieve this.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 143

Chapter 12. Main, Runtime Start-up and Reset

12.1 INTRODUCTION

When creating C/C++ code, there are elements that are required to ensure proper pro-
gram operation: a main function must be present; start-up code will be needed to ini-
tialize and clear variables and setup registers and the processor; and reset conditions
will need to be handled.

• The Main Function

• Runtime Start-up Code

• The On Reset Routine

12.2 THE MAIN FUNCTION

The identifier main is special. It must be used as the name of a function that will be the
first function to execute in a program. You must always have one and only one function
called main in your programs. Code associated with main, however, is not the first
code to execute after reset. Additional code provided by the compiler and known as the
runtime start-up code is executed first and is responsible for transferring control to the
main() function.

12.3 RUNTIME START-UP CODE

A C/C++ program requires certain objects to be initialized and the processor to be in a
particular state before it can begin execution of its function main(). It is the job of
the runtime start-up code to perform these tasks. The runtime start-up code is exe-
cuted before main(), but if you require any special initialization to be performed imme-
diately after reset, you should use on reset feature described in Section 12.4 “The On

Reset Routine”

The PIC32MX start-up code must perform the following:

1. Jump to NMI Handler if an NMI Occurred

2. Initialize Stack Pointer and Heap

3. Initialize Global Pointer

4. Initialize or Clear Variables and RAM Functions Using the Data-Initialization
Template

5. Initialize Bus Matrix Registers

6. Call “On Bootstrap” Procedure

7. Change Location of Exception Vectors

8. For C++, call the C++ initialization code to invoke all constructors for file-scope
static storage objects

9. Call Main

The following provisions are made regarding the run-time model:

• Kernel mode only

• KSEG1 only

• RAM functions are attributed with __ramfunc__ or __longramfunc__,
(defined in sys/attribs.h) meaning that all RAM functions end up in
the .ramfunc section and the function is ramfunc attributed.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 144 2012 Microchip Technology Inc.

12.3.1 Jump to NMI Handler if an NMI Occurred

If an NMI caused entry to the Reset vector, a jump to an NMI handler procedure
(_nmi_handler) occurs. A weak version of the NMI handler procedure is provided
that performs an ERET. The _nmi_handler function must be attributed with
nomips16 [e.g., __attribute__((nomips16))] since the start-up code jumps to
this function.

12.3.2 Initialize Stack Pointer and Heap

The Stack Pointer (sp) register must be initialized in the start-up code. To enable the
start-up code to initialize the sp register, the linker script must initialize a variable which
points to the end of KSEG1 data memory1. This variable is named _stack. The user
can change the minimum amount of stack space allocated by providing the command
line option --defsym _min_stack_size=N to the linker. _min_stack_size is
provided by the linker script with a default value of 1024.

On a similar note, the user may wish to utilize a heap with their application. While the
start-up code does not need to initialize the heap, the standard C libraries (sbrk) must
be made aware of the heap location and its size. The linker script creates a variable to
identify the beginning of the heap. The location of the heap is the end of the utilized
KSEG1 data memory. This variable is named _heap. The user can change the
minimum amount of heap space allocated by providing the command line option
--defsym _min_heap_size=M to the linker. _min_heap_size is provided by the
linker script with a default value of 0. If the heap is used when the heap size is set to
zero, the behavior is the same as when the heap usage exceeds the minimum heap
size. Namely, it overflows into the space allocated for the stack.

The heap and the stack use the unallocated KSEG1 data memory, with the heap
starting from a low address in KSEG1 data memory, and growing upwards towards the
stack while the stack starts at a higher address in KSEG1 data memory and grows
downwards towards the heap. The linker attempt to allocate the heap and stack
together in the largest gap of memory available in the KSEG1 data memory region. If
enough space is not available based on the minimum amount of heap size and stack
size requested, the linker issues an error.

1. The end of data memory is different based on whether RAM functions exist. If RAM functions exist, then

part of the DRM must be configured for the kernel program to contain the RAM functions, and the Stack

Pointer is located one word prior to the beginning of the DRM kernel program boundary address. If RAM

functions do not exist, then the Stack Pointer is located at the true end of DRM.

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 145

FIGURE 12-1: STACK AND HEAP LAYOUT

FIGURE 12-2: STACK AND HEAP LAYOUT WITH RAM FUNCTIONS

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 146 2012 Microchip Technology Inc.

12.3.3 Initialize Global Pointer

The compiler toolchain supports Global Pointer (gp) relative addressing. Loads and
stores to data residing within 32KB of either side of the address stored in the gp register
can be performed in a single instruction using the gp register as the base register.
Without the Global Pointer, loading data from a static memory area takes two
instructions – one to load the Most Significant bits of the 32-bit constant address
computed by the compiler/linker and one to do the data load.

To utilize gp-relative addressing, the compiler and assembler must group all of the
“small” variables and constants into one of the following sections:

The linker must then group all of the above input sections together. This grouping is
handled by the default linker script. The run-time start-up code must initialize the gp
register to point to the “middle” of this output section. To enable the start-up code to
initialize the gp register, the linker script must initialize a variable which is 32 KB from
the start of the output section containing the “small” variables and constants. This
variable is named _gp (to match core linker scripts). Besides being initialized in the
standard GPR set, the Global Pointer must also be initialized in the register shadow set.

FIGURE 12-3: GLOBAL POINTER LOCATION

• .lit4. • lit8

• .sdata. • sbss

• .sdata.* • sbss.*

• .gnu.linkonce.s.* • .gnu.linkonce.sb.*

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 147

12.3.4 Initialize or Clear Variables and RAM Functions Using the
Data-Initialization Template

Those non-auto objects which are not initialized must be cleared before execution of
the program begins. This task is also performed by the runtime start-up code.

Uninitialized variables are those which are not auto objects and which are not
assigned a value in their definition, for example output in the following example:

int output;
int main(void) { ...

Such uninitialized objects will only require space to be reserved in RAM where they will
reside and be accessed during program execution (runtime).

There are two uninitialized data sections—.sbss and .bss. The .sbss section is a
data segment containing uninitialized variables less than or equal to n bytes where n
is determined by the -Gn command line option. The .bss section is a data segment
containing uninitialized variables not included in .sbss.

Another task of the runtime start-up code is to ensure that any initialized variables con-
tain their initial value before the program begins execution. Initialized variables are
those which are not auto objects and which are assigned an initial value in their defi-
nition, for example input in the following example:

int input = 88;
int main(void) { ...

Such initialized objects have two components: their initial value (0x0088 in the above
example) stored in program memory (i.e. placed in the HEX file), and space for the
variable reserved in RAM, which will reside and be accessed during program execution
(runtime).

The runtime start-up code will copy all the blocks of initial values from program memory
to RAM so the variables will contain the correct values before main is executed.

Since auto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is possible that the
initial value of an auto object may change on each instance of the function and so the
initial values cannot be stored in program memory and copied. As a result, initialized
auto objects are not considered by the runtime start-up code, but are instead initialized
by assembly code in each function output.

Variables whose contents should be preserved over a reset, or even power off, should
be qualified with the persistent attribute, see Section 6.10 “Standard Type Qual-

ifiers”. Such variables are linked at a different area of memory and are not altered by
the runtime start-up code in any way.

Four initialized data sections exist:.sdata, .data, .lit4, and .lit8. The .sdata
section is a data segment containing initialized variables less than or equal to n bytes
where n is determined by the -Gn command line option. The .data section is a data
segment containing initialized variables not included in .sdata. The .lit4 and
.lit8 sections contain constants, which the assembler stores in memory rather than
in the instruction stream.

Note: Initialized auto variables can impact code performance, particularly if the
objects are large in size. Consider using global or static objects instead.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 148 2012 Microchip Technology Inc.

In order to clear or initialize these sections, the linker creates a data-initialization
template, which is loaded into an output section named .dinit. The linker creates
this special .dinit section, allocated in program memory, to hold the template for
the run-time initialization of data. The C/C++ start-up module, crt0.o, interprets this
template and copies initial data values into initialized data sections. This includes
sections containing ramfunc attributed functions. Other data sections (such as .bss)
are cleared before the main() function is called. The persistent data section (.pbss)
is not affected. When the application’s main program takes control, all variables and
RAM functions in data memory have been initialized.

The data initialization template contains one record for each output section in data

memory. The template is terminated by a null instruction word. The format of a data

initialization record is:

/* data init record */
struct data_record {
 char *dst; /* destination address */
 unsigned int len; /* length in bytes */
 unsigned int format; /* format code */
 char dat[0]; /* variable-length data */
};

The first element of the record is a pointer to the section in data memory. The second

and third elements are the section length and format code, respectively. The last

element is an optional array of data bytes. For bss-type sections, no data bytes are

required.

Currently supported format codes are:

• 0 – Fill the output section with zeros

• 1 – Copy each byte of data from the data array

12.3.5 Initialize Bus Matrix Registers

The bus matrix registers (BMXDKPBA, BMXDUDBA, BMXDUPBA) should be initialized by
the start-up code if any RAM functions exist; otherwise, these registers should not be
modified. To determine whether any RAM functions exist in the application, the linker
provides a variable that contains the length of the .ramfunc section1. This variable is
named _ramfunc_length. In addition, the linker provides a 2K-aligned variable
required for the boundary register (BMXDKPBA). The variable is named
_bmxdkpba_address. The default linker script also provides two variables that
contain the address of the bus matrix registers. These variables are named
_bmxdkpba_address, _bmxdudba_address, and _bmxdupba_address. The
following calculations are used to calculate these addresses:

_bmxdudba_address = LENGTH(${DATA_MEMORY_LOCATION}) ;
_bmxdupba_address = LENGTH(${DATA_MEMORY_LOCATION}) ;

The linker ensures that RAM functions are aligned to a 2K alignment boundary as is
required by the BMXDKPBA register.

1. All functions attributed with __ramfunc__ or __longramfunc__ are placed in the

.ramfunc section.

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 149

FIGURE 12-4: BUS MATRIX INITIALIZATION

12.3.5.1 INITIALIZE CP0 REGISTERS

The CP0 registers are initialized in the following order:

1. Count register

2. Compare register

3. EBase register

4. IntCtl register

5. Cause register

6. Status register

12.3.5.2 HARDWARE ENABLE REGISTER (HWREna – CP0 REGISTER 7,
SELECT 0)

This register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction. Privileged software may determine which of the
hardware registers are accessible by the RDHWR instruction. In doing so, a register may
be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to
provide direct access to the Count register, access to the register may be individually
disabled, and the return value can be virtualized by the operating system.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.3 BAD VIRTUAL ADDRESS REGISTER (BadVAddr – CP0 REGISTER 8,
SELECT 0)

This register is a read-only register that captures the most recent virtual address that
caused an Address Error exception (AdEL or AdES).

No initialization is performed on this register in the PIC32MX start-up code.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 150 2012 Microchip Technology Inc.

12.3.5.4 COUNT REGISTER (Count – CP0 REGISTER 9, SELECT 0)

This register acts as a timer, incrementing at a constant rate, whether or not an
instruction is executed, retired, or any forward progress is made through the pipeline.
The counter increments every other clock if the DC bit in the Cause register is ‘0’. The
Count register can be written for functional or diagnostic purposes, including at Reset
or to synchronize processors. By writing the CountDM bit in the Debug register, it is
possible to control whether the Count register continues incrementing while the
processor is in Debug mode.

This register is cleared in the PIC32MX start-up code.

12.3.5.5 COMPARE REGISTER (Compare – CP0 REGISTER 11, SELECT 0)

This register acts in conjunction with the Count register to implement a timer and timer
interrupt function. The timer interrupt is an output of the core. The Compare register
maintains a stable value and does not change on its own. When the value of the Count
register equals the value of the Compare register, the SI_TimerInt pin is asserted.
This pin remains asserted until the Compare register is written. The SI_TimerInt pin
can be fed back into the core on one of the interrupt pins to generate an interrupt. For
diagnostic purposes, the Compare register is a read/write register. In normal use,
however, the Compare register is write-only. Writing a value to the Compare register,
as a side effect, clears the timer interrupt.

This register is set to 0xFFFFFFFF in the PIC32MX start-up code.

12.3.5.6 STATUS REGISTER (Status – CP0 REGISTER 12, SELECT 0)

This register is a read/write register that contains the operating mode, Interrupt
Enabling, and the diagnostic states of the processor. Fields of this register combine to
create operating modes for the processor.

The following settings are initialized by the PIC32MX start-up code
(0b000000000x0xx0?00000000000000000):

• Access to Coprocessor 0 not allowed in User mode (CU0 = 0)

• User mode uses configured endianess (RE = 0)

• No change to exception vectors location (BEV = no change)

• No change to flag bits that indicate reason for entry to the Reset exception vector
(SR, NMI = no change)

• Interrupt masks are cleared to disable any pending interrupt requests (IM7..IM2
= 0, IM1..IM0 = 0)

• Interrupt priority level is 0 (IPL = 0)

• Base mode is Kernel mode (UM = 0)

• Error level is normal (ERL = 0)

• Exception level is normal (EXL = 0)

• Interrupts are disabled (IE = 0)

12.3.5.7 INTERRUPT CONTROL REGISTER (IntCtl – CP0 REGISTER 12,
SELECT 1)

This register controls the expanded interrupt capability added in Release 2 of the
Architecture, including vectored interrupts and support for an external interrupt
controller.

This register contains the vector spacing for interrupt handling. The vector spacing
portion of this register (bits 9..5) is initialized with the value of the _vector_spacing
symbol by the PIC32MX start-up code. All other bits are set to ‘1’.

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 151

12.3.5.8 SHADOW REGISTER CONTROL REGISTER (SRSCtl – CP0 REGISTER
12, SELECT 2)

This register controls the operation of the GPR shadow sets in the processor.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.9 SHADOW REGISTER MAP REGISTER (SRSMap – CP0 REGISTER 12,
SELECT 3)

This register contains eight 4-bit fields that provide the mapping from a vector number
to the shadow set number to use when servicing such an interrupt. The values from this
register are not used for a non-interrupt exception, or a non-vectored interrupt
(CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS. If SRSCtlHSS is zero, the results of a software read or write of this
register are UNPREDICTABLE. The operation of the processor is UNDEFINED if a
value is written to any field in this register that is greater than the value of SRSCtlHSS.
The SRSMap register contains the shadow register set numbers for vector numbers
7..0. The same shadow set number can be established for multiple interrupt vectors,
creating a many-to-one mapping from a vector to a single shadow register set number.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.10 CAUSE REGISTER (Cause – CP0 REGISTER 13, SELECT 0)

This register primarily describes the cause of the most recent exception. In addition,
fields also control software interrupt requests and the vector through which interrupts
are dispatched. With the exception of the DC, IV, and IP1..IP0 fields, all fields in the
Cause register are read-only. Release 2 of the Architecture added optional support for
an External Interrupt Controller (EIC) interrupt mode, in which IP7..IP2 are
interpreted as the Requested Interrupt Priority Level (RIPL).

The following settings are initialized by the PIC32MX start-up code:

• Enable counting of Count register (DC = no change)

• Use the special exception vector (16#200) (IV = 1)

• Disable software interrupt requests (IP1..IP0 = 0)

12.3.5.11 EXCEPTION PROGRAM COUNTER (EPC – CP0 REGISTER 14, SELECT
0)

This register is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are
significant and must be writable. For synchronous (precise) exceptions, the EPC
contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when
the exception causing instruction is a branch delay slot and the Branch Delay
bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit
in the Status register is set; however, the register can still be written via the MTC0
instruction.

No initialization is performed on this register in the PIC32MX start-up code.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 152 2012 Microchip Technology Inc.

12.3.5.12 PROCESSOR IDENTIFICATION REGISTER (PRId – CP0 REGISTER 15,
SELECT 0)

This register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the
processor.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.13 EXCEPTION BASE REGISTER (EBase – CP0 REGISTER 15, SELECT 1)

This register is a read/write register containing the base address of the exception
vectors used when StatusBEV equals 0, and a read-only CPU number value that may
be used by software to distinguish different processors in a multi-processor system.
The EBase register provides the ability for software to identify the specific processor
within a multi-processor system, and allows the exception vectors for each processor
to be different, especially in systems composed of heterogeneous processors. Bits
31..12 of the EBase register are concatenated with zeros to form the base of the
exception vectors when StatusBEV is 0. The exception vector base address comes
from fixed defaults when StatusBEV is 1, or for any EJTAG Debug exception. The reset
state of bits 31..12 of the EBase register initialize the exception base register to
16#80000000, providing backward compatibility with Release 1 implementations. Bits
31..30 of the EBase register are fixed with the value 2#10 to force the exception base
address to be in KSEG0 or KSEG1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with
StatusBEV equal 1. The operation of the processor is UNDEFINED if the Exception
Base field is written with a different value when StatusBEV is 0.

Combining bits 31..30 with the Exception Base field allows the base address of the
exception vectors to be placed at any 4K byte page boundary. If vectored interrupts are
used, a vector offset greater than 4K byte can be generated. In this case, bit 12 of the
Exception Base field must be zero. The operation of the processor is UNDEFINED if
software writes bit 12 of the Exception Base field with a 1 and enables the use of a
vectored interrupt whose offset is greater than 4K bytes from the exception base
address.

This register is initialized with the value of the _ebase_address symbol by the
PIC32MX start-up code. _ebase_address is provided by the linker script with a
default value of the start of KSEG1 program memory. The user can change this value
by providing the command line option -–defsym _ebase_address=A to the linker.

12.3.5.13.1 Config Register (Config – CP0 Register 16, Select 0)

This register specifies various configuration and capabilities information. Most of the
fields in the Config register are initialized by hardware during the Reset exception
process, or are constant.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.13.2 Config1 Register (Config1 – CP0 Register 16, Select 1)

This register is an adjunct to the Config register and encodes additional information
about the capabilities present on the core. All fields in the Config1 register are
read-only.

No initialization is performed on this register in the PIC32MX start-up code.

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 153

12.3.5.13.3 Config2 Register (Config2 – CP0 Register 16, Select 2)

This register is an adjunct to the Config register and is reserved to encode additional
capabilities information. Config2 is allocated for showing the configuration of level 2/3
caches. These fields are reset to 0 because L2/L3 caches are not supported on the
core. All fields in the Config2 register are read-only.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.13.4 Config3 Register (Config3 – CP0 Register 16, Select 3)

This register encodes additional capabilities. All fields in the Config3 register are
read-only.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.14 DEBUG REGISTER (Debug – CP0 REGISTER 23, SELECT 0)

This register is used to control the debug exception and provide information about the
cause of the debug exception, and when re-entering at the debug exception vector due
to a normal exception in Debug mode. The read-only information bits are updated
every time the debug exception is taken, or when a normal exception is taken when
already in Debug mode. Only the DM bit and the EJTAGver field are valid when read
from non-Debug mode. The values of all other bits and fields are UNPREDICTABLE.
Operation of the processor is UNDEFINED if the Debug register is written from
non-Debug mode.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.15 TRACE CONTROL REGISTER (TraceControl – CP0 REGISTER 23,
SELECT 1)

This register provides control and status information. The TraceControl register is
only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.16 TRACE CONTROL 2 REGISTER (TraceControl2 – CP0 REGISTER 23,
SELECT 2)

This register provides additional control and status information. The TraceControl2
register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.17 USER TRACE DATA REGISTER (UserTraceData – CP0 REGISTER 23,
SELECT 3)

When this register is written to, a trace record is written indicating a type 1 or type 2
user format. This type is based on the UT bit in the TraceControl register. This
register cannot be written in consecutive cycles. The trace output data is
UNPREDICTABLE if this register is written in consecutive cycles. The
UserTraceData register is only implemented if the EJTAG Trace capability is present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.18 TRACEBPC REGISTER (TraceBPC – CP0 REGISTER 23, SELECT 4)

This register is used to control start and stop of tracing using an EJTAG hardware
breakpoint. The hardware breakpoint would then be set as a triggered source and
optionally also as a Debug exception breakpoint. The TraceBPC register is only
implemented if both the hardware breakpoints and the EJTAG Trace cap are present.

No initialization is performed on this register in the PIC32MX start-up code.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 154 2012 Microchip Technology Inc.

12.3.5.19 DEBUG2 REGISTER (Debug2 – CP0 REGISTER 23, SELECT 5)

This register holds additional information about complex breakpoint exceptions. The
Debug2 register is only implemented if complex hardware breakpoints are present.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.20 DEBUG EXCEPTION PROGRAM COUNTER (DEPC – CP0 REGISTER
24, SELECT 0)

This register is a read/write register that contains the address at which processing
resumes after a debug exception or Debug mode exception has been serviced. For
synchronous (precise) debug and Debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug
exception, or

• The virtual address of the immediately preceding branch or jump instruction, when
the debug exception causing instruction is in a branch delay slot, and the Debug
Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC
contains the virtual address of the instruction where execution should resume after the
debug handler code is executed.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.21 ERROR EXCEPTION PROGRAM COUNTER (ErrorEPC – CP0
REGISTER 30, SELECT 0)

This register is a read/write register, similar to the EPC register, except that it is used on
error exceptions. All bits of the ErrorEPC are significant and must be writable. It is also
used to store the program counter on Reset, Soft Reset, and Non-Maskable Interrupt
(NMI) exceptions. The ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address can be:

• The virtual address of the instruction that caused the exception, or

• The virtual address of the immediately preceding branch or jump instruction when
the error causing instruction is a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the
ErrorEPC register.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.5.22 DEBUG EXCEPTION SAVE REGISTER (DeSave – CP0 REGISTER 31,
SELECT 0)

This register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then
used to save the rest of the context to a pre-determined memory area (such as in the
EJTAG Probe). This register allows the safe debugging of exception handlers and other
types of code where the existence of a valid stack for context saving cannot be
assumed.

No initialization is performed on this register in the PIC32MX start-up code.

12.3.6 Call “On Bootstrap” Procedure

A procedure is called after initializing the CP0 registers. This procedure allows users to
perform actions during bootstrap (i.e., while StatusBEV is set) and before entering into
the main routine. An empty weak version of this procedure (_on_bootstrap) is
provided with the start-up code. This procedure may be used for performing hardware
initialization and/or for initializing the environment required by an RTOS.

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 155

12.3.7 Change Location of Exception Vectors

Immediately before executing any application code, the StatusBEV is cleared to
change the location of the exception vectors from the bootstrap location to the normal
location.

12.3.8 Call the C++ initialization code

Invoke all constructors for C++ file-scope static-storage objects. The startup code must
call the constructors last because the low-level initialization must be done before exe-
cuting application code.

12.3.9 Call Main

The last thing that the start-up code performs is a call to the main routine. If the user
returns from main, the start-up code goes into an infinite loop.

12.3.10 Symbols Required by Start-up Code and C/C++ Library

This section details the symbols that are required by the start-up code and C/C++
library. Currently the default linker script defines these symbols. If an application
provides a custom linker script, the user must ensure that all of the following symbols
are provided in order for the start-up code and C library to function:

Symbol Name Description

_bmxdkpba_address The address to place into the BMXDKPBA register if
_ramfunc_length is greater than 0.

_bmxdudba_address The address to place into the BMXDUDBA register if
_ramfunc_length is greater than 0.

_bmxdupba_address The address to place into the BMXDUPBA register if
_ramfunc_length is greater than 0.

_ebase_address The location of EBASE.

_end The end of data allocation.

_gp Points to the “middle” of the small variables region.
By convention this is 0x8000 bytes from the first
location used for small variables.

_heap The starting location of the heap in DRM.

_ramfunc_begin The starting location of the RAM functions. This
should be located at a 2K boundary as it is used to
initialize the BMXDKPBA register.

_ramfunc_length The length of the .ramfunc section.

_stack The starting location of the stack in DRM.
Remember that the stack grows from the bottom of
data memory so this symbol should point to the
bottom of the section allocated for the stack.

_vector_spacing The initialization value for the vector spacing field in
the IntCtl register.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 156 2012 Microchip Technology Inc.

12.3.11 Exceptions

In addition, two weak general exception handlers are provided that can be overridden
by the application — one to handle exceptions when StatusBEV is 1
(_bootstrap_exception_handler), and one to handle exceptions when
StatusBEV is 0 (_general_exception_handler). Both the weak Reset exception
handler and the weak general exception handler provided with the start-up code enters
an infinite loop. The start-up code arranges for a jump to the reset exception handler to
be located at 0xBFC00380, and a jump to the general exception handler to be located
at EBASE + 0x180.

Both handlers must be attributed with the nomips16 [e.g., __attribute__
((nomips16))], since the start-up code jumps to these functions.

FIGURE 12-5: EXCEPTIONS

Main, Runtime Start-up and Reset

 2012 Microchip Technology Inc. DS51686E-page 157

12.4 THE ON RESET ROUTINE

Some hardware configurations require special initialization, often within the first few
instruction cycles after reset. To achieve this, there is a hook provided via the on reset
routine.

This routine is called after initializing a minimum ‘C’ context. An empty weak version of
this procedure (_on_reset) is provided with the start-up code. A stub for this routine
can be found in pic32-libs/libc/stubs in the installation directory of your
compiler.

Special consideration needs to be taken by the user if this procedure is written in ‘C’.
Most importantly, statically allocated variables are not initialized (with either the speci-
fied initializer or a zero as required for uninitialized variables).The stack pointer has
been initialized when this routine is called.

12.4.1 Clearing Objects

The runtime start-up code will clear all memory locations occupied by uninitialized
variables so they will contain zero before main() is executed.

Variables whose contents should be preserved over a reset should use the
persistent attribute, see Section 6.10 “Standard Type Qualifiers” for more infor-
mation. Such variables are linked in a different area of memory and are not altered by
the runtime start-up code in any way.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 158 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 159

Chapter 13. Library Routines

13.1 USING LIBRARY ROUTINES

Library functions or routines (and any associated variables) will be automatically linked
into a program once they have been referenced in your source code. The use of a func-
tion from one library file will not include any other functions from that library. Only used
library functions will be linked into the program output and consume memory.

Your program will require declarations for any functions or symbols used from libraries.
These are contained in the standard C header (.h) files. Header files are not library
files and the two files types should not be confused. Library files contain precompiled
code, typically functions and variable definitions; the header files provide declarations
(as opposed to definitions) for functions, variables and types in the library files, as well
as other preprocessor macros.

#include <math.h> // declare function prototype for sqrt

int main(void)
{
 double i;

 // sqrt referenced; sqrt will be linked in from library file
 i = sqrt(23.5);
}

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 160 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 161

Chapter 14. Mixing C/C++ and Assembly Language

14.1 INTRODUCTION

Assembly language code can be mixed with C/C++ code using two different tech-
niques: writing assembly code and placing it into a separate assembler module, or
including it as in-line assembly in a C/C++ module.This section describes how to use
assembly language and C/C++ modules together. It gives examples of using C/C++
variables and functions in assembly code, and examples of using assembly language
variables and functions in C/C++.

The more assembly code a project contains, the more difficult and time consuming its
maintenance will be. As the project is developed, the compiler may work in different
ways as some optimizations look at the entire program. The assembly code is more
likely to fail if the compiler is updated due to differences in the way the updated compiler
may work. These factors do not affect code written in C/C++

• Using Inline Assembly Language

• Predefined Assembly Macros

14.2 USING INLINE ASSEMBLY LANGUAGE

Within a C/C++ function, the asm statement may be used to insert a line of assembly
language code into the assembly language that the compiler generates. Inline
assembly has two forms: simple and extended.

In the simple form, the assembler instruction is written using the syntax:

asm ("instruction");

where instruction is a valid assembly-language construct. If you are writing inline
assembly in ANSI C programs, write __asm__ instead of asm.

In an extended assembler instruction using asm, the operands of the instruction are
specified using C/C++ expressions. The extended syntax is:

asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]
]);

You must specify an assembler instruction template, plus an operand constraint
string for each operand. The template specifies the instruction mnemonic, and
optionally placeholders for the operands. The constraint strings specify operand
constraints, for example, that an operand must be in a register (the usual case), or that
an operand must be an immediate value.

Note: If assembly must be added, it is preferable to write this as self-contained
routine in a separate assembly module rather than in-lining it in C code.

Note: Only a single string can be passed to the simple form of inline
assembly.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 162 2012 Microchip Technology Inc.

Constraint letters and modifiers supported by the compiler are listed in Table 14-1
through Table 14-4.

TABLE 14-1: REGISTER CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER

TABLE 14-2: INTEGER CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER

TABLE 14-3: GENERAL CONSTRAINT LETTERS SUPPORTED BY THE
COMPILER

TABLE 14-4: CONSTRAINT MODIFIERS SUPPORTED BY THE COMPILER

Examples:

• Insert Bit Field

• Multiple Assembler Instructions

Letter Constraint

c A register suitable for use in an indirect jump

d An address register. This is equivalent to @code{r} unless generating MIPS16
code

ka Registers that can be used as the target of multiply-accumulate instructions

l The @code{lo} register. Use this register to store values that are no bigger
than a word

x The concatenated @code{hi} and @code{lo} registers. Use this register to
store double-word values

Letter Constraint

I A signed 32-bit constant (for arithmetic instructions)

J Integer zero

K An unsigned 32-bit constant (for logic instructions)

L A signed 32-bit constant in which the lower 32 bits are zero. Such constants can
be loaded using @code{lui}

M A constant that cannot be loaded using @code{lui}, @code{addiu}or
@code{ori}

N A constant in the range -65535 to -1 (inclusive)

O A signed 15-bit constant

P A constant in the range 1 to 65535 (inclusive)

Letter Constraint

R An address that can be used in a non-macro load or store.

Letter Constraint

= Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data

+ Means that this operand is both read and written by the instruction

& Means that this operand is an earlyclobber operand, which is modified
before the instruction is finished using the input operands. Therefore, this
operand may not lie in a register that is used as an input operand or as part of
any memory address

d Second register for operand number n, i.e., %dn..

q Fourth register for operand number n, i.e., %qn..

t Third register for operand number n, i.e., %tn..

Mixing C/C++ and Assembly Language

 2012 Microchip Technology Inc. DS51686E-page 163

Insert Bit Field

This example demonstrates how to use the INS instruction to insert a bit field into a
32-bit wide variable. This function-like macro uses inline assembly to emit the INS
instruction, which is not commonly generated from C/C++ code.

/* MIPS32r2 insert bits */
#define _ins(tgt,val,pos,sz) __extension__({ \
 unsigned int __t = (tgt), __v = (val); \
 __asm__ ("ins %0,%z1,%2,%3" /* template */ \
 : "+d" (__t) /* output */ \
 : "dJ" (__v), "I" (pos), "I" (sz)); /* input */ \
 __t; \
})

Here __v, pos, and sz are input operands. The __v operand is constrained to be of
type 'd' (an address register) or 'J' (integer zero). The pos and sz operands are con-
strained to be of type 'I' (a signed 32-bit constant).

The __t output operand is constrained to be of type 'd' (an address register). The '+'
modifier means that this operand is both read and written by the instruction and so the
operand is both an input and an output.

The following example shows this macro in use.

unsigned int result;
void example (void)
{
 unsigned int insertval = 0x12;
 result = 0xAAAAAAAAu;
 result = _ins(result, insertval, 4, 8);
 /* result is now 0xAAAAA12A */
}

For this example, the compiler may generate assembly code similar to the following.

li $2,-1431699456 # 0xaaaa0000
ori $2,$2,0xaaaa # 0xaaaa0000 | 0xaaaa

li $3,18 # 0x12
ins $2,$3,4,8 # inline assembly

lui $3,%hi(result) # assign the result back
j $31 # return
sw $2,%lo(result)($3)

Multiple Assembler Instructions

This example demonstrates how to use the WSBH and ROTR instructions together for a
byte swap. The WSBH instruction is a 32-bit byte swap within each of the two halfwords.
The ROTR instruction is a rotate right by immediate. This function-like macro uses inline
assembly to create a “byte-swap word” using instructions that are not commonly gen-
erated from C/C++ code.

The following shows the definition of the function-like macro, _bswapw.

/* MIPS32r2 byte-swap word */
#define _bswapw(x) __extension__({ \
 unsigned int __x = (x), __v; \
 __asm__ ("wsbh %0,%1;\n\t" \
 "rotr %0,16" /* template */ \
 : "=d" (__v) /* output */ \
 : "d" (__x)) /* input*/ ; \
 __v; \
})

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 164 2012 Microchip Technology Inc.

Here __x is the C expression for the input operand. The operand is constrained to be
of type 'd', which denotes an address register.

The C expression __v is the output operand. This operand is also constrained to be of
type 'd'. The '=' means that this operand is write-only for this instruction: the previous
value is discarded and replaced by output data.

The function-like macro is shown in the following example assigning to result the
content of value, swapped.

unsigned int result;
int example (void)
{
 unsigned int value = 0x12345678u;
 result = _bswapw(value);
 /* result == 0x78563412 */
}

The compiler may generate assembly code similar to the following for this example:

 li$2,305397760 # 0x12340000
 addiu$2,$2,22136 # 0x12340000 + 0x5678
 wsbh $2,$2; # From inline asm
 rotr $2,16 # From inline asm
 lui$2,%hi(result) # assign back to result
 j $31 # return
 sw$3,%lo(result)($2)

14.2.1 Equivalent Assembly Symbols

C/C++ symbols can be accessed directly with no modification in extended assembly
code.

14.3 PREDEFINED ASSEMBLY MACROS

Several predefined macros are available once you include <xc.h>. The exact operation
of these macros is dependent on the instruction set employed. Table 14-5 shows
general purpose predefined macros and their operation.

TABLE 14-5: PREDEFINED MACROS

Macro Description

_nop() Insert a No Operation instruction

_ehb() Insert Execution Hazard Barrier instruction

_sync() Insert Synchronize Shared Memory instruction

_wait() Insert instruction to enter Standby mode

_mfc0(rn, sel) See <xc.h> file

_mtc0(rn, sel, v) See <xc.h> file

_mxc0(rn, sel, v) See <xc.h> file

_bcc0(rn, sel, clr) For the CP0 register specified by rn and sel, clear bits
corresponding to those bits in clr which are non-zero

_bsc0(rn, sel, set) For the CP0 register specified by rn and sel, clear bits
corresponding to those bits in clr which are non-zero

_bcsc0(rn, sel, clr,
set)

For the CP0 register specified by rn and sel, clear bits
corresponding to those bits in clr which are non-zero, and
set bits corresponding to those bits in set which are non-zero
for the CP0 register specified by rn and sel, clear bits corre-
sponding to those bits in clr which are non-zero, and set bits
corresponding to those bits in set which are non-zero

Mixing C/C++ and Assembly Language

 2012 Microchip Technology Inc. DS51686E-page 165

_clz(x) Count leading zeroes in x

_ctz(x) Count trailing zeroes in x

_clo(x) Count leading ones in x

_dclz(x) Simulate 64-bit count leading zeroes in x

_dclo(x) Simulate 64-bit count leading ones in x

_dctz(x Simulate 64-bit count trailing zeroes in x

_wsbh(x) See <xc.h> file

_bswapw(x) See <xc.h> file

_ins(tgt,val,pos,sz) See <xc.h> file

_ext(x,pos,sz) See <xc.h> file

_jr_hb() See <xc.h> file

_wrpgpr(regno, val) See <xc.h> file

_rdpgpr(regno) See <xc.h> file

_get_byte(addr,
errp)

Return the least significant byte of addr

_get_half(addr,
errp)

Return the least significant 16-bit word of addr

_get_word(addr,
errp)

Return the least significant 32-bit word of addr

_get_dword(addr,
errp)

Return the least significant 64-bit of addr

_put_byte(addr, v) Write the least significant byte of addr with v

_put_half(addr, v) Write the least significant 16-bit word of addr with v

_put_word(addr, v) Write the least significant 32-bit word of addr with v

_put_dword(addr, v) Write the least significant 64-bit word of addr with v

TABLE 14-5: PREDEFINED MACROS

Macro Description

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 166 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 167

Chapter 15. Optimizations

15.1 INTRODUCTION

Different MPLAB XC32 C/C++ Compiler editions support different levels of optimiza-
tion. Some editions are free to download and others must be purchased. Visit
http://www.microchip.com/MPLABXCcompilers for more information on C and C++
licenses.

The compiler editions are:

Setting Optimization Levels

Different optimizations may be set ranging from no optimization to full optimization,
depending on your compiler edition. When debugging code, you may wish to not
optimize your code to ensure expected program flow.

For details on compiler options used to set optimizations, see Section 3.9.7 “Options

for Controlling Optimization”.

Edition Cost Description

Professional (PRO) Yes Implemented with the highest optimizations and
performance levels.

Standard (STD) Yes Implemented with ample optimizations levels and high
performance levels.

Free No Implemented with the most code optimizations
restrictions.

Evaluation (EVAL) No PRO edition enabled for 60 days and then reverts to
Free edition.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 168 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 169

Chapter 16. Preprocessing

16.1 INTRODUCTION

All C/C++ source files are preprocessed before compilation. Assembly source files that
use the .S extension (upper case) are also preprocessed. A large number of options
control the operation of the preprocessor and preprocessed code, see
Section 3.9.8 “Options for Controlling the Preprocessor”.

• C/C++ Language Comments

• Preprocessor Directives

• Pragma Directives

• Predefined Macros

16.2 C/C++ LANGUAGE COMMENTS

A C/C++ comment is ignored by the compiler and can be used to provide information
to someone reading the source code. They should be used freely.

Comments may be added by enclosing the desired characters within /* and */. The
comment can run over multiple lines, but comments cannot be nested. Comments can
be placed anywhere in C/C++ code, even in the middle of expressions, but cannot be
placed in character constants or string literals.

Since comments cannot be nested, it may be desirable to use the #if preprocessor
directive to comment out code that already contains comments, for example:

#if 0
result = read(); /* TODO: Jim, check this function is right */

#endif

Single-line, C++ style comments may also be specified. Any characters following // to
the end of the line are taken to be a comment and will be ignored by the compiler, as
shown below:

result = read(); // TODO: Jim, check this function is right

16.3 PREPROCESSOR DIRECTIVES

MPLAB XC32 C/C++ Compiler accepts all the standard preprocessor directives, which
are listed in Table 16-1.

TABLE 16-1: PREPROCESSOR DIRECTIVES

Directive Meaning Example

Preprocessor null directive, do nothing

#assert Generate error if condition false #assert SIZE > 10

#define Define preprocessor macro #define SIZE 5
#define FLAG

#define add(a,b) ((a)+(b))

#elif Short for #else #if see #ifdef

#else Conditionally include source lines see #if

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 170 2012 Microchip Technology Inc.

 Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments. If two expressions are being
concatenated, consider using two macros in case either expression requires
substitution itself, so for example,

#define paste1(a,b) a##b
#define paste(a,b) paste1(a,b)

lets you use the paste macro to concatenate two expressions that themselves may
require further expansion. The replacement token is rescanned for more macro identi-
fiers, but remember that once a particular macro identifier has been expanded, it will
not be expanded again if it appears after concatenation.

The type and conversion of numeric values in the preprocessor domain is the same as
in the C domain. Preprocessor values do not have a type, but acquire one as soon as
they are converted by the preprocessor. Expressions may overflow their allocated type
in the same way that C expressions may overflow.

Overflow may be avoided by using a constant suffix. For example, an L after the num-
ber indicates it should be interpreted as a long once converted.

So for example:

#define MAX 100000*100000

and

#define MAX 100000*100000L

(note the L suffix) will define the values 0x540be400 and 0x2540be400, respectively.

#endif Terminate conditional source inclusion see #if

#error Generate an error message #error Size too big

#if Include source lines if constant
expression true

#if SIZE < 10
 c = process(10)

#else
 skip();
#endif

#ifdef Include source lines if preprocessor
symbol defined

#ifdef FLAG

 do_loop();
#elif SIZE == 5
 skip_loop();
#endif

#ifndef Include source lines if preprocessor
symbol not defined

#ifndef FLAG
 jump();
#endif

#include Include text file into source #include <stdio.h>

#include "project.h"

#line Specify line number and filename for
listing

#line 3 final

#nn (Where nn is a number) short for
#line nn

#20

#pragma Compiler specific options Refer to Section 16.4 “Pragma

Directives”

#undef Undefines preprocessor symbol #undef FLAG

#warning Generate a warning message #warning Length not set

TABLE 16-1: PREPROCESSOR DIRECTIVES (CONTINUED)

Directive Meaning Example

Preprocessing

 2012 Microchip Technology Inc. DS51686E-page 171

16.4 PRAGMA DIRECTIVES

There are certain compile-time directives that can be used to modify the behavior of the
compiler. These are implemented through the use of the ANSI standard #pragma
facility. Any pragma which is not understood by the compiler will be ignored.

The format of a pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain
options. A description of the keywords is given below.

#pragma interrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the
function will perform more extensive context preservation. Note that the interrupt
attribute (rather than this pragma) is the recommended mechanism for marking a
function as an interrupt handler. The interrupt pragma is provided for compatibility with
other compilers. See Chapter 11. “Interrupts” and Section 11.5 “Exception

Handlers”.

#pragma vector

Generate a branch instruction at the indicated exception vector which targets the
function. Note that the vector attribute (rather than this pragma) is the recommended
mechanism for generating an exception/interrupt vector. See Chapter 11. “Interrupts”
and Section 11.5 “Exception Handlers”.

#pragma config

The #pragma config directive specifies the processor-specific configuration settings
(i.e., Configuration bits) to be used by the application. See Section 11.3.2 “Interrupt

Pragma”.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 172 2012 Microchip Technology Inc.

16.5 PREDEFINED MACROS

These predefined macros are available for use with the compiler:

• 32-Bit C/C++ Compiler Macros

• SDE Compatibility Macros

16.5.1 32-Bit C/C++ Compiler Macros

The compiler defines a number of macros, most with the prefix “_MCHP_,” which
characterize the various target specific options, the target processor and other aspects
of the host environment.C/C++

_MCHP_SZINT 32 or 64, depending on command line options
to set the size of an integer (-mint32
-mint64)

_MCHP_SZLONG 32 or 64, depending on command line options
to set the size of an integer (-mlong32
-mlong64)

_MCHP_SZPTR 32 always since all pointers are 32 bits

__mchp_no_float Defined if -mno-float specified

__NO_FLOAT Defined if -mno-float specified

__PIC__
__pic__

The translation unit is being compiled for
position independent code

__PIC32MX
__PIC32MX__

Always defined

__PIC32_FEATURE_SET__ The compiler predefines a macro based on
the features available for the selected device.
These macros are intended to be used when
writing code to take advantage of features
available on newer devices while maintaining
compatibility with older devices.
Examples: PIC32MX795F512L would use
__PIC32_FEATURE_SET__ == 795,
and PIC32MX340F128H would use
__PIC32_FEATURE_SET__ == 340

PIC32MX Defined if -ansi is not specified

__LANGUAGE_ASSEMBLY
__LANGUAGE_ASSEMBLY__
_LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed
assembly file (.S files)

LANGUAGE_ASSEMBLY Defined if compiling a pre-processed
assembly file (.S files) and -ansi is not
specified

__LANGUAGE_C
__LANGUAGE_C__
_LANGUAGE_C

Defined if compiling a C file

LANGUAGE_C Defined if compiling a C file and -ansi is not
specified

__LANGUAGE_C_PLUS_PLUS
__cplusplus
_LANGUAGE_C_PLUS_PLUS__

Defined if compiling a C++ file

__EXCEPTIONS Defined if X++ exceptions are enabled

__GXX_RTTI Defined if runtime type information is enabled

Preprocessing

 2012 Microchip Technology Inc. DS51686E-page 173

__processor__ Where “processor” is the capitalized argument
to the -mprocessor option. e.g.,
-mprocessor=32mx12f3456 will define
__32MX12F3456__

__XC Always defined to indicate this is a Microchip
XC compiler

__XC32 Always defined to indicate this the XC32
compiler

__VERSION__ The __VERSION__ macro expands to a
string constant describing the compiler in use.
Do not rely on its contents having any
particular form, but it should contain at least
the release number. Use the
__XC32_VERSION macro for a numeric
version number

__XC32_VERSION or
__C32_VERSION__

The C compiler defines the constant
__XC32_VERSION, giving a numeric value
to the version identifier. This macro can be
used to construct applications that take
advantage of new compiler features while still
remaining backward compatible with older
versions. The value is based upon the major
and minor version numbers of the current
release. For example, release version 1.03
will have a __XC32_VERSION definition of
1030. This macro can be used, in conjunction
with standard preprocessor comparison
statements, to conditionally include/exclude
various code constructs

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 174 2012 Microchip Technology Inc.

16.5.2 SDE Compatibility Macros

The MIPS® SDE (Software Development Environment) defines a number of macros,
most with the prefix “_MIPS_,” which characterize various target specific options, some
determined by command line options (e.g., -mint64). Where applicable, these
macros will be defined by the compiler in order to ease porting applications and
middleware from the SDE to the compiler.

_MIPS_SZINT 32 or 64, depending on command line options
to set the size of an integer (-mint32
-mint64)

_MIPS_SZLONG 32 or 64, depending on command line options
to set the size of an integer (-mlong32
-mlong64)

_MIPS_SZPTR 32 always since all pointers are 32 bits

__mips_no_float Defined if -mno-float specified

__mips__
_mips
_MIPS_ARCH_PIC32MX
_MIPS_TUNE_PIC32MX
_R3000
__R3000
__R3000__
__mips_soft_float
__MIPSEL
__MIPSEL__
_MIPSEL

Always defined

R3000
MIPSEL

Defined if -ansi is not specified

_mips_fpr Defined as 32

__mips16 Defined if -mips16 specified

__mips Defined as 32

__mips_isa_rev Defined as 2

_MIPS_ISA Defined as _MIPS_ISA_MIPS32

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 175

Chapter 17. Linking Programs

17.1 INTRODUCTION

The compiler will automatically invoke the linker unless the compiler has been
requested to stop after producing an intermediate file.

Linker scripts are used to specify the available memory regions and where sections
should be positioned in those regions.

The linker creates a map file which details the memory assigned to sections. The map
file is the best place to look for memory information.

• Replacing Library Symbols

• Linker-Defined Symbols

• Default Linker Script

17.2 REPLACING LIBRARY SYMBOLS

Unlike with the Microchip MPLAB XC8 compiler, not all library functions can be
replaced with user-defined routines using MPLAB XC32 C/C++ Compiler. Only weak
library functions (see Section 6.12 “Variable Attributes”) can be replaced in this way.
For those that are weak, any function you write in your code will replace an identically
named function in the library files.

17.3 LINKER-DEFINED SYMBOLS

The 32-bit linker defines several symbols that may be used in your C code develop-
ment. Please see the “MPLAB® Assembler, Linker and Utilities for PIC32 MCUs User’s

Guide”(DS51833) for more information.

The linker defines the symbols _ramfunc_begin and _bmxdkpba_address, which
represent the starting address in RAM where ram functions will be accessed, and the
corresponding address in the program memory from which the functions will be copied.
They are used by the default runtime start-up code to initialize the bus matrix if ram
functions exist in the project, see Section 10.3 “Allocation of Function Code”.

The linker also defines the symbol _stack, which is used by the runtime start-up code
to initialize the stack pointer. This symbol represents the starting address for the
software stack.

All the above symbols are rarely required for more programs, but may assist you if you
are writing your own runtime start-up code.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 176 2012 Microchip Technology Inc.

17.4 DEFAULT LINKER SCRIPT

The default linker script is located in the
<install-directory>/pic32mx/lib/ldscripts/elf32pic32mx.x file.
When compiling with the xc32-gcc or xc32-g++ compilation driver, the linker uses this
file as the default linker script. The driver passes the path to the default linker script
using the -T linker option.

The default linker script contains the following categories of information:

• Output Format and Entry Points

• Default Values for Minimum Stack and Heap Sizes

• Processor Definitions Include File

- Inclusion of Processor-Specific Object File(s)

- OPTIONAL Inclusion of Processor-Specific Peripheral Libraries

- Base Exception Vector Address and Vector Spacing Symbols

- Memory Address Equates

- Memory Regions

- Configuration Words Input/Output Section Map

• Input/Output Section Map

17.4.1 Output Format and Entry Points

The first several lines of the default linker script define the output format and the entry
point for the application. Copies of the default linker scripts are provided in
program files/.../<install-dir>/pic32mx/lib/ldscripts.

OUTPUT_FORMAT("elf32-tradlittlemips")
OUTPUT_ARCH(pic32mx)
ENTRY(_reset)

The OUTPUT_FORMAT line selects the object file format for the output file. The output
object file format generated by the 32-bit language tools is a traditional, little-endian,
MIPS, ELF32 format.

The OUTPUT_ARCH line selects the specific machine architecture for the output file.
The output files generated by the 32-bit language tools contain information that
identifies the file was generated for the PIC32MX architecture.

The ENTRY line selects the entry point of the application. This is the symbol identifying
the location of the first instruction to execute. The 32-bit language tools begins
execution at the instruction identified by the _reset label.

Note: All addresses specified in the linker scripts should be specified as virtual
addresses, not physical addresses.

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 177

17.4.2 Default Values for Minimum Stack and Heap Sizes

The next section of the default linker script provides default values for the minimum
stack and heap sizes.

/*
 * Provide for a minimum stack and heap size
 * - _min_stack_size - represents the minimum space that must
 * be made available for the stack. Can
 * be overridden from the command line
 * using the linker's --defsym option.
 * - _min_heap_size - represents the minimum space that must
 * be made available for the heap. Can
 * be overridden from the command line
 * using the linker's --defsym option.
 */
EXTERN (_min_stack_size _min_heap_size)
PROVIDE(_min_stack_size = 0x400) ;
PROVIDE(_min_heap_size = 0) ;

The EXTERN line ensures that the rest of the linker script has access to the default
values of _min_stack_size and _min_heap_size assuming that the user does not
override these values using the linker’s --defsym command line option.

The two PROVIDE lines ensure that a default value is provided for both
_min_stack_size and _min_heap_size. The default value for the minimum stack
size is 1024 bytes (0x400). The default value for the minimum heap size is 0 bytes.

17.4.3 Processor Definitions Include File

The next line in the default linker script pulls in information specific to the processor.

INCLUDE procdefs.ld

The file procdefs.ld is included in the linker script at this point. The file is searched
for in the current directory and in any directory specified with the -L command line
option. The compiler shell ensures that the correct directory is passed to the linker with
the -L command line option based on the processor selected with the -mprocessor
command line option.

The processor definitions linker script contains the following pieces of information:

• Inclusion of Processor-Specific Object File(s)

• Base Exception Vector Address and Vector Spacing Symbols

• Memory Address Equates

• Memory Regions

• Configuration Words Input/Output Section Map

17.4.3.1 INCLUSION OF PROCESSOR-SPECIFIC OBJECT FILE(S)

This section of the processor definitions linker script ensures that the
processor-specific object file(s) get included in the link.

/**
 * Processor-specific object file. Contains SFR definitions.
 **/
INPUT(“processor.o”)

The INPUT line specifies that processor.o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the -L command line option).

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 178 2012 Microchip Technology Inc.

17.4.3.2 OPTIONAL INCLUSION OF PROCESSOR-SPECIFIC PERIPHERAL
LIBRARIES

This section of the processor definitions linker script ensures that the
processor-specific peripheral libraries get included, but only if the files exist.

/***
 * Processor-specific peripheral libraries are optional

***/
OPTIONAL("libmchp_peripheral.a")
OPTIONAL("libmchp_peripheral_32MX795F512L.a")

The OPTIONAL lines specify that libmchp_peripheral.a and
libmchp_peripheral_32MX795F512L.a should be included in the link as if the
files were named on the command line. The linker attempts to find these files in the cur-
rent directory. If they are not found in the current directory, the linker searches through
the library search paths. If they are not found in the library search paths, the link pro-
cess continues without error. The linker will error only when a symbol from the periph-
eral library is required but not found elsewhere.

17.4.3.3 BASE EXCEPTION VECTOR ADDRESS AND VECTOR SPACING
SYMBOLS

This section of the processor definitions linker script defines values for the base
exception vector address and vector spacing.

/**
 * For interrupt vector handling
 **/
_vector_spacing= 0x00000001;
_ebase_address= 0x9FC01000;

The first line defines a value of 1 for _vector_spacing. The available memory for
exceptions only supports a vector spacing of 1. The second line defines the location of
the base exception vector address (EBASE).

On some devices, the base exception vector address is located in the KSEG0 boot
segment. On other devices, the size of the KSEG0 boot segment is not sufficient for
the vector table, so the base exception vector address is located in the KSEG0 program
segment. In general, devices with at least 12 KB in the KSEG0 boot segment use the
boot flash for the exception vector table. Devices with less than 12 KB in the KSEG0
boot segment use the KSEG0 program segment for the exception vector table. Be sure
to check the procdefs.ld include file for the default address for your target device.

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 179

17.4.3.4 MEMORY ADDRESS EQUATES

This section of the processor definitions linker script provides information about certain
memory addresses required by the default linker script.

/**
 * Memory Address Equates
 **/
_RESET_ADDR = 0xBFC00000;
_BEV_EXCPT_ADDR = 0xBFC00380;
_DBG_EXCPT_ADDR = 0xBFC00480;
_DBG_CODE_ADDR = 0xBFC02000;
_GEN_EXCPT_ADDR = _ebase_address + 0x180;

The _RESET_ADDR defines the processor’s Reset address. This is the virtual begin
address of the IFM boot section in Kernel mode.

The _BEV_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and StatusBEV = 1.

The _DBG_EXCPT_ADDR defines the address that the processor jumps to when a
debug exception is encountered.

The _DBG_CODE_ADDR defines the address that is the start address of the debug
executive. Note that this address may vary depending on the size of the KSEG0 boot
segment on your target device.

The _GEN_EXCPT_ADDR defines the address that the processor jumps to when an
exception is encountered and StatusBEV = 0.

17.4.3.5 MEMORY REGIONS

This section of the processor definitions linker script provides information about the
memory regions that are available on the device.

/**
 * Memory Regions
 *
 * Memory regions without attributes cannot be used for
 * orphaned sections. Only sections specifically assigned to
 * these regions can be allocated into these regions.
 **/
MEMORY
{
 kseg0_program_mem (rx) : ORIGIN = 0x9D000000, LENGTH = 0x8000
 kseg0_boot_mem : ORIGIN = 0x9FC00490, LENGTH = 0x970
 exception_mem : ORIGIN = 0x9FC01000, LENGTH = 0x1000
 kseg1_boot_mem : ORIGIN = 0xBFC00000, LENGTH = 0x490
 debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = 0xFF0
 config3 : ORIGIN = 0xBFC02FF0, LENGTH = 0x4
 config2 : ORIGIN = 0xBFC02FF4, LENGTH = 0x4
 config1 : ORIGIN = 0xBFC02FF8, LENGTH = 0x4
 config0 : ORIGIN = 0xBFC02FFC, LENGTH = 0x4
 kseg1_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x2000
 sfrs : ORIGIN = 0xBF800000, LENGTH = 0x10000
}

Eleven memory regions are defined with an associated start address and length:

1. Program memory region (kseg0_program_mem) for application code

2. Boot memory regions (kseg0_boot_mem and kseg1_boot_mem)

3. Exception memory region (exception_mem)

4. Debug executive memory region (debug_exec_mem)

5. Configuration memory regions (config3, config2, config1, and config0)

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 180 2012 Microchip Technology Inc.

6. Data memory region (kseg1_data_mem)

7. SFR memory region (sfrs)

The default linker script uses these names to locate sections into the correct regions.
Sections which are non-standard become orphaned sections. The attributes of the
memory regions are used to locate these orphaned sections. The attributes (rx)
specify that read-only sections or executable sections can be located into the program
memory regions. Similarly, the attributes (w!x) specify that sections that are not
read-only and not executable can be located in the data memory region. Since no
attributes are specified for the boot memory region, the configuration memory regions,
or the SFR memory region, only specified sections may be located in these regions
(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

17.4.3.6 CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

The last section in the processor definitions linker script is the input/output section map
for Configuration Words. This section map is additive to the Input/Output Section Map
found in the default linker script (see Section 17.4.4 “Input/Output Section Map”). It
defines how input sections for Configuration Words are mapped to output sections for
Configuration Words. Note that input sections are portions of an application that are
defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section. All output sections
are specified within a SECTIONS command in the linker script.

For each Configuration Word that exists on the specific processor, a distinct output
section named .config_address exists where address is the location of the
Configuration Word in memory. Each of these sections contains the data created by the
#pragma config directive (see Section 16.4 “Pragma Directives”) for that
Configuration Word. Each section is assigned to their respective memory region
(confign).

SECTIONS
{
 .config_BFC02FF0 : {
 *(.config_BFC02FF0)
 } > config3
 .config_BFC02FF4 : {
 *(.config_BFC02FF4)
 } > config2
 .config_BFC02FF8 : {
 *(.config_BFC02FF8)
 } > config1
 .config_BFC02FFC : {
 *(.config_BFC02FFC)
 } > config0
}

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 181

17.4.4 Input/Output Section Map

The last section in the default linker script is the input/output section map. The section
map is the heart of the linker script. It defines how input sections are mapped to output
sections. Note that input sections are portions of an application that are defined in
source code, while output sections are created by the linker. Generally, several input
sections may be combined into a single output section. All output sections are specified
within a SECTIONS command in the linker script.

The following output sections may be created by the linker:

• .reset Section

• .bev_excpt Section

• .dbg_excpt Section

• .dbg_code Section

• .app_excpt Section

• .vector_0 .. .vector_63 Sections

• .start-up Section

• .text Section

• .rodata Sectionn

• .sdata2 Section

• .sbss2 Section

• .dbg_data Section

• .data Section

• .got Section

• .sdata Section

• .lit8 Section

• .lit4 Section

• .sbss Section

• .bss Section

• .heap Section

• .stack Section

• .ramfunc Section

• Stack Location

• Debug Sections

17.4.4.1 .RESET SECTION

This section contains the code that is executed when the processor performs a Reset.
This section is located at the Reset address (_RESET_ADDR), as specified in the
processor definitions linker script and is assigned to the boot memory region
(kseg1_boot_mem). The .reset output section also contains the C start-up code
from the .reset.startup input section.

.reset _RESET_ADDR :
{
 KEEP(*(.reset))
 KEEP(*(.reset.startup))
 } > kseg1_boot_mem

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 182 2012 Microchip Technology Inc.

17.4.4.2 .BEV_EXCPT SECTION

This section contains the handler for exceptions that occur when StatusBEV = 1. This
section is located at the BEV exception address (_BEV_EXCPT_ADDR) as specified in
the processor definitions linker script and is assigned to the boot memory region
(kseg1_boot_mem).

.bev_excpt _BEV_EXCPT_ADDR :
{
 (*(.bev_handler))
} > kseg1_boot_mem

17.4.4.3 .DBG_EXCPT SECTION

This section reserves space for the debug exception vector. This section is only
allocated if the symbol _DEBUGGER has been defined. (This symbol is defined if the
-mdebugger command line option is specified to the shell.) This section is located at
the debug exception address (_DBG_EXCPT_ADDR) as specified in the processor
definitions linker script and is assigned to the boot memory region
(kseg1_boot_mem). The section is marked as NOLOAD as it is only intended to ensure
that application code cannot be placed at locations reserved for the debug executive.

.dbg_excpt _DBG_EXCPT_ADDR (NOLOAD) :
{
 . += (DEFINED (_DEBUGGER) ? 0x8 : 0x0);
} > kseg1_boot_mem

17.4.4.4 .DBG_CODE SECTION

This section reserves space for the debug exception handler. This section is only
allocated if the symbol _DEBUGGER has been defined. (This symbol is defined if the
-mdebugger command line option is specified to the shell.) This section is located at
the debug code address (_DBG_CODE_ADDR) as specified in the processor definitions
linker script and is assigned to the debug executive memory region
(debug_exec_mem). The section is marked as NOLOAD because it is only intended to
ensure that application code cannot be placed at locations reserved for the debug
executive.

.dbg_code _DBG_CODE_ADDR (NOLOAD) :
{
 . += (DEFINED (_DEBUGGER) ? 0xFF0 : 0x0);
} > debug_exec_mem

17.4.4.5 .APP_EXCPT SECTION

This section contains the handler for exceptions that occur when StatusBEV = 0. This
section is located at the general exception address (_GEN_EXCPT_ADDR) as specified
in the processor definitions linker script and is assigned to the exception memory
region (exception_mem).

.app_excpt _GEN_EXCPT_ADDR :
{
 KEEP(*(.gen_handler))
} > exception_mem

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 183

17.4.4.6 .VECTOR_0 .. .VECTOR_63 SECTIONS

These sections contain the handler for each of the interrupt vectors. These sections are
located at the correct vectored addresses using the formula:

_ebase_address + 0x200 + (_vector_spacing << 5) * n

where n is the respective vector number.

Each of the sections is followed by an assert that ensures the code located at the vector
does not exceed the vector spacing specified.

.vector_n _ebase_address + 0x200 + (_vector_spacing << 5) * n :
 {
 KEEP(*(.vector_n))
 } > exception_mem
ASSERT (SIZEOF(.vector_n) < (_vector_spacing << 5), "function at
exception vector n too large")

17.4.4.7 .START-UP SECTION

In XC32, the C and C++ startup code is located in the .reset section. We maintain
the .startup output section in the default linker script for backwards compatibility
purposes only.

.startup ORIGIN(kseg0_boot_mem) :
 {
 *(.startup)
 } > kseg0_boot_mem

17.4.4.8 .TEXT SECTION

The standard executable code sections are no longer mapped to the .text output
section. However, a few special executable sections are still mapped here as shown
below. This section is assigned to the program memory region
(kseg0_program_mem) and has a fill value of NOP (0).

The built-in linker script no longer maps standard .text executable code input
sections. By not mapping these sections in the linker script, we allow these sections to
be allocated using the best-fit allocator rather than the sequential allocator. Sections
that are unmapped in the linker script, can flow around absolute sections specified in
code whereas sections that are linker-script mapped are grouped together and
allocated sequentially, potentially causing conflicts with absolute sections (using the
address function attribute).

.text ORIGIN(kseg0_program_mem) :
{
(.stub .gnu.linkonce.t.)
 KEEP (*(.text.*personality*))
 *(.gnu.warning)
 (.mips16.fn.)
 (.mips16.call.)
} > kseg0_program_mem =0

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 184 2012 Microchip Technology Inc.

17.4.4.9 C++ INITIALIZATION SECTIONS

The sections .init, .preinit_array, .init_array, .fini_array, .ctors, and
.dtors are all used for the construction and destruction of file-scope static-storage
C++ objects.

 /* Global-namespace object initialization */
 .init :
 {
 KEEP (*crti.o(.init))
 KEEP (*crtbegin.o(.init))
 KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o *crtn.o).init))
 KEEP (*crtend.o(.init))
 KEEP (*crtn.o(.init))
 . = ALIGN(4) ;
 } >kseg0_program_mem
 .fini :
 {
 KEEP (*(.fini))
 . = ALIGN(4) ;
 } >kseg0_program_mem
 .preinit_array :
 {
 PROVIDE_HIDDEN (__preinit_array_start = .);
 KEEP (*(.preinit_array))
 PROVIDE_HIDDEN (__preinit_array_end = .);
 . = ALIGN(4) ;
 } >kseg0_program_mem
 .init_array :
 {
 PROVIDE_HIDDEN (__init_array_start = .);
 KEEP (*(SORT(.init_array.*)))
 KEEP (*(.init_array))
 PROVIDE_HIDDEN (__init_array_end = .);
 . = ALIGN(4) ;
 } >kseg0_program_mem
 .fini_array :
 {
 PROVIDE_HIDDEN (__fini_array_start = .);
 KEEP (*(SORT(.fini_array.*)))
 KEEP (*(.fini_array))
 PROVIDE_HIDDEN (__fini_array_end = .);
 . = ALIGN(4) ;
 } >kseg0_program_mem
 .ctors :
 {
 /* XC32 uses crtbegin.o to find the start of
 the constructors, so we make sure it is
 first. Because this is a wildcard, it
 doesn't matter if the user does not
 actually link against crtbegin.o; the
 linker won't look for a file to match a
 wildcard. The wildcard also means that it
 doesn't matter which directory crtbegin.o
 is in. */
 KEEP (*crtbegin.o(.ctors))
 KEEP (*crtbegin?.o(.ctors))
 /* We don't want to include the .ctor section from
 the crtend.o file until after the sorted ctors.
 The .ctor section from the crtend file contains the
 end of ctors marker and it must be last */

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 185

 KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o) .ctors))
 KEEP (*(SORT(.ctors.*)))
 KEEP (*(.ctors))
 . = ALIGN(4) ;
 } >kseg0_program_mem
 .dtors :
 {
 KEEP (*crtbegin.o(.dtors))
 KEEP (*crtbegin?.o(.dtors))
 KEEP (*(EXCLUDE_FILE (*crtend.o *crtend?.o) .dtors))
 KEEP (*(SORT(.dtors.*)))
 KEEP (*(.dtors))
 . = ALIGN(4) ;
 } >kseg0_program_mem

17.4.4.10 .RODATA SECTION

Standard read-only sections are not mapped in the linker script. A few special read-only
sections are still mapped in the linker script, but most sections are unmapped, allowing
them to be handled by the best fit allocator. This section is assigned to the program
memory region (kseg0_program_mem).

.rodata :
{
 (.gnu.linkonce.r.)
 *(.rodata1)
} > kseg0_program_mem

17.4.4.11 .SDATA2 SECTION

This section collects the small initialized constant global and static data from all of the
application’s input files. Because of the constant nature of the data, this section is also
a read-only section. This section is assigned to the program memory region
(kseg0_program_mem).

/*
 * Small initialized constant global and static data can be
 * placed in the .sdata2 section. This is different from
 * .sdata, which contains small initialized non-constant
 * global and static data.
 */
.sdata2 :
{
 (.sdata2 .sdata2. .gnu.linkonce.s2.*)
} > kseg0_program_mem

Note: The order of the input sections within each output section is significant.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 186 2012 Microchip Technology Inc.

17.4.4.12 .SBSS2 SECTION

This section collects the small uninitialized constant global and static data from all of
the application’s input files. Because of the constant nature of the data, this section is
also a read-only section. This section is assigned to the program memory region
(kseg0_program_mem).

/*
 * Uninitialized constant global and static data (i.e.,
 * variables which will always be zero). Again, this is
 * different from .sbss, which contains small non-initialized,
 * non-constant global and static data.
 */
.sbss2 :
{
 (.sbss2 .sbss2. .gnu.linkonce.sb2.*)
} > kseg0_program_mem

17.4.4.13 .DBG_DATA SECTION

This section reserves space for the data required by the debug exception handler. This
section is only allocated if the symbol _DEBUGGER has been defined. (This symbol is
defined if the -mdebugger command line option is specified to the shell.) This section
is assigned to the data memory region (kseg1_data_mem). The section is marked as
NOLOAD as it is only intended to ensure that application data cannot be placed at
locations reserved for the debug executive.

.dbg_data (NOLOAD) :
{
 . += (DEFINED (_DEBUGGER) ? 0x200 : 0x0);
} > kseg1_data_mem

17.4.4.14 .DATA SECTION

The linker generates a data-initialization template that the C start-up code uses to
initialize variables.

17.4.4.15 .GOT SECTION

This section collects the global offset table from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem) with a load address
located in the program memory region (kseg0_program_mem). A symbol is defined
to represent the location of the Global Pointer (_gp).

 _gp = ALIGN(16) + 0x7FF0 ;
 .got :
 {
 *(.got.plt) *(.got)
 } > kseg1_data_mem AT> kseg0_program_mem

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 187

17.4.4.16 .SDATA SECTION

This section collects the small initialized data from all of the application’s input files.
This section is assigned to the data memory region (kseg1_data_mem) with a load
address located in the program memory region (kseg0_program_mem). Symbols are
defined to represent the virtual begin (_sdata_begin) and end (_sdata_end)
addresses of this section.

/*
 * We want the small data sections together, so
 * single-instruction offsets can access them all, and
 * initialized data all before uninitialized, so
 * we can shorten the on-disk segment size.
 */
.sdata :
{
 _sdata_begin = . ;
 (.sdata .sdata. .gnu.linkonce.s.*)
 _sdata_end = . ;
} > kseg1_data_mem AT> kseg0_program_mem

17.4.4.17 .LIT8 SECTION

This section collects the 8-byte constants which the assembler decides to store in
memory rather than in the instruction stream from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem) with a load address
located in the program memory region (kseg0_program_mem).

.lit8 :
{
 *(.lit8)
} > kseg1_data_mem AT> kseg0_program_mem

17.4.4.18 .LIT4 SECTION

This section collects the 4-byte constants which the assembler decides to store in
memory rather than in the instruction stream from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem) with a load address
located in the program memory region (kseg0_program_mem). A symbol is defined
to represent the virtual end address of the initialized data (_data_end).

 .lit4 :
 {
 *(.lit4)
 } > kseg1_data_mem AT> kseg0_program_mem
 _data_end = . ;

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 188 2012 Microchip Technology Inc.

17.4.4.19 .SBSS SECTION

This section collects the small uninitialized data from all of the application’s input files.
This section is assigned to the data memory region (kseg1_data_mem). A symbol is
defined to represent the virtual begin address of uninitialized data (_bss_begin).
Symbols are also defined to represent the virtual begin (_sbss_begin) and end
(_sbss_end) addresses of this section.

 _bss_begin = . ;
 .sbss :
 {
 _sbss_begin = . ;
 *(.dynsbss)
 (.sbss .sbss. .gnu.linkonce.sb.*)
 *(.scommon)
 _sbss_end = . ;
 } > kseg1_data_mem

17.4.4.20 .BSS SECTION

This section collects the uninitialized data from all of the application’s input files. This
section is assigned to the data memory region (kseg1_data_mem). A symbol is
defined to represent the virtual end address of uninitialized data (_bss_end). A symbol
is also to represent the virtual end address of data memory (_end).

.bss :
{
 *(.dynbss)
 (.bss .bss. .gnu.linkonce.b.*)
 *(COMMON)
 /*
 * Align here to ensure that the .bss section occupies
 * space up to _end. Align after .bss to ensure correct
 * alignment even if the .bss section disappears because
 * there are no input sections.
 */
 . = ALIGN(32 / 8) ;
} > kseg1_data_mem
. = ALIGN(32 / 8) ;
_end = . ;
_bss_end = . ;

17.4.4.21 .HEAP SECTION

The linker now dynamically reserves an area of memory for the heap. The .heap
section is no longer mapped in the linker script. The linker finds the largest unused gap
of memory after all other sections are allocated and uses that gap for both the heap and
the stack. The minimum amount of space reserved for the heap is determined by the
symbol _min_heap_size.

17.4.4.22 .STACK SECTION

The linker now dynamically reserves an area of memory for the stack. The .stack
section is no longer mapped in the linker script. The linker finds the largest unused gap
of memory after all other sections are allocated and uses that gap for both the heap and
the stack. The minimum amount of space reserved for the stack is determined by the
symbol _min_stack_size.

Linking Programs

 2012 Microchip Technology Inc. DS51686E-page 189

17.4.4.23 .RAMFUNC SECTION

The linker now dynamically collects the ‘ramfunc’ attributed and “.ramfunc” named
sections and allocates them sequentially in an appropriate range of memory. The first
ramfunc attributed function is placed at the highest appropriately aligned address.

The presence of a ramfunc section causes the linker to emit the symbols necessary for
the crt0.S start-up code to initialize the PIC32 bus matrix appropriately.

/*
 * RAM functions go at the end of our stack and heap allocation.
 * Alignment of 2K required by the boundary register (BMXDKPBA).
 *
 * RAM functions are now allocated by the linker. The linker generates
 * _ramfunc_begin and _bmxdkpba_address symbols depending on the
 * location of RAM functions.
 */

_bmxdudba_address = LENGTH(kseg1_data_mem) ;
_bmxdupba_address = LENGTH(kseg1_data_mem) ;

17.4.4.24 STACK LOCATION

A symbol is defined to represent the location of the Stack Pointer (_stack). As
described previously, the heap and the stack are now allocated to the largest available
gap of memory after other sections have been allocated.

For PIC32 devices with more than 64K of data memory, GP relative addressing mode
should not be used. To avoid conflict of using GP-relative addressing to the linker gen-
erated symbols, allocate the symbols in section “_linkergenerated”: extern
unsigned int __attribute__((section(“_linkergenerated”)))
_splim;

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 190 2012 Microchip Technology Inc.

17.4.4.25 DEBUG SECTIONS

The debug sections contain DWARF2 debugging information. They are not loaded into
program Flash.

 /* Stabs debugging sections. */
 .stab 0 : { *(.stab) }
 .stabstr 0 : { *(.stabstr) }
 .stab.excl 0 : { *(.stab.excl) }
 .stab.exclstr 0 : { *(.stab.exclstr) }
 .stab.index 0 : { *(.stab.index) }
 .stab.indexstr 0 : { *(.stab.indexstr) }
 .comment 0 : { *(.comment) }
 /* DWARF debug sections.
 Symbols in the DWARF debugging sections are relative to the
beginning
 of the section so we begin them at 0. */
 /* DWARF 1 */
 .debug 0 : { *(.debug) }
 .line 0 : { *(.line) }
 /* GNU DWARF 1 extensions */
 .debug_srcinfo 0 : { *(.debug_srcinfo) }
 .debug_sfnames 0 : { *(.debug_sfnames) }
 /* DWARF 1.1 and DWARF 2 */
 .debug_aranges 0 : { *(.debug_aranges) }
 .debug_pubnames 0 : { *(.debug_pubnames) }
 /* DWARF 2 */
 .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
 .debug_abbrev 0 : { *(.debug_abbrev) }
 .debug_line 0 : { *(.debug_line) }
 .debug_frame 0 : { *(.debug_frame) }
 .debug_str 0 : { *(.debug_str) }
 .debug_loc 0 : { *(.debug_loc) }
 .debug_macinfo 0 : { *(.debug_macinfo) }
 /* SGI/MIPS DWARF 2 extensions */
 .debug_weaknames 0 : { *(.debug_weaknames) }
 .debug_funcnames 0 : { *(.debug_funcnames) }
 .debug_typenames 0 : { *(.debug_typenames) }
 .debug_varnames 0 : { *(.debug_varnames) }
 .debug_pubtypes 0 : { *(.debug_pubtypes) }
 .debug_ranges 0 : { *(.debug_ranges) }
 /DISCARD/ : { *(.rel.dyn) }
 .gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
 /DISCARD/ : { *(.note.GNU-stack) }
 /DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*)
*(.discard) }

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 191

Appendix 18. Implementation-Defined Behavior

18.1 INTRODUCTION

This chapter discusses the choices for implementation defined behavior in compiler.

18.2 HIGHLIGHTS

Items discussed in this chapter are:

• Overview

• Translation

• Environment

• Identifiers

• Characters

• Integers

• Floating-Point

• Arrays and Pointers

• Hints

• Structures, Unions, Enumerations, and Bit fields

• Qualifiers

• Declarators

• Statements

• Pre-Processing Directives

• Library Functions

• Architecture

18.3 OVERVIEW

ISO C requires a conforming implementation to document the choices for behaviors
defined in the standard as “implementation-defined.” The following sections list all such
areas, the choices made for the compiler, and the corresponding section number from
the ISO/IEC 9899:1999 standard.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 192 2012 Microchip Technology Inc.

18.4 TRANSLATION

18.5 ENVIRONMENT

ISO Standard: “How a diagnostic is identified (3.10, 5.1.1.3).”

Implementation: All output to stderr is a diagnostic.

ISO Standard: “Whether each nonempty sequence of white-space characters other
than new-line is retained or replaced by one space character in transla-
tion phase 3 (5.1.1.2).”

Implementation: Each sequence of whitespace is replaced by a single character.

ISO Standard: “The name and type of the function called at program start-up in a free-
standing environment (5.1.2.1).”

Implementation: int main (void);

ISO Standard: “The effect of program termination in a freestanding environment
(5.1.2.1).”

Implementation: An infinite loop (branch to self) instruction will be executed.

ISO Standard: “An alternative manner in which the main function may be defined
(5.1.2.2.1).”

Implementation: int main (void);

ISO Standard: “The values given to the strings pointed to by the argv argument to
main (5.1.2.2.1).”

Implementation: No arguments are passed to main. Reference to argc or argv is
undefined.

ISO Standard: “What constitutes an interactive device (5.1.2.3).”

Implementation: Application defined.

ISO Standard: “Signals for which the equivalent of signal(sig, SIG_IGN); is
executed at program start-up (7.14.1.1).”

Implementation: Signals are application defined.

ISO Standard: “The form of the status returned to the host environment to indicate
unsuccessful termination when the SIGABRT signal is raised and not
caught (7.20.4.1).”

Implementation: The host environment is application defined.

ISO Standard: “The forms of the status returned to the host environment by the exit
function to report successful and unsuccessful termination (7.20.4.3).”

Implementation: The host environment is application defined.

ISO Standard: “The status returned to the host environment by the exit function if
the value of its argument is other than zero, EXIT_SUCCESS, or
EXIT_FAILURE (7.20.4.3).”

Implementation: The host environment is application defined.

ISO Standard: “The set of environment names and the method for altering the environ-
ment list used by the getenv function (7.20.4.4).”

Implementation: The host environment is application defined.

ISO Standard: “The manner of execution of the string by the system function
(7.20.4.5).”

Implementation: The host environment is application defined.

Implementation-Defined Behavior

 2012 Microchip Technology Inc. DS51686E-page 193

18.6 IDENTIFIERS

18.7 CHARACTERS

ISO Standard: “Which additional multibyte characters may appear in identifiers and
their correspondence to universal character names (6.4.2).”

Implementation: No.

ISO Standard: “The number of significant initial characters in an identifier (5.2.4.1,
6.4.2).”

Implementation: All characters are significant.

ISO Standard: “The number of bits in a byte (C90 3.4, C99 3.6).”

Implementation: 8.

ISO Standard: “The values of the members of the execution character set (C90 and
C99 5.2.1).”

ISO Standard: “The unique value of the member of the execution character set pro-
duced for each of the standard alphabetic escape sequences (C90 and
C99 5.2.2).”

Implementation: The execution character set is ASCII.

ISO Standard: “The value of a char object into which has been stored any character
other than a member of the basic execution character set (C90 6.1.2.5,
C99 6.2.5).”

Implementation: The value of the char object is the 8-bit binary representation of the
character in the source character set. That is, no translation is done.

ISO Standard: “Which of signed char or unsigned char has the same range, represen-
tation, and behavior as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99
6.2.5, C99 6.3.1.1).”

Implementation: By default, signed char is functionally equivalent to plain char. The
options -funsigned-char and -fsigned-char can be used to
change the default.

ISO Standard: “The mapping of members of the source character set (in character
constants and string literals) to members of the execution character set
(C90 6.1.3.4, C99 6.4.4.4, C90 and C99 5.1.1.2).”

Implementation: The binary representation of the source character set is preserved to
the execution character set.

ISO Standard: “The value of an integer character constant containing more than one
character or containing a character or escape sequence that does not
map to a single-byte execution character (C90 6.1.3.4, C99 6.4.4.4).”

Implementation: The compiler determines the value for a multi-character character con-
stant one character at a time. The previous value is shifted left by eight,
and the bit pattern of the next character is masked in. The final result is
of type int. If the result is larger than can be represented by an int, a
warning diagnostic is issued and the value truncated to int size.

ISO Standard: “The value of a wide character constant containing more than one mul-
tibyte character, or containing a multibyte character or escape
sequence not represented in the extended execution character set
(C90 6.1.3.4, C99 6.4.4.4).”

Implementation: See previous.

ISO Standard: “The current locale used to convert a wide character constant consist-
ing of a single multibyte character that maps to a member of the
extended execution character set into a corresponding wide character
code (C90 6.1.3.4, C99 6.4.4.4).”

Implementation: LC_ALL

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 194 2012 Microchip Technology Inc.

18.8 INTEGERS

18.9 FLOATING-POINT

ISO Standard: “The current locale used to convert a wide string literal into correspond-
ing wide character codes (C90 6.1.4, C99 6.4.5).”

Implementation: LC_ALL

ISO Standard: “The value of a string literal containing a multibyte character or escape
sequence not represented in the execution character set (C90 6.1.4,
C99 6.4.5).”

Implementation: The binary representation of the characters is preserved from the
source character set.

ISO Standard: “Any extended integer types that exist in the implementation (C99
6.2.5).”

Implementation: There are no extended integer types.

ISO Standard: “Whether signed integer types are represented using sign and magni-
tude, two’s complement, or one’s complement, and whether the
extraordinary value is a trap representation or an ordinary value (C99
6.2.6.2).”

Implementation: All integer types are represented as two’s complement, and all bit pat-
terns are ordinary values.

ISO Standard: “The rank of any extended integer type relative to another extended
integer type with the same precision (C99 6.3.1.1).”

Implementation: No extended integer types are supported.

ISO Standard: “The result of, or the signal raised by, converting an integer to a signed
integer type when the value cannot be represented in an object of that
type (C90 6.2.1.2, C99 6.3.1.3).”

Implementation: When converting value X to a type of width N, the value of the result is
the Least Significant N bits of the 2’s complement representation of X.
That is, X is truncated to N bits. No signal is raised.

ISO Standard: “The results of some bitwise operations on signed integers (C90 6.3,
C99 6.5).”

Implementation: Bitwise operations on signed values act on the 2’s complement repre-
sentation, including the sign bit. The result of a signed right shift
expression is sign extended.
C99 allows some aspects of signed ‘<<’ to be undefined. The compiler
does not do so.

ISO Standard: “The accuracy of the floating-point operations and of the library func-
tions in <math.h> and <complex.h> that return floating-point results
(C90 and C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.

ISO Standard: “The accuracy of the conversions between floating-point internal repre-
sentations and string representations performed by the library functions
in <stdio.h>, <stdlib.h>, and <wchar.h> (C90 and C99 5.2.4.2.2).”

Implementation: The accuracy is unknown.

ISO Standard: “The rounding behaviors characterized by non-standard values of
FLT_ROUNDS (C90 and C99 5.2.4.2.2).”

Implementation: No such values are used.

ISO Standard: “The evaluation methods characterized by non-standard negative val-
ues of FLT_EVAL_METHOD (C90 and C99 5.2.4.2.2).”

Implementation: No such values are used.

Implementation-Defined Behavior

 2012 Microchip Technology Inc. DS51686E-page 195

ISO Standard: “The direction of rounding when an integer is converted to a float-
ing-point number that cannot exactly represent the original value (C90
6.2.1.3, C99 6.3.1.4).”

Implementation: C99 Annex F is followed.

ISO Standard: “The direction of rounding when a floating-point number is converted to
a narrower floating-point number (C90 6.2.1.4, 6.3.1.5).”

Implementation: C99 Annex F is followed.

ISO Standard: “How the nearest representable value or the larger or smaller repre-
sentable value immediately adjacent to the nearest representable value
is chosen for certain floating constants (C90 6.1.3.1, C99 6.4.4.2).”

Implementation: C99 Annex F is followed.

ISO Standard: “Whether and how floating expressions are contracted when not disal-
lowed by the FP_CONTRACT pragma (C99 6.5).”

Implementation: The pragma is not implemented.

ISO Standard: “The default state for the FENV_ACCESS pragma (C99 7.6.1).”

Implementation: This pragma is not implemented.

ISO Standard: “Additional floating-point exceptions, rounding modes, environments,
and classifications, and their macro names (C99 7.6, 7.12).”

Implementation: None supported.

ISO Standard: “The default state for the FP_CONTRACT pragma (C99 7.12.2).”

Implementation: This pragma is not implemented.

ISO Standard: “Whether the “inexact” floating-point exception can be raised when the
rounded result actually does equal the mathematical result in an IEC
60559 conformant implementation (C99 F.9).”

Implementation: Unknown.

ISO Standard: “Whether the “underflow” (and “inexact”) floating-point exception can
be raised when a result is tiny but not inexact in an IEC 60559 confor-
mant implementation (C99 F.9).”

Implementation: Unknown.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 196 2012 Microchip Technology Inc.

18.10 ARRAYS AND POINTERS

18.11 HINTS

ISO Standard: “The result of converting a pointer to an integer or vice versa (C90
6.3.4, C99 6.3.2.3).”

Implementation: A cast from an integer to a pointer or vice versa results uses the binary
representation of the source type, reinterpreted as appropriate for the
destination type.
If the source type is larger than the destination type, the Most Signifi-
cant bits are discarded. When casting from a pointer to an integer, if the
source type is smaller than the destination type, the result is sign
extended. When casting from an integer to a pointer, if the source type
is smaller than the destination type, the result is extended based on the
signedness of the source type.

ISO Standard: “The size of the result of subtracting two pointers to elements of the
same array (C90 6.3.6, C99 6.5.6).”

Implementation: 32-bit signed integer.

ISO Standard: “The extent to which suggestions made by using the register stor-
age-class specifier are effective (C90 6.5.1, C99 6.7.1).”

Implementation: The register storage class specifier generally has no effect.

ISO Standard: “The extent to which suggestions made by using the inline function
specifier are effective (C99 6.7.4).”

Implementation: If -fno-inline or -O0 are specified, no functions will be inlined,
even if specified with the inline specifier. Otherwise, the function
may or may not be inlined dependent on the optimization heuristics of
the compiler.

Implementation-Defined Behavior

 2012 Microchip Technology Inc. DS51686E-page 197

18.12 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT FIELDS

18.13 QUALIFIERS

ISO Standard: “A member of a union object is accessed using a member of a different
type (C90 6.3.2.3).”

Implementation: The corresponding bytes of the union object are interpreted as an
object of the type of the member being accessed without regard for
alignment or other possible invalid conditions.

ISO Standard: “Whether a “plain” int bit field is treated as a signed int bit field or
as an unsigned int bit field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99
6.7.2.1).”

Implementation: By default, a plain int bit field is treated as a signed integer. This
behavior can be altered by use of the -funsigned-bitfields
command line option.

ISO Standard: “Allowable bit field types other than _Bool, signed int, and
unsigned int (C99 6.7.2.1).”

Implementation: No other types are supported.

ISO Standard: “Whether a bit field can straddle a storage unit boundary (C90 6.5.2.1,
C99 6.7.2.1).”

Implementation: No.

ISO Standard: “The order of allocation of bit fields within a unit (C90 6.5.2.1, C99
6.7.2.1).”

Implementation: Bit fields are allocated left to right.

ISO Standard: “The alignment of non-bit field members of structures (C90 6.5.2.1, C99
6.7.2.1).”

Implementation: Each member is located to the lowest available offset allowable accord-
ing to the alignment restrictions of the member type.

ISO Standard: “The integer type compatible with each enumerated type (C90 6.5.2.2,
C99 6.7.2.2).”

Implementation: If the enumeration values are all non-negative, the type is unsigned
int, else it is int. The -fshort-enums command line option can
change this.

ISO Standard: “What constitutes an access to an object that has volatile-qualified type
(C90 6.5.3, C99 6.7.3).”

Implementation: Any expression which uses the value of or stores a value to a volatile
object is considered an access to that object. There is no guarantee
that such an access is atomic.
If an expression contains a reference to a volatile object but neither
uses the value nor stores to the object, the expression is considered an
access to the volatile object or not depending on the type of the object.
If the object is of scalar type, an aggregate type with a single member
of scalar type, or a union with members of (only) scalar type, the
expression is considered an access to the volatile object. Otherwise,
the expression is evaluated for its side effects but is not considered an
access to the volatile object.
For example:

volatile int a;
a; /* access to ‘a’ since ‘a’ is scalar */

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 198 2012 Microchip Technology Inc.

18.14 DECLARATORS

18.15 STATEMENTS

18.16 PRE-PROCESSING DIRECTIVES

ISO Standard: “The maximum number of declarators that may modify an arithmetic,
structure or union type (C90 6.5.4).”

Implementation: No limit.

ISO Standard: “The maximum number of case values in a switch statement (C90
6.6.4.2).”

Implementation: No limit.

ISO Standard: “How sequences in both forms of header names are mapped to head-
ers or external source file names (C90 6.1.7, C99 6.4.7).”

Implementation: The character sequence between the delimiters is considered to be a
string which is a file name for the host environment.

ISO Standard: “Whether the value of a character constant in a constant expression
that controls conditional inclusion matches the value of the same char-
acter constant in the execution character set (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.

ISO Standard: “Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion may have a neg-
ative value (C90 6.8.1, C99 6.10.1).”

Implementation: Yes.

ISO Standard: “The places that are searched for an included < > delimited header,
and how the places are specified or the header is identified (C90 6.8.2,
C99 6.10.2).”

Implementation: <install
directory>/lib/gcc/pic32mx/3.4.4/include

<install directory>/pic32mx/include

ISO Standard: “How the named source file is searched for in an included “” delimited
header (C90 6.8.2, C99 6.10.2).”

Implementation: The compiler first searches for the named file in the directory containing
the including file, the directories specified by the -iquote command
line option (if any), then the directories which are searched for a < >
delimited header.

ISO Standard: “The method by which preprocessing tokens are combined into a
header name (C90 6.8.2, C99 6.10.2).”

Implementation: All tokens, including whitespace, are considered part of the header file
name. Macro expansion is not performed on tokens inside the delimit-
ers.

ISO Standard: “The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).”

Implementation: No limit.

ISO Standard: “The behavior on each recognized non-STDC #pragma directive (C90
6.8.6, C99 6.10.6).”

Implementation: See Section 6.12 “Variable Attributes”.

ISO Standard: “The definitions for __DATE_ _ and __TIME_ _ when respectively,
the date and time of translation are not available (C90 6.8.8, C99
6.10.8).”

Implementation: The date and time of translation are always available.

Implementation-Defined Behavior

 2012 Microchip Technology Inc. DS51686E-page 199

18.17 LIBRARY FUNCTIONS

ISO Standard: “The Null Pointer constant to which the macro NULL expands (C90
7.1.6, C99 7.17).”

Implementation: (void *)0

ISO Standard: “Any library facilities available to a freestanding program, other than the
minimal set required by clause 4 (5.1.2.1).”

Implementation: See the “32-Bit Language Tools Libraries” (DS51685).

ISO Standard: “The format of the diagnostic printed by the assert macro (7.2.1.1).”

Implementation: “Failed assertion ‘message’ at line line of ‘filename’.\n”

ISO Standard: “The default state for the FENV_ACCESS pragma (7.6.1).”

Implementation: Unimplemented.

ISO Standard: “The representation of floating-point exception flags stored by the
fegetexceptflag function (7.6.2.2).”

Implementation: Unimplemented.

ISO Standard: “Whether the feraiseexcept function raises the inexact exception
in addition to the overflow or underflow exception (7.6.2.3).”

Implementation: Unimplemented.

ISO Standard: “Floating environment macros other than FE_DFL_ENV that can be
used as the argument to the fesetenv or feupdateenv function
(7.6.4.3, 7.6.4.4).”

Implementation: Unimplemented.

ISO Standard: “Strings other than “C” and “” that may be passed as the second
argument to the setlocale function (7.11.1.1).”

Implementation: None.

ISO Standard: “The types defined for float_t and double_t when the value of
the FLT_EVAL_METHOD macro is less than 0 or greater than 2 (7.12).”

Implementation: Unimplemented.

ISO Standard: “The infinity to which the INFINITY macro expands, if any (7.12).”

Implementation: Unimplemented.

ISO Standard: “The quiet NaN to which the NAN macro expands, when it is defined
(7.12).”

Implementation: Unimplemented.

ISO Standard: “Domain errors for the mathematics functions, other than those
required by this International Standard (7.12.1).”

Implementation: None.

ISO Standard: “The values returned by the mathematics functions, and whether
errno is set to the value of the macro EDOM, on domain errors
(7.12.1).”

Implementation: errno is set to EDOM on domain errors.

ISO Standard: “Whether the mathematics functions set errno to the value of the
macro ERANGE on overflow and/or underflow range errors (7.12.1).”

Implementation: Yes.

ISO Standard: “The default state for the FP_CONTRACT pragma (7.12.2)

Implementation: Unimplemented.

ISO Standard: “Whether a domain error occurs or zero is returned when the fmod
function has a second argument of zero (7.12.10.1).”

Implementation: NaN is returned.

ISO Standard: “The base-2 logarithm of the modulus used by the remquo function in
reducing the quotient (7.12.10.3).”

Implementation: Unimplemented.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 200 2012 Microchip Technology Inc.

ISO Standard: “The set of signals, their semantics, and their default handling (7.14).”

Implementation: The default handling of signals is to always return failure. Actual signal
handling is application defined.

ISO Standard: “If the equivalent of signal(sig, SIG_DFL); is not executed prior
to the call of a signal handler, the blocking of the signal that is per-
formed (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Whether the equivalent of signal(sig, SIG_DFL); is executed
prior to the call of a signal handler for the signal SIGILL (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Signal values other than SIGFPE, SIGILL, and SIGSEGV that corre-
spond to a computational exception (7.14.1.1).”

Implementation: Application defined.

ISO Standard: “Whether the last line of a text stream requires a terminating new-line
character (7.19.2).”

Implementation: Yes.

ISO Standard: “Whether space characters that are written out to a text stream immedi-
ately before a new-line character appear when read in (7.19.2).”

Implementation: Yes.

ISO Standard: “The number of null characters that may be appended to data written to
a binary stream (7.19.2).”

Implementation: No null characters are appended to a binary stream.

ISO Standard: “Whether the file position indicator of an append-mode stream is ini-
tially positioned at the beginning or end of the file (7.19.3).”

Implementation: Application defined. The system level function open is called with the
O_APPEND flag.

ISO Standard: “Whether a write on a text stream causes the associated file to be trun-
cated beyond that point (7.19.3).”

Implementation: Application defined.

ISO Standard: “The characteristics of file buffering (7.19.3).”

ISO Standard: “Whether a zero-length file actually exists (7.19.3).”

Implementation: Application defined.

ISO Standard: “The rules for composing valid file names (7.19.3).”

Implementation: Application defined.

ISO Standard: “Whether the same file can be open multiple times (7.19.3).”

Implementation: Application defined.

ISO Standard: “The nature and choice of encodings used for multibyte characters in
files (7.19.3).”

Implementation: Encodings are the same for each file.

ISO Standard: “The effect of the remove function on an open file (7.19.4.1).”

Implementation: Application defined. The system function unlink is called.

ISO Standard: “The effect if a file with the new name exists prior to a call to the
rename function (7.19.4.2).”

Implementation: Application defined. The system function link is called to create the
new filename, then unlink is called to remove the old filename. Typi-
cally, link will fail if the new filename already exists.

ISO Standard: “Whether an open temporary file is removed upon abnormal program
termination (7.19.4.3).”

Implementation: No.

ISO Standard: “What happens when the tmpnam function is called more than
TMP_MAX times (7.19.4.4).”

Implementation-Defined Behavior

 2012 Microchip Technology Inc. DS51686E-page 201

Implementation: Temporary names will wrap around and be reused.

ISO Standard: “Which changes of mode are permitted (if any), and under what circum-
stances (7.19.5.4).”

Implementation: The file is closed via the system level close function and re-opened
with the open function with the new mode. No additional restriction
beyond those of the application defined open and close functions
are imposed.

ISO Standard: “The style used to print an infinity or NaN, and the meaning of the
n-char-sequence if that style is printed for a NaN (7.19.6.1, 7.24.2.1).”

Implementation: No char sequence is printed.
NaN is printed as “NaN”.
Infinity is printed as “[-/+]Inf”.

ISO Standard: “The output for %p conversion in the fprintf or fwprintf func-
tion (7.19.6.1, 7.24.2.1).”

Implementation: Functionally equivalent to %x.

ISO Standard: “The interpretation of a - character that is neither the first nor the last
character, nor the second where a ^ character is the first, in the scan-
list for %[conversion in the fscanf or fwscanf function (7.19.6.2,
7.24.2.1).”

Implementation: Unknown

ISO Standard: “The set of sequences matched by the %p conversion in the fscanf
or fwscanf function (7.19.6.2, 7.24.2.2).”

Implementation: The same set of sequences matched by %x.

ISO Standard: “The interpretation of the input item corresponding to a %p conversion
in the fscanf or fwscanf function (7.19.6.2, 7.24.2.2).”

Implementation: If the result is not a valid pointer, the behavior is undefined.

ISO Standard: “The value to which the macro errno is set by the fgetpos,
fsetpos, or ftell functions on failure (7.19.9.1, 7.19.9.3,
7.19.9.4).”

Implementation: If the result exceeds LONG_MAX, errno is set to ERANGE.
Other errors are application defined according to the application defini-
tion of the lseek function.

ISO Standard: “The meaning of the n-char-sequence in a string converted by the
strtod, strtof, strtold, wcstod, wcstof, or wcstold
function (7.20.1.3, 7.24.4.1.1).”

Implementation: No meaning is attached to the sequence.

ISO Standard: “Whether or not the strtod, strtof, strtold, wcstod,
wcstof, or wcstold function sets errno to ERANGE when under-
flow occurs (7.20.1.3, 7.24.4.1.1).”

Implementation: Yes.

ISO Standard: “Whether the calloc, malloc, and realloc functions return a
Null Pointer or a pointer to an allocated object when the size requested
is zero (7.20.3).”

Implementation: A pointer to a statically allocated object is returned.

ISO Standard: “Whether open output streams are flushed, open streams are closed,
or temporary files are removed when the abort function is called
(7.20.4.1).”

Implementation: No.

ISO Standard: “The termination status returned to the host environment by the abort
function (7.20.4.1).”

Implementation: By default, there is no host environment.

ISO Standard: “The value returned by the system function when its argument is not a
Null Pointer (7.20.4.5).”

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 202 2012 Microchip Technology Inc.

18.18 ARCHITECTURE

Implementation: Application defined.

ISO Standard: “The local time zone and Daylight Saving Time (7.23.1).”

Implementation: Application defined.

ISO Standard: “The era for the clock function (7.23.2.1).”

Implementation: Application defined.

ISO Standard: “The positive value for tm_isdst in a normalized tmx structure
(7.23.2.6).”

Implementation: 1.

ISO Standard: “The replacement string for the %Z specifier to the strftime,
strfxtime, wcsftime, and wcsfxtime functions in the “C”
locale (7.23.3.5, 7.23.3.6, 7.24.5.1, 7.24.5.2).”

Implementation: Unimplemented.

ISO Standard: “Whether or when the trigonometric, hyperbolic, base-e exponential,
base-e logarithmic, error, and log gamma functions raise the inexact
exception in an IEC 60559 conformant implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the inexact exception may be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 confor-
mant implementation (F.9).”

Implementation: No.

ISO Standard: “Whether the underflow (and inexact) exception may be raised when a
result is tiny but not inexact in an IEC 60559 conformant implementa-
tion (F.9).”

Implementation: No.

ISO Standard: “Whether the functions honor the Rounding Direction mode (F.9).”

Implementation: The Rounding mode is not forced.

ISO Standard: “The values or expressions assigned to the macros specified in the
headers <float.h>, <limits.h>, and <stdint.h> (C90 and
C99 5.2.4.2, C99 7.18.2, 7.18.3).”

Implementation: See Section 6.4.2 “limits.h”.

ISO Standard: “The number, order, and encoding of bytes in any object (when not
explicitly specified in the standard) (C99 6.2.6.1).”

Implementation: Little endian, populated from Least Significant Byte first. See
Section 6.3 “Data Representation”.

ISO Standard: “The value of the result of the size of operator (C90 6.3.3.4, C99
6.5.3.4).”

Implementation: See Section 6.3 “Data Representation”.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 203

Appendix 19. ASCII Character Set

TABLE 19-1: ASCII CHARACTER SET

Most Significant Character

Least

 Significant

 Character

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 204 2012 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 205

Appendix 20. Deprecated Features

20.1 INTRODUCTION

The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated
feature will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependency on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

Deprecated features covered are:

Variables in Specified Registers

20.2 VARIABLES IN SPECIFIED REGISTERS

The compiler allows you to put a few global variables into specified hardware registers.

You can also specify the register in which an ordinary register variable should be
allocated.

• Global register variables reserve registers throughout the program. This may be
useful in programs such as programming language interpreters which have a
couple of global variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The
compiler’s data flow analysis is capable of determining where the specified
registers contain live values, and where they are available for other uses. Stores
into local register variables may be deleted when they appear to be unused.
References to local register variables may be deleted, moved or simplified.

These local variables are sometimes convenient for use with the extended inline
assembly (see Chapter 14. “Mixing C/C++ and Assembly Language”), if you want
to write one output of the assembler instruction directly into a particular register. (This
will work provided the register you specify fits the constraints specified for that operand
in the inline assembly statement).

20.2.1 Defining Global Register Variables

You can define a global register variable like this:

register int *foo asm ("w8");

Here w8 is the name of the register which should be used. Choose a register that is
normally saved and restored by function calls (W8-W13), so that library routines will not
clobber it.

Note: Using too many registers, in particular register W0, may impair the ability of
the 32-bit compiler to compile. It is not recommended that registers be
placed into fixed registers.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 206 2012 Microchip Technology Inc.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted, moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them especially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of
this variable (i.e., in a source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t
expect a global register variable to be available in the comparison-function that you
pass to qsort, since qsort might have put something else in that register. This
problem can be avoided by recompiling qsort with the same global register variable
definition.

If you want to recompile qsort or other source files that do not actually use your global
register variable, so that they will not use that register for any other purpose, then it
suffices to specify the compiler command-line option -ffixed-reg. You need not
actually add a global register declaration to their source code.

A function that can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the
caller expects to find there on return. Therefore, the function that is the entry point into
the part of the program that uses the global register variable must explicitly save and
restore the value that belongs to its caller.

The library function longjmp will restore to each global register variable the value it
had at the time of the setjmp.

All global register variable declarations must precede all function definitions. If such a
declaration appears after function definitions, the register may be used for other
purposes in the preceding functions.

Global register variables may not have initial values because an executable file has no
means to supply initial contents for a register.

20.2.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("w8");

Here w8 is the name of the register that should be used. Note that this is the same
syntax used for defining global register variables, but for a local variable it would appear
within a function.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live.
Using this feature may leave the compiler too few available registers to compile certain
functions.

This option does not ensure that the compiler will generate code that has this variable
in the register you specify at all times. You may not code an explicit reference to this
register in an asm statement and assume it will always refer to this variable.

Assignments to local register variables may be deleted when they appear to be
unused. References to local register variables may be deleted, moved or simplified.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 207

Glossary

A

Absolute Section

A section with a fixed (absolute) address that cannot be changed by the linker.

Access Memory

PIC18 Only – Special registers on PIC18 devices that allow access regardless of the
setting of the Bank Select Register (BSR).

Access Entry Points

Access entry points provide a way to transfer control across segments to a function
which may not be defined at link time. They support the separate linking of boot and
secure application segments.

Address

Value that identifies a location in memory.

Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, …, 9).

ANDed Breakpoints

Set up an ANDed condition for breaking, i.e., breakpoint 1 AND breakpoint 2 must
occur at the same time before a program halt. This can only be accomplished if a data
breakpoint and a program memory breakpoint occur at the same time.

Anonymous Structure

32-bit C/C++ Compiler – An unnamed structure.

PIC18 C Compiler – An unnamed structure that is a member of a C union. The mem-
bers of an anonymous structure may be accessed as if they were members of the
enclosing union. For example, in the following code, hi and lo are members of an
anonymous structure inside the union caster.

union castaway
 int intval;
 struct {
 char lo; //accessible as caster.lo
 char hi; //accessible as caster.hi
 };
} caster;

ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 208 2012 Microchip Technology Inc.

Application

A set of software and hardware that may be controlled by a PIC® microcontroller.

Archive/Archiver

An archive/library is a collection of relocatable object modules. It is created by assem-
bling multiple source files to object files, and then using the archiver/librarian to com-
bine the object files into one archive/library file. An archive/library can be linked with
object modules and other archives/libraries to create executable code.

ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembly/Assembler

Assembly is a programming language that describes binary machine code in a sym-
bolic form. An assembler is a language tool that translates assembly language source
code into machine code.

Assigned Section

A section which has been assigned to a target memory block in the linker command file.

Asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

Attribute

Characteristics of variables or functions in a C program which are used to describe
machine-specific properties.

Attribute, Section

Characteristics of sections, such as “executable”, “readonly”, or “data” that can be
specified as flags in the assembler .section directive.

B

Binary

The base two numbering system that uses the digits 0-1. The rightmost digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

Breakpoint

Hardware Breakpoint: An event whose execution will cause a halt.

Software Breakpoint: An address where execution of the firmware will halt. Usually
achieved by a special break instruction.

Build

Compile and link all the source files for an application.

C

C\C++

C is a general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators. C++ is the
object-oriented version of C.

Calibration Memory

A special function register or registers used to hold values for calibration of a PIC
microcontroller on-board RC oscillator or other device peripherals.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 209

Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the arithmetic logic unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.

Clean

Clean removes all intermediary project files, such as object, hex and debug files, for
the active project. These files are recreated from other files when a project is built.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Compiler

A program that translates a source file written in a high-level language into machine
code.

Conditional Assembly

Assembly language code that is included or omitted based on the assembly-time value
of a specified expression.

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

Configuration Bits

Special-purpose bits programmed to set PIC microcontroller modes of operation. A
Configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.

CPU

See Central Processing Unit.

Cross Reference File

A file that references a table of symbols and a list of files that references the symbol. If
the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

D

Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 210 2012 Microchip Technology Inc.

Debug/Debugger

See ICE/ICD.

Debugging Information

Compiler and assembler options that, when selected, provide varying degrees of infor-
mation used to debug application code. See compiler or assembler documentation for
details on selecting debug options.

Deprecated Features

Features that are still supported for legacy reasons, but will eventually be phased out
and no longer used.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Digital Signal Controller

A digital signal controller (DSC) is a microcontroller device with digital signal processing
capability, i.e., Microchip dsPIC® DSC devices.

Digital Signal Processing/Digital Signal Processor

Digital Signal Processing (DSP) is the computer manipulation of digital signals, com-
monly analog signals (sound or image) which have been converted to digital form (sam-
pled). A digital signal processor is a microprocessor that is designed for use in digital
signal processing.

Directives

Statements in source code that provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.

DWARF

Debug With Arbitrary Record Format. DWARF is a debug information format for ELF
files.

E

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

ELF

Executable and Linking Format. An object file of this format contains machine code.
Debugging and other information is specified in with DWARF. ELF/DWARF provide
better debugging of optimized code than COFF.

Emulation/Emulator

See ICE/ICD.

Endianness

The ordering of bytes in a multi-byte object.

Environment

MPLAB PM3 – A folder containing files on how to program a device. This folder can be
transferred to a SD/MMC card.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 211

Epilogue

A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the runtime model. This code executes after any user code for a given function,
immediately prior to the function return.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.

Error/Error File

An error reports a problem that makes it impossible to continue processing your
program. When possible, an error identifies the source file name and line number
where the problem is apparent. An error file contains error messages and diagnostics
generated by a language tool.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W), and time stamp. Events are used to describe triggers,
breakpoints and interrupts.

Executable Code

Software that is ready to be loaded for execution.

Export

Send data out of the MPLAB IDE in a standardized format.

Expressions

Combinations of constants and/or symbols separated by arithmetic or logical
operators.

Extended Microcontroller Mode

In extended microcontroller mode, on-chip program memory as well as external mem-
ory is available. Execution automatically switches to external if the program memory
address is greater than the internal memory space of the PIC18 device.

Extended Mode (PIC18 MCUs)

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.

External Label

A label that has external linkage.

External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 212 2012 Microchip Technology Inc.

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM

Off-chip Read/Write memory.

F

Fatal Error

An error that will halt compilation immediately. No further messages will be produced.

File Registers

On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).

Filter

Determine by selection what data is included/excluded in a trace display or data file.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle instruc-
tion. Since the PIC microcontroller architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current instruction.
However, if the current instruction changes the program counter, this prefetched
instruction is explicitly ignored, causing a forced NOP cycle.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Provides a convenient base from
which to access local variables and other values for the current function.

Free-Standing

An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h> and
<stdint.h>.

G

GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

H

Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

Heap

An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at runtime.

Hex Code/Hex File

Hex code is executable instructions stored in a hexadecimal format code. Hex code is
contained in a hex file.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 213

Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f). The
digits A-F represent hexadecimal digits with values of (decimal) 10 to 15. The rightmost
digit counts ones, the next counts multiples of 16, then 162 = 256, etc.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

I

ICE/ICD

In-Circuit Emulator/In-Circuit Debugger: A hardware tool that debugs and programs a
target device. An emulator has more features than an debugger, such as trace.

In-Circuit Emulation/In-Circuit Debug: The act of emulating or debugging with an
in-circuit emulator or debugger.

-ICE/-ICD: A device (MCU or DSC) with on-board in-circuit emulation or debug circuitry.
This device is always mounted on a header board and used to debug with an in-circuit
emulator or debugger.

ICSP™ Programming Capability

In-Circuit Serial Programming™ programming capability. A method of programming
Microchip embedded devices using serial communication and a minimum number of
device pins.

IDE

Integrated Development Environment, as in MPLAB IDE.

Identifier

A function or variable name.

IEEE

Institute of Electrical and Electronics Engineers.

Import

Bring data into the MPLAB IDE from an outside source, such as from a hex file.

Initialized Data

Data which is defined with an initial value. In C,

int myVar=5;

defines a variable which will reside in an initialized data section.

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications. Also known as ISO.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 214 2012 Microchip Technology Inc.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed. Upon
completion of the ISR, normal execution of the application resumes.

Interrupt Handler

A routine that processes special code when an interrupt occurs.

Interrupt Service Request (IRQ)

An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine (ISR)

Language tools – A function that handles an interrupt.

MPLAB IDE – User-generated code that is entered when an interrupt occurs. The loca-
tion of the code in program memory will usually depend on the type of interrupt that has
occurred.

Interrupt Vector

Address of an interrupt service routine or interrupt handler.

L

L-value

An expression that refers to an object that can be examined and/or modified. An l-value
expression is used on the left-hand side of an assignment.

Latency

The time between an event and its response.

Library/Librarian

See Archive/Archiver.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.

Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for each C/C++
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.

Little Endian

A data ordering scheme for multibyte data whereby the least significant byte is stored
at the lower addresses.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 215

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.

Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Loop-Back Test Board

Used to test the functionality of the MPLAB REAL ICE™ in-circuit emulator.

LVDS

Low Voltage Differential Signaling. A low noise, low-power, low amplitude method for
high-speed (gigabits per second) data transmission over copper wire.

With standard I/0 signaling, data storage is contingent upon the actual voltage level.
Voltage level can be affected by wire length (longer wires increase resistance, which
lowers voltage). But with LVDS, data storage is distinguished only by positive and neg-
ative voltage values, not the voltage level. Therefore, data can travel over greater
lengths of wire while maintaining a clear and consistent data stream.

Source: http://www.webopedia.com/TERM/L/LVDS.html.

M

Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macro instruction. An instruction that represents a sequence of instructions in
abbreviated form.

Macro Directives

Directives that control the execution and data allocation within macro body definitions.

Makefile

Export to a file the instructions to Make the project. Use this file to Make your project
outside of MPLAB IDE, i.e., with a make.

Make Project

A command that rebuilds an application, recompiling only those source files that have
changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also µC.

Memory Model

For C compilers, a representation of the memory available to the application. For the
PIC18 C compiler, a description that specifies the size of pointers that point to program
memory.

http://www.webopedia.com/TERM/L/LVDS.html

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 216 2012 Microchip Technology Inc.

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microcontroller mode, only internal execution is allowed. Thus, only the on-chip pro-
gram memory is available in microcontroller mode.

Microprocessor Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microprocessor mode, the on-chip program memory is not used. The entire program
memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
opcodes.

MPASM™ Assembler

Microchip Technology’s relocatable macro assembler for PIC microcontroller devices,
KeeLoq® devices and Microchip memory devices.

MPLAB Language Tool for Device

Microchip’s C compilers, assemblers and linkers for specified devices. Select the type
of language tool based on the device you will be using for your application, e.g., if you
will be creating C code on a PIC18 MCU, select the MPLAB C Compiler for PIC18
MCUs.

MPLAB ICD

Microchip’s in-circuit debuggers that works with MPLAB IDE. See ICE/ICD.

MPLAB IDE

Microchip’s Integrated Development Environment. MPLAB IDE comes with an editor,
project manager and simulator.

MPLAB PM3

A device programmer from Microchip. Programs PIC18 microcontrollers and dsPIC
digital signal controllers. Can be used with MPLAB IDE or stand-alone. Replaces
PRO MATE II.

MPLAB REAL ICE In-Circuit Emulator

Microchip’s next-generation in-circuit emulators that works with MPLAB IDE. See
ICE/ICD.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PIC MCU and dsPIC
DSC devices.

MPLIB™ Object Librarian

Microchip’s librarian that can work with MPLAB IDE. MPLIB librarian is an object librar-
ian for use with COFF object modules created using either MPASM assembler (mpasm
or mpasmwin v2.0) or MPLAB C18 C compiler.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 217

MPLINK™ Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the
Microchip C18 C compiler. MPLINK linker also may be used with the Microchip MPLIB
librarian. MPLINK linker is designed to be used with MPLAB IDE, though it does not
have to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from MPLAB
IDE main pull down menus.

N

Native Data Size

For Native trace, the size of the variable used in a Watch window must be of the same
size as the selected device’s data memory: bytes for PIC18 devices and words for
16-bit devices.

Nesting Depth

The maximum level to which macros can include other macros.

Node

MPLAB IDE project component.

Non-Extended Mode (PIC18 MCUs)

In Non-Extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

Non Real Time

Refers to the processor at a breakpoint or executing single-step instructions or MPLAB
IDE being run in simulator mode.

Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the
program counter.

O

Object Code/Object File

Object code is the machine code generated by an assembler or compiler. An object file
is a file containing machine code and possibly debug information. It may be immedi-
ately executable or it may be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.

Object File Directives

Directives that are used only when creating an object file.

Octal

The base 8 number system that only uses the digits 0-7. The rightmost digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

Off-Chip Memory

Off-chip memory refers to the memory selection option for the PIC18 device where
memory may reside on the target board, or where all program memory may be supplied
by the emulator. The Memory tab accessed from Options>Development Mode pro-
vides the Off-Chip Memory selection dialog box.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 218 2012 Microchip Technology Inc.

Opcodes

Operational Codes. See Mnemonics.

Operators

Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are
erasable.

P

Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any PC running a supported Windows operating system.

Persistent Data

Data that is never cleared or initialized. Its intended use is so that an application can
preserve data across a device reset.

Phantom Byte

An unimplemented byte in the dsPIC DSC architecture that is used when treating the
24-bit instruction word as if it were a 32-bit instruction word. Phantom bytes appear in
dsPIC DSC hex files.

PIC MCUs

PIC microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICkit™ 2 and 3 Programmer/Debugger

Microchip’s developmental device programmers with debug capability through Debug
Express. See the Readme files for each tool to see which devices are supported.

Plug-ins

The MPLAB IDE has both built-in components and plug-in modules to configure the
system for a variety of software and hardware tools. Several plug-in tools may be found
under the Tools menu.

Pod

The enclosure for an in-circuit emulator or debugger. Other names are “Puck”, if the
enclosure is round, and “Probe”, not be confused with logic probes.

Power-on-Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

Pragma

A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. MPLAB C30 uses attributes to
convey this information.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 219

Precedence

Rules that define the order of evaluation in expressions.

Production Programmer

A production programmer is a programming tool that has resources designed in to pro-
gram devices rapidly. It has the capability to program at various voltage levels and com-
pletely adheres to the programming specification. Programming a device as fast as
possible is of prime importance in a production environment where time is of the
essence as the application circuit moves through the assembly line.

Profile

For MPLAB SIM simulator, a summary listing of executed stimulus by register.

Program Counter

The location that contains the address of the instruction that is currently executing.

Program Counter Unit

32-bit assembler – A conceptual representation of the layout of program memory. The
program counter increments by 2 for each instruction word. In an executable section,
2 program counter units are equivalent to 3 bytes. In a read-only section, 2 program
counter units are equivalent to 2 bytes.

Program Memory

MPLAB IDE – The memory area in a device where instructions are stored. Also, the
memory in the emulator or simulator containing the downloaded target application
firmware.

32-bit assembler/compiler – The memory area in a device where instructions are
stored.

Project

A project contains the files needed to build an application (source code, linker script
files, etc.) along with their associations to various build tools and build options.

Prologue

A portion of compiler-generated code that is responsible for allocating stack space, pre-
serving registers and performing any other machine-specific requirement specified in
the runtime model. This code executes before any user code for a given function.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PIC MCU devices have a PWM peripheral.

Q

Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

R

Radix

The number base, hex, or decimal, used in specifying an address.

RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 220 2012 Microchip Technology Inc.

Raw Data

The binary representation of code or data associated with a section.

Read Only Memory

Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

Real Time

When an in-circuit emulator or debugger is released from the halt state, the processor
runs in Real Time mode and behaves exactly as the normal chip would behave. In Real
Time mode, the real time trace buffer of an emulator is enabled and constantly captures
all selected cycles, and all break logic is enabled. In an in-circuit emulator or debugger,
the processor executes in real time until a valid breakpoint causes a halt, or until the
user halts the execution.

In the simulator, real time simply means execution of the microcontroller instructions as
fast as they can be simulated by the host CPU.

Real-Time Watch

A Watch window where the variables change in real-time as the application is run. See
individual tool documentation to determine how to set up a real-time watch. Not all tools
support real-time watches.

Recursive Calls

A function that calls itself, either directly or indirectly.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.

Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relaxation

The process of converting an instruction to an identical, but smaller instruction. This is
useful for saving on code size. MPLAB ASM30 currently knows how to RELAX a CALL
instruction into an RCALL instruction. This is done when the symbol that is being called
is within +/- 32k instruction words from the current instruction.

Relocatable

An object whose address has not been assigned to a fixed location in memory.

Relocatable Section

32-bit assembler – A section whose address is not fixed (absolute). The linker assigns
addresses to relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned to relo-
catable sections and all symbols in the relocatable sections are updated to their new
addresses.

ROM

Read Only Memory (Program Memory). Memory that cannot be modified.

Run

The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 221

Run-time Model

Describes the use of target architecture resources.

S

Scenario

For MPLAB SIM simulator, a particular setup for stimulus control.

Section

A portion of an application located at a specific address of memory.

Section Attribute

A characteristic ascribed to a section (e.g., an access section).

Sequenced Breakpoints

Breakpoints that occur in a sequence. Sequence execution of breakpoints is
bottom-up; the last breakpoint in the sequence occurs first.

Serialized Quick Turn Programming

Serialization allows you to program a serial number into each microcontroller device
that the Device Programmer programs. This number can be used as an entry code,
password or ID number.

Shell

The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows version.

Simulator

A software program that models the operation of devices.

Single Step

This command steps though code, one instruction at a time. After each instruction,
MPLAB IDE updates register windows, watch variables, and status displays so you can
analyze and debug instruction execution. You can also single step C compiler source
code, but instead of executing single instructions, MPLAB IDE will execute all assembly
level instructions generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on the proces-
sor bus at different times. For example, the executed opcodes appears on the bus as
a fetch during the execution of the previous instruction, the source data address and
value and the destination data address appear when the opcodes is actually executed,
and the destination data value appears when the next instruction is executed. The trace
buffer captures the information that is on the bus at one instance. Therefore, one trace
buffer entry will contain execution information for three instructions. The number of cap-
tured cycles from one piece of information to another for a single instruction execution
is referred to as the skew.

Skid

When a hardware breakpoint is used to halt the processor, one or more additional
instructions may be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in a formal programming language which can be translated into machine code
or executed by an interpreter.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 222 2012 Microchip Technology Inc.

Source File

An ASCII text file containing source code.

Special Function Registers (SFRs)

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.

SQTPsm

See Serialized Quick Turn Programming.

Stack, Hardware

Locations in PIC microcontroller where the return address is stored when a function call
is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.

MPLAB Starter Kit for Device

Microchip’s starter kits contains everything needed to begin exploring the specified
device. View a working application and then debug and program you own changes.

Static RAM or SRAM

Static Random Access Memory. Program memory you can read/write on the target
board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such
current information as cursor position, development mode and device, and active tool
bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When stepping
over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.
If for some reason the subroutine gets into an endless loop or does not return properly,
the next breakpoint will never be reached. The Step Over command is the same as
Single Step except for its handling of CALL instructions.

Step Out

Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.

Stimulus

Input to the simulator, i.e., data generated to exercise the response of simulation to
external signals. Often the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Storage Class

Determines the lifetime of the memory associated with the identified object.

Glossary

 2012 Microchip Technology Inc. DS51686E-page 223

Storage Qualifier

Indicates special properties of the objects being declared (e.g., const).

Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.

Symbol, Absolute

Represents an immediate value such as a definition through the assembly .equ
directive.

System Window Control

The system window control is located in the upper left corner of windows and some dia-
logs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”

T

Target

Refers to user hardware.

Target Application

Software residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE functions.

Trace

An emulator or simulator function that logs program execution. The emulator logs pro-
gram execution into its trace buffer which is uploaded to MPLAB IDE’s trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trace Macro

A macro that will provide trace information from emulator data. Since this is a software
trace, the macro must be added to code, the code must be recompiled or reassembled,
and the target device must be programmed with this code before trace will work.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 224 2012 Microchip Technology Inc.

Trigraphs

Three-character sequences, all starting with ??, that are defined by ISO C as
replacements for single characters.

U

Unassigned Section

A section which has not been assigned to a specific target memory block in the linker
command file. The linker must find a target memory block in which to allocate an
unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.

USB

Universal Serial Bus. An external peripheral interface standard for communication
between a computer and external peripherals over a cable using bi-serial transmission.
USB 1.0/1.1 supports data transfer rates of 12 Mbps. Also referred to as high-speed
USB, USB 2.0 supports data rates up to 480 Mbps.

V

Vector

The memory locations that an application will jump to when either a reset or interrupt
occurs.

W

Warning

MPLAB IDE – An alert that is provided to warn you of a situation that would cause phys-
ical damage to a device, software file, or equipment.

32-bit assembler/compiler – Warnings report conditions that may indicate a problem,
but do not halt processing. In MPLAB C30, warning messages report the source file
name and line number, but include the text ‘warning:’ to distinguish them from error
messages.

Watch Variable

A variable that you may monitor during a debugging session in a Watch window.

Watch Window

Watch windows contain a list of watch variables that are updated at each breakpoint.

Watchdog Timer (WDT)

A timer on a PIC microcontroller that resets the processor after a selectable length of
time. The WDT is enabled or disabled and set up using Configuration bits.

Workbook

For MPLAB SIM stimulator, a setup for generation of SCL stimulus.

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS51686E-page 225

Index

Symbols

.app_excpt Section ... 182

.bev_excpt Section ... 182

.bss ... 147

.bss Section .. 188

.config_address .. 180

.data .. 147

.data Section ... 186

.dbg_data Section 186

.dbg_excpt Section ... 182

.got Section ... 186

.h files, see header files

.heap .. 188

.lit4 .. 147

.lit4 Section ... 187

.lit8 .. 147

.lit8 Section ... 187

.ramfunc ... 148

.ramfunc Section .. 189

.reset Section ... 181

.rodata Section .. 185

.sbss .. 147

.sbss Section ... 188

.sbss2 Section ... 186

.sdata .. 147

.sdata Section ... 187

.sdata2 Section .. 185

.stack Section ... 188

.startup Section .. 183

.text Section ... 183

.vector_n Sections .. 183
“On Bootstrap” Procedure 154
preprocessor operator .. 170
preprocessor operator 170
#define ... 78
#ident .. 84
#if ... 71
#include ..78, 79
#line .. 80
#pragma ... 68
#pragma config ... 171
#pragma interrupt 171
#pragma vector ... 171

Numerics

-msmart-io= .. 61
PIC32MX Device-Specific Options

-msmart-io= ... 61
0b binary radix specifier .. 102
32-Bit C Compiler Macros 172

A

a0-a3 .. 141
absolute functions ... 29
absolute variables ... 29
addressr Attribute ... 123
alias (symbol) ... 124
__align qualifier ... 34
aligned (n) ...105, 106
always_inline ... 124
anonymous unions .. 99
-ansi ... 63, 64, 80, 130
ANSI C Standard

conformance .. 91
implementation-defined behavior 92

ANSI C standard ... 18
ANSI C, Strict .. 65
ANSI Standard Library Support 14
arrays .. 111

as dummy pointer targets 101
initialization ... 103

ASCII Character Set .. 203
ASCII characters

extended .. 103
asm ... 161
asm C statement ... 42
assembly code

mixing with C .. 161
assembly list files .. 59
Assembly Options ... 81

-Wa .. 81
attribute ... 105
Attribute, Function

address .. 123
alias (symbol) 124
always_inline .. 124
at_vector .. 124
const ... 124
deprecated ... 124
far .. 124
format (type, format_index,

first_to_check) 124
format_arg (index) 125
interrupt .. 125
longcall .. 125
malloc ... 125
mips16 ... 125
naked ... 125
near .. 125
noinline .. 125
no_instrument_function 84
nomips16 .. 125

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 226 2012 Microchip Technology Inc.

nonnull (index, ...) 125
noreturn ...70, 126
pure .. 126
ramfunc) .. 126
section (name) 126
unique_section 126
unused ... 126
used .. 127
vector ... 127
warn_unused_result 127
weak .. 127

Attribute, Variable
aligned (n)105, 106
cleanup (function) 106
deprecated ... 106
packed ... 106
section (“name”) 106
space ... 107
unique_section 107
unused ... 107
weak .. 107

at_vector Attribute 124
auto variables ..110, 112

initilization ... 147
memory allocation112–113

Automatic Variable ...68, 69
-aux-info ..63, 64

B

-B ...47, 82
Bad Virtual Address Register 149
BadVAddr. See Bad Virtual Address Register
__bank qualifier ... 33
_BEV_EXCPT_ADDR179, 182
biased exponent .. 96
binary constants

C code .. 102
Bit Fields .. 64
bit-fields .. 26, 27, 98–99
bitwise complement operator 118
BMXDKPBA ... 148
_bmxdkpba_address148, 155
BMXDUDBA ... 148
_bmxdudba_address148, 155
BMXDUPBA ... 148
_bmxdupba_address148, 155
Boot Memory Region

kseg0_boot_mem 179
kseg1_boot_mem 179

Bootstrap Exception .. 141
_bootstrap_exception_handler 156
_bootstrap_exception_handler() 141
Branch Delay .. 151
_bss_begin .. 188
_bss_end ... 188
Bus Matrix Register ... 148

BMXDKPBA .. 148
BMXDUDBA .. 148
BMXDUPBA .. 148

C

-C .. 78
-c .. 62, 81
C Dialect Control Options 63, 64

-ansi ... 63, 64
-aux-info .. 63, 64
-ffreestanding .. 63
-fno-asm .. 63, 64
-fno-builtin 63, 64
-fno-signed-bitfields 64
-fno-unsigned-bitfields 64
-fsigned-bitfields 64
-fsigned-char .. 64
-funsigned-bitfields 64
-funsigned-char 64
-fwritable-strings 64
-traditional ... 130
-ffreestanding .. 64

C Stack Usage ... 112
C standard libraries ... 56
__C32_VERSION__ ... 173
Call Main .. 155
calloc .. 114
Case Ranges ... 120
Cast ..68, 69, 70
casting ... 117
Cause ... 151
Cause Register .. 151
Cause Register .. 150
CCI .. 19
char .. 64, 65, 94, 128
char data types .. 24
character constants

in C ... 103
CHAR_BIT ... 94
CHAR_MAX ... 94
CHAR_MIN ... 94
cleanup (function) 106
clearing variables ... 147
Code Generation Conventions Options 83

-fargument-alias 83
-fargument-noalias 83
-fargument-noalias-global 83
-fcall-saved ... 83
-fcall-used ... 83
-ffixed ... 83
-finstrument-functions 84
-fno-ident ... 84
-fno-short-double 84
-fno-verbose-asm 84
-fpack-struct .. 84
-fpcc-struct-return 84
-fshort-enums .. 84
-fverbose-asm .. 84
-fvolatile ... 84
-fvolatile-global 84
-fvolatile-static 84

Code Size, Reduce .. 72, 73
Command Line Option, Compiler

-fdate-sections 106

Index

 2012 Microchip Technology Inc. DS51686E-page 227

-ffunction-sections 126
-fshort-enums .. 197
-funsigned-bitfields 197
-funsigned-char 94
-iquote .. 198
-l .. 81
-mdebugger ..182, 186
-mips16 ...56, 125
-mips16 -mno-float 56
-mlong-calls .. 125
-mno-float ... 56
-mprocessor ... 177
-o ex1.out ... 50
-O3 .. 56
-O3 -mips16 ... 56
-O3 -mips16 -mno-float 56
-O3 -mno-float 56
-Os .. 56
-Os -mips16 ... 56
-Os -mips16 -mno-float 56
-Os -mno-float 56
-Wall ... 68
-Wnonnull ... 125

Command Line Option, Linker
--defsym .. 177
--defsym_min_stack_size 112
-L .. 177

Command-Line Simulator .. 14
Comments ..65, 78
common compiler interface 19
Common Subexpression Elimination 73, 74, 75
Common Subexpressions 76
Compare ... 150
Compare Register ... 150
Compare Register ... 150
Compiler

Driver ..45, 82
compiler operating mode ... 13
Conditional Expression ... 120
Conditionals with Omitted Operands 120
Config .. 152
Config Register ... 152
Config1 ... 152
Config1 Register ... 152
Config2 ... 153
Config2 Register ... 153
Config3 ... 153
Config3 Register ... 153
confign ... 180
Configuration Memory Region

config3, config2, config1,
config0 .. 179

Configuration Pragma ..86, 87
Configuration Words ..86, 87
const .. 124
const objects

initialization .. 104
const objects

storage location .. 113
const qualifier .. 104

constants
C specifiers .. 102
character .. 103
string, see string literals 103

conversion between types 117
Count ...149, 150
Count Register .. 150
Count Register .. 150
CountDM ... 150
CP0 ... 149
CP0 Access Macros .. 89
CP0 Registers ... 149
Customer Support ... 12

D

-D ...78, 80
data memory ... 110
Data Memory Region

kseg1_data_mem 180
Data Memory Space .. 114
data types

floating point ... 97
size of ..23, 97

_data_end ... 187
DBD. See Debug Branch Delay
_DBG_CODE_ADDR179, 182
_DBG_EXCPT_ADDR179, 182
-dD ... 78
Debug .. 153
Debug Branch Delay ... 154
Debug Exception Program Counter 154
Debug Exception Save Register 154
Debug Executive Memory Region

debug_exec_mem 179
Debug Register ... 153
Debug Register .. 150
Debug Sections ... 190
Debug2 .. 154
Debug2 Register ... 154
debug_exec_mem ... 182
_DEBUGGER ..182, 186
Debugging Information .. 72
Debugging Options .. 72

-g .. 72
-Q .. 72
-save-temps ... 72

Defining Global Register Variables 205
--defsym ... 177
--defsym _ebase_address=A 152
--defsym _min_heap_size=M 144
--defsym _min_stack_size=N 144
--defsym, _min_heap_size 114
--defsym_min_stack_size 112
DEPC. See Debug Exception Program Counter
__deprecate qualifier ... 38
deprecated Attribute .. 70
deprecated Attribute106, 124
DeSave .. 154
device support ... 85
diagnostic files ... 59
Directories ..78, 80

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 228 2012 Microchip Technology Inc.

Directory Search Options .. 82
-B ...47, 82
-specs= .. 82

-dM ... 78
-dN ... 78
Documentation

Conventions ... 9
Layout .. 8

double ...84, 96, 128
driver

input files .. 46
driver option

CCI ... 43
driver options ..46, 60–83

E

-E ..62, 78, 79, 80, 81
EBase .. 152
EBase Register .. 152
_ebase_address152, 155
__eeprom qualifier ... 35
EJTAGver ... 153
_end ..155, 188
endianism .. 96
ENTRY .. 176
Environment Variables

PIC32_C_INCLUDE_PATH 46
PIC32_C_INCLUDE_PATH 46
PIC32_COMPILER_PATH 46
PIC32_EXEC_PREFIX 47
PIC32_LIBRARY_ PATH 47
TMPDIR ... 47
XC32_C_INCLUDE_PATH 46
XC32_COMPILER_PATH 46
XC32_EXEC_PREFIX 47
XC32_LIBRARY_ PATH 47

EPC ... 151
EPC Register .. 141, 151, 154
ERET ... 144
Error Control Options

-pedantic-errors 65
-Werror .. 70

Error Exception Program Counter 154
ErrorEPC. See Error Exception Program Counter
Exception Base Register 152
Exception Memory Region

exception_mem .. 179
Exception Program Counter 151
Exception Vector ... 139
exception_mem ... 182
EXL Bit .. 151
exponent .. 96
extended character set .. 103
Extensions ... 79
EXTERN .. 177
extern ... 70, 76, 84, 131
External Interrupt Controller 151

F

F constant suffix .. 103
-falign-functions .. 73

-falign-labels ... 73
-falign-loops ... 73
far ... 124
__far qualifier ... 30
-fargument-alias .. 83
-fargument-noalias 83
-fargument-noalias-global 83
fatal error messages .. 60
-fcaller-saves ... 73
-fcall-saved .. 83
-fcall-used .. 83
-fcse-follow-jumps 73
-fcse-skip-blocks .. 74
-fdata-sections 74, 106
-fdefer-pop. See -fno-defer
-fexpensive-optimizations 74
-ffixed .. 83, 206
-fforce-mem .. 73, 76
-ffreestanding ... 63, 64
-ffunction-sections 74, 126
-fgcse .. 74
-fgcse-lm ... 74
-fgcse-sm ... 74
File Extensions .. 48

file.c ... 48
file.h ... 48
file.i ... 48
file.ii ... 48
file.o ... 48
file.S ... 48
file.s ... 48

file types
input .. 46

file.c .. 48
file.h .. 48
file.i .. 48
file.o .. 48
file.S .. 48
file.s .. 48
-finline-functions 70, 73, 76, 130
-finline-limit=n .. 76
-finstrument-functions 84
-fkeep-inline-functions 76, 131
-fkeep-static-consts 76
Flags, Positive and Negative 76, 83
float ..84, 96, 128
float.h .. 96
floating-point constant suffixes 103
Floating-Point Format

double ... 96
float ... 96
long double ... 96

floating-point types .. 97
biased exponent ... 96
exponent ... 96
rounding ... 97

-fmove-all-movables 74
-fno ... 76, 83
-fno-asm ... 63, 64
-fno-builtin .. 63, 64

Index

 2012 Microchip Technology Inc. DS51686E-page 229

-fno-defer-pop ... 74
-fno-function-cse 76
-fno-ident .. 84
-fno-inline .. 77
-fno-keep-static-consts 76
-fno-peephole ... 74
-fno-peephole2 ... 74
-fno-short-double 84
-fno-show-column .. 78
-fno-signed-bitfields 64
-fno-unsigned-bitfields 64
-fno-verbose-asm .. 84
-fomit-frame-pointer 72, 73, 77
-foptimize-register-move 74
-foptimize-sibling-calls 77
format (type, format_index,
first_to_check) 124

format_arg (index) 125
fp ... 141
-fpack-struct ... 84
-fpcc-struct-return 84
Frame Pointer (W14) ..77, 83
-freduce-all-givs 74
-fregmove ... 74
-frename-registers 74
-frerun-cse-after-loop74, 75
-frerun-loop-opt .. 74
-fschedule-insns .. 75
-fschedule-insns2 75
-fshort-enums ..84, 197
-fsigned-bitfields 64
-fsigned-char ... 64
-fstrength-reduce 75
-fstrict-aliasing73, 75
-fsyntax-only ... 65
-fthread-jumps ..72, 75
function

parameters ..112, 128
pointers .. 101
specifiers .. 123

functions
absolute ... 29
static ... 123
written in assembler 161

-funroll-all-loops73, 75
-funroll-loops ..73, 75
-funsigned-bitfields64, 197
-funsigned-char64, 94
-fverbose-asm ... 84
-fvolatile .. 84
-fvolatile-global 84
-fvolatile-static 84
-fwritable-strings 64

G

-g ... 72
-G num .. 61
General Exception ... 141
_general_exception_context() 141
_general_exception_handler 156
_GEN_EXCPT_ADDR179, 182

Global Register Variables 205
-Gn ... 147
_gp .. 146, 155, 186
gp ...141, 146

H

-H .. 78
Hardware Enable Register 149
header file

search path .. 22
Header Files46, 48, 78, 79, 80
header files ...21, 159

device ..85, 88
Heap .. 144
_heap ...144, 155
--help .. 62
Hex File ... 50
hexadecimal constants

C code .. 102
hi .. 141
High-Priority Interrupts .. 133
HWREna .. 149

I

-I ...78, 80
-I- ..78, 80
identifiers

unique length of .. 23
-idirafter .. 78
-imacros ..78, 80
implementation-defined behavior 92
-include ..79, 80
Include Files .. 82
incremental builds ... 51
Inhibit Warnings ... 65
initialized variables .. 147
Inline ... 70, 73, 76
inline ... 77, 84, 130
INPUT .. 177
input files ... 46
int ..94, 128
IntCtl .. 150
integer constants ... 102
integer suffixes .. 102
Integer Values

char .. 94
int .. 94
long .. 94
long long .. 94
short ... 94
signed char ... 94
signed int ... 94
signed long ... 94
signed long long 94
signed short .. 94
unsigned char .. 94
unsigned int .. 94
unsigned long .. 94
unsigned long long 94
unsigned short .. 94

integral promotion .. 117

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 230 2012 Microchip Technology Inc.

Internet Address, Microchip 12
Interrupt

High Priority .. 133
Lower Priority ... 133

interrupt ... 125
Interrupt Attribute ... 134
interrupt Attribute .. 125
Interrupt Control Register 150
interrupt functions

context switching .. 142
interrupt handler function 134
Interrupt Pragma ... 135
Interrupt Pragma Clause 139
__interrupt qualifier .. 35
INT_MAX .. 95
INT_MIN .. 95
-iquote .. 198
__ISR(v, ipl) ... 135
__ISR_AT_VECTOR(v, ipl) 136
-isystem ... 82

K

k0 .. 141
k1 .. 141
kseg0_program_mem 183, 185, 186, 187
KSEG1 Data Memory .. 144
kseg1_boot_mem181, 182
kseg1_data_mem 186, 187, 188

L

-L ... 81, 82, 177
-l .. 81
L constant suffix .. 102
__LANGUAGE_ASSEMBLY 172
__LANGUAGE_ASSEMBLY__ 172
_LANGUAGE_ASSEMBLY 172
LANGUAGE_ASSEMBLY 172
__LANGUAGE_C .. 172
__LANGUAGE_C__ ... 172
_LANGUAGE_C .. 172
LANGUAGE_C .. 172
libraries .. 55

search order ... 46
user-defined ... 57

Library ... 81
ANSI Standard ... 14

limits.h ... 94
CHAR_BIT .. 94
CHAR_MAX .. 94
CHAR_MIN .. 94
INT_MAX .. 95
INT_MIN .. 95
LLONG_MAX .. 95
LLONG_MIN .. 95
LONG_MAX .. 95
LONG_MIN .. 95
MB_LEN_MAX ... 94
SCHAR_MAX .. 94
SCHAR_MIN .. 94
SHRT_MAX .. 94
SHRT_MIN .. 94

UCHAR_MAX .. 94
UINT_MAX .. 95
ULLONG_MAX ... 95
ULONG_MAX .. 95
USHRT_MAX .. 94

link ... 200
Linker ... 81
linker scripts ... 175
Linking Options .. 81

-L ... 81, 82
-l ... 81
-nodefaultlibs .. 81
-nostdlib .. 81
-s ... 82
-u ... 82
-Wl .. 82
-Xlinker .. 82

little endian format ... 96
little-endian .. 93
LLONG_MAX ... 95
LLONG_MIN ... 95
lo .. 141
Local Register Variables 205, 206
long ... 94, 128
Long double .. 128
long double .. 84, 96
long long ..70, 94, 128
longcall ... 125
longcall Attribute ... 127
LONG_MAX ... 95
LONG_MIN ... 95
__longramfunc__ ... 127
Loop Optimizer .. 74
Loop Unrolling ... 75
Lower-Priority Interrupts .. 133

M

-M .. 79
macro ..78, 80, 131
Macros

__C32_VERSION_ 173
__LANGUAGE_ASSEMBLY 172
__LANGUAGE_ASSEMBLY__ 172
_LANGUAGE_ASSEMBLY 172
LANGUAGE_ASSEMBLY 172
__LANGUAGE_C ... 172
__LANGUAGE_C__ 172
_LANGUAGE_C ... 172
LANGUAGE_C ... 172
_mchp_no_float 172
_MCHP_SZINT ... 172
_MCHP_SZLONG ... 172
_MCHP_SZPTR ... 172
__NO_FLOAT ... 172
__PIC__ ... 172
__pic__ ... 172
__PIC32_FEATURE_SET__ 172
__PIC32MX .. 172
__PIC32MX__ ... 172
PIC32MX ... 172
__processor__ .. 173

Index

 2012 Microchip Technology Inc. DS51686E-page 231

__VERSION__ ... 173
main ... 143
main function ..21, 143
main-line code ... 133
malloc ...114, 125
mantissa .. 96
map files .. 59
-mappio-debug ... 62
MB_LEN_MAX .. 94
-mcheck-zero-division 61
MCHP .. 172
_mchp_no_float ... 172
_MCHP_SZINT .. 172
_MCHP_SZLONG ... 172
_MCHP_SZPTR .. 172
-MD ... 79
-mdebugger ...182, 186
-membedded-data .. 61
memory allocation ... 109

data memory .. 110
function code .. 127
non-auto variables 110
program memory .. 113
static variables ... 110

memory models ... 114
messages

error, see error messages
fatal error .. 60
types of .. 60

-MF ... 79
-MG ... 79
_min_heap_size144, 177
_min_stack_size144, 177
MIPS .. 174
__mips .. 174
__mips__ ... 174
_mips .. 174
__mips16 ... 174
-mips16 .. 56, 61, 125
mips16 .. 125
-mips16 -mno-float 56
_MIPS_ARCH_PIC32MX 174
__MIPSEL ... 174
__MIPSEL__ .. 174
_MIPSEL ... 174
MIPSEL .. 174
_mips_fpr ... 174
_MIPS_ISA ... 174
__mips_isa_rev ... 174
_mips_no_float ... 174
__mips_soft_float 174
_MIPS_SZINT .. 174
_MIPS_SZLONG ... 174
_MIPS_SZPTR .. 174
_MIPS_TUNE_PIC32MX 174
-mlong-calls ..61, 125
-MM ... 79
-MMD ... 79
-mmemcpy ... 61
-mno-check-zero-division 61

-mno-embedded-data 61
-mno-float ...56, 61
-mno-long-calls .. 61
-mno-memcpy .. 61
-mno-mips16 ...56, 61
-mno-peripheral-libs 61
-mno-uninit-const-in-rodata 61
-MP ... 79
-mprocessor ...61, 177
-MQ ... 79
-msoft-float .. 56
-MT ... 79
MTC0 Instruction ... 151
-muninit-const-in-rodata 61
myMicrochip Personalized Notification Service 11

N

naked .. 125
near ... 125
__near qualifier .. 31
_nmi_handler .. 144
-nodefaultlibs ... 81
__NO_FLOAT .. 172
noinline ... 125
no_instrument_function Attribute 84
NOLOAD ...182, 186
nomips16 .. 125, 144, 156
nonnull (index, ...) 125
non-volatile RAM ... 104
NOP ... 183
noreturn ... 126
noreturn Attribute ... 70
-nostdinc ..78, 80
-nostdlib ... 81
NULL macro .. 28
NULL pointers ... 101

O

-O .. 72
-o ...50, 62
-o ex1.out .. 50
-O0 ..56, 72
-O1 ... 72
-O2 ..73, 76
-O3 ..56, 73
-O3 -mips16 .. 56
-O3 -mips16 -mno-float 56
-O3 -mno-float ... 56
Object File .. 74, 79, 81
Omitted Operands ... 120
_on_reset ... 157
Optimization Control Options 72

-falign-functions 73
-falign-labels .. 73
-falign-loops .. 73
-fcaller-saves .. 73
-fcse-follow-jumps 73
-fcse-skip-blocks 74
-fdata-sections 74
-fexpensive-optimizations 74
-fforce-mem ... 76

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 232 2012 Microchip Technology Inc.

-ffunction-sections 74
-fgcse ... 74
-fgcse-lm .. 74
-fgcse-sm .. 74
-finline-functions 76
-finline-limit=n 76
-fkeep-inline-functions 76
-fkeep-static-consts 76
-fmove-all-movables 74
-fno-defer-pop .. 74
-fno-function-cse 76
-fno-inline ... 77
-fno-peephole .. 74
-fno-peephole2 .. 74
-fomit-frame-pointer 77
-foptimize-register-move 74
-foptimize-sibling-calls 77
-freduce-all-givs 74
-fregmove .. 74
-frename-registers 74
-frerun-cse-after-loop 74
-frerun-loop-opt 74
-fschedule-insns 75
-fschedule-insns2 75
-fstrength-reduce 75
-fstrict-aliasing 75
-fthread-jumps .. 75
-funroll-all-loops 75
-funroll-loops .. 75
-O .. 72
-O0 .. 72
-O1 .. 72
-O2 .. 73
-O3 .. 73
-Os .. 73

Optimization, Loop .. 74
Optimization, Peephole ... 74
Options

Assembling ... 81
C Dialect Control ...63, 64
Code Generation Conventions 83
Debugging .. 72
Directory Search .. 82
Linking .. 81
Optimization Control ... 72
Output Control .. 62
Preprocessor Control 78
Warnings and Errors Control 65

-Os ..56, 73
-Os -mips16 .. 56
-Os -mips16 -mno-float 56
-Os -mno-float ... 56
Output Control Options .. 62

-c .. 62
-E .. 62
--help ... 62
-o .. 62
-S .. 62
-v .. 62
-x .. 62

output files
names of ... 58

OUTPUT_ARCH .. 176
OUTPUT_FORMAT ... 176

P

-P .. 80
__pack qualifier ... 37
packed .. 106
parameters, see function, parameters
-pedantic ... 65, 70
-pedantic-errors .. 65
Peephole Optimization .. 74
__persisten qualifier .. 32
persistent qualifier .. 147
persistent qualifier ... 157
__PIC__ .. 172
__pic__ .. 172
PIC32_C_INCLUDE_PATH 46
PIC32_C_INCLUDE_PATH 46
PIC32_COMPILER_PATH 46
PIC32_EXEC_PREFIX .. 47
__PIC32_FEATURE_SET__ 172
PIC32_LIBRARY_ PATH 47
__PIC32MX ... 172
__PIC32MX__ .. 172
PIC32MX .. 172
PIC32MX Device-Specific Options

-G num ... 61
-mappio-debug .. 62
-mcheck-zero-division 61
-membedded-data 61
-mips16 ... 61
-mlong-calls ... 61
-mmemcpy .. 61
-mno-check-zero-division 61
-mno-embedded-data 61
-mno-float ... 61
-mno-long-calls 61
-mno-memcpy ... 61
-mno-mips16 ... 61
-mno-peripheral-libs 61
-mno-uninit-const-in-rodata 61
-mprocessor ... 61
-muninit-const-in-rodata 61

PIC32MX Start-up Code .. 144
pointer

comparisons ... 101
definitions ... 100
qualifiers ... 100
types ... 100

Pointers ... 70
Frame ... 77, 83
Stack .. 83

pointers .. 100–101
assigning dummy targets 101
assigning integers .. 101
function ... 101

powerup routine ... 157
pragma directives .. 171
Pragmas

Index

 2012 Microchip Technology Inc. DS51686E-page 233

#pragma config 86, 87, 171
#pragma interrupt 171
#pragma vector 171

Predefined Macros .. 172
prefix ... 82
preprocessing .. 169
preprocessor

type conversions .. 170
Preprocessor Control Options 78

-C .. 78
-D .. 78
-dD .. 78
-dM .. 78
-dN .. 78
-fno-show-column 78
-H .. 78
-I .. 78
-I- .. 78
-idirafter ... 78
-imacros .. 78
-include .. 79
-M .. 79
-MD .. 79
-MF .. 79
-MG .. 79
-MM .. 79
-MMD ... 79
-MQ .. 79
-MT .. 79
-nostdinc ... 80
-P .. 80
-trigraphs ... 80
-U .. 80
-undef ... 80

preprocessor directives169–170
preprocessor macros

predefined .. 41
PRId ... 152
__processor__ ... 173
Processor Identification Register 152
processor.o .. 177
program memory ... 113
Program Memory Region

kseg0_program_mem 179
project name ... 59
PROVIDE ... 177
Provisions .. 58
pure ... 126

Q

-Q ... 72
qualifier

__align ... 34
auto ... 112
__bank ... 33
const .. 104
__deprecate ... 38
__eeprom ... 35
__far ... 30
__interrupt .. 35
__near .. 31

__pack .. 37
__persistent .. 32
persistent ..147, 157
__section .. 39
volatile .. 104
__xdata .. 33
__ydata .. 33

qualifiers ...104–105
and auto variables 112
and structures .. 98

R

__R3000 .. 174
__R3000__ ... 174
_R3000 .. 174
R3000 .. 174
ra .. 141
radix specifiers

C code .. 102
__ramfunc__ .. 127
ramfunc .. 126
_ramfunc_begin ... 155
_ramfunc_length148, 155
RAW Dependency ... 75
RDHWR .. 149
Reading, Recommended ... 10
read-only variables .. 104
realloc .. 114
Reduce Code Size ...72, 73
register ..205, 206
Register Conventions .. 121
registers

allocation to .. 114
Requested Interrupt Priority Level 151
_reset .. 176
reset

code executed after .. 157
_RESET_ADDR ...179, 181
Return Type ... 66
runtime startup code

variable initialization 147
rx .. 180

S

-S ...62, 81
-s .. 82
s0-s7 .. 141
-save-temps .. 72
sbrk ... 144
_sbss_begin .. 188
_sbss_end ... 188
SCHAR_MAX ... 94
SCHAR_MIN ... 94
Scheduling ... 75
_sdata_begin .. 187
_sdata_end .. 187
SDE Compatibility Macros 174

__mips ... 174
__mips__ .. 174
_mips ... 174
__mips16 .. 174

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 234 2012 Microchip Technology Inc.

_MIPS_ARCH_PIC32MX 174
__MIPSEL .. 174
__MIPSEL__ ... 174
_MIPSEL .. 174
MIPSEL ... 174
_mips_fpr .. 174
_MIPS_ISA .. 174
__mips_isa_rev 174
_mips_no_float 174
__mips_soft_float 174
_MIPS_SZINT ... 174
_MIPS_SZLONG .. 174
_MIPS_SZPTR ... 174
_MIPS_TUNE_PIC32MX 174
__R3000 .. 174
__R3000__ .. 174
_R3000 ... 174
R3000 ... 174

Section
Configuration Words .. 86

section ... 74
section (“name”) .. 106
section (name) ... 126
__section qualifier ... 39
SECTIONS Command180, 181
SFR Memory Region

sfrs .. 180
SFRs ... 88
Shadow Register Control Register 151
Shadow Register Map Register 151
short ...94, 128
SHRT_MAX ... 94
SHRT_MIN ... 94
sign bit ... 96
signed char .. 94
signed int .. 94
signed long .. 94
signed long long .. 94
signed short .. 94
Simulator, Command-Line 14
SI_TimerInt .. 150
size of types .. 97
sp ...141, 144
space Attribute .. 107
Special Function Registers 50
special function registers, see SFRs
Specifying Registers for Local Variables 206
-specs= .. 82
SR .. 141
SRSCtl .. 151
SRSMap .. 151
Stack

C Usage ... 112
Pointer (W15) ..83, 86

_stack ...144, 155, 189
Stack Location ... 189
Stack Pointer ... 144
Standard I/O Functions ... 14
standard library files
Start-up and Initialization ... 58

For C .. 58
For C++ .. 58

static .. 84
static functions ... 123
static variables ... 110
static variables ... 147
Status .. 150
Status Register .. 150
StatusBEV .. 152, 156
storage duration ... 110
string literals .. 103

concatenation ... 104
storage location .. 103
type of ... 103

Strings ... 64
struct types, see structures
Structure ... 128
structure bit-fields .. 98
structure qualifiers ... 98
structures ... 98

bit-fields in .. 98
switch ... 67
symbol ... 82
Syntax Check .. 65
System Function

link .. 200
unlink ... 200

System Header Files ... 67, 79

T

t0-t9 ... 141
temporary variables ... 112
TMPDIR .. 47
Trace Control Register .. 153
TraceBPC ... 153
TraceBPC Register .. 153
TraceControl .. 153
TraceControl2 ... 153
-traditional .. 64, 130
Traditional C .. 71
Trigraphs ... 67, 80
-trigraphs ... 80
Type Conversion ... 70
type conversions .. 117

U

-U .. 78, 80
-u .. 82
U constant suffix .. 102
UCHAR_MAX ... 94
UINT_MAX ... 95
ULLONG_MAX ... 95
ULONG_MAX ... 95
-undef .. 80
uninitilized variables .. 147
unions

anonymous ... 99
qualifiers ... 98

unique_section 107, 126
unlink .. 200
unnamed bit-fields ... 99

Index

 2012 Microchip Technology Inc. DS51686E-page 235

unnamed structure members 99
Unroll Loop .. 75
unsigned char ... 94
unsigned int ... 94
unsigned long ... 94
unsigned long long 94
unsigned short ... 94
unused Attribute 68, 107, 126
Unused Function Parameter 68
Unused Variable .. 68
unused variables

removing .. 104
USB ... 224
used Attribute .. 127
User Trace Data Register 153
UserTraceData ... 153
USHRT_MAX ... 94

V

-v ... 62
v0 ... 141
v1 ... 141
variables

absolute ... 29
auto ... 112
in program memory113–114
in registers ... 114
initialization .. 147
sizes ... 97
static ... 110
storage duration ... 110

Variables in Specified Registers 205
vector .. 127
Vector Pragma .. 140
_vector_spacing 150, 155, 178
__VERSION__ .. 173
volatile ... 84
volatile qualifier ... 104

W

-W ...65, 68, 69, 71
-w ... 65
w!x ... 180
-Wa ... 81
-Waggregate-return 69
-Wall ..65, 68, 69, 71
warning messages .. 60
Warnings and Errors Control Options 65

-fsyntax-only .. 65
-pedantic ... 65
-pedantic-errors 65
-W .. 69
-w .. 65
-Waggregate-return 69
-Wall ... 65
-Wbad-function-cast 69
-Wcast-align .. 69
-Wcast-qual ... 69
-Wchar-subscripts 65
-Wcomment ... 65
-Wconversion .. 70

-Wdiv-by-zero .. 65
-Werror ... 70
-Wformat .. 65
-Wimplicit ... 66
-Wimplicit-function-declaration 66
-Wimplicit-int .. 66
-Winline .. 70
-Wlarger-than- .. 70
-Wlong-long ... 70
-Wmain ... 66
-Wmissing-braces 66
-Wmissing-declarations 70
-Wmissing-format-attribute 70
-Wmissing-noreturn 70
-Wmissing-prototypes 70
-Wmultichar ... 66
-Wnested-externs 70
-Wno-long-long .. 70
-Wno-sign-compare 71
-Wpadded .. 70
-Wparentheses .. 66
-Wpointer-arith 70
-Wredundant-decls 70
-Wreturn-type .. 66
-Wsequence-point 67
-Wshadow .. 70
-Wsign-compare .. 71
-Wstrict-prototypes 71
-Wswitch .. 67
-Wsystem-headers 67
-Wtraditional .. 71
-Wtrigraphs ... 67
-Wundef .. 71
-Wuninitialized 68
-Wunknown-pragmas 68
-Wunreachable-code 71
-Wunused .. 68
-Wunused-function 68
-Wunused-label .. 68
-Wunused-parameter 68
-Wunused-value .. 68
-Wunused-variable 68
-Wwrite-strings 71
-Wno-multichar ... 66

Warnings, Inhibit .. 65
warn_unused_result 127
Watchdog Timer .. 224
-Wbad-function-cast 69
-Wcast-align .. 69
-Wcast-qual .. 69
-Wchar-subscripts .. 65
-Wcomment ... 65
-Wconversion .. 70
-Wdiv-by-zero ... 65
weak ..107, 127
Web Site, Microchip .. 12
-Werror .. 70
-Wformat ..65, 70
-Wimplicit .. 66
-Wimplicit-function-declaration 66

MPLAB® XC32 C/C++ Compiler User’s Guide

DS51686E-page 236 2012 Microchip Technology Inc.

-Wimplicit-int ... 66
-Winline ..70, 131
-Wl ... 82
-Wlarger-than- ... 70
-Wlong-long .. 70
-Wmain .. 66
-Wmissing-braces .. 66
-Wmissing-declarations 70
-Wmissing-format-attribute 70
-Wmissing-noreturn 70
-Wmissing-prototypes 70
-Wmultichar .. 66
-Wnested-externs .. 70
-Wno- .. 65
-Wno-deprecated-declarations 70
-Wno-div-by-zero .. 65
-Wno-long-long ... 70
-Wno-multichar ... 66
-Wnonnull ... 125
-Wno-sign-compare69, 71
-Wpadded ... 70
-Wparentheses ... 66
-Wpointer-arith .. 70
-Wredundant-decls .. 70
-Wreturn-type ... 66
-Wsequence-point .. 67
-Wshadow ... 70
-Wsign-compare ... 71
-Wstrict-prototypes 71
-Wswitch ... 67
-Wsystem-headers .. 67
-Wtraditional ... 71
-Wtrigraphs .. 67
-Wundef .. 71
-Wuninitialized .. 68
-Wunknown-pragmas67, 68
-Wunreachable-code 71
-Wunused ..68, 69
-Wunused-function .. 68
-Wunused-label ... 68
-Wunused-parameter 68
-Wunused-value ... 68
-Wunused-variable .. 68
-Wwrite-strings .. 71

X

-x .. 62
xc.h header file ... 85
XC32_C_INCLUDE_PATH 46
XC32_COMPILER_PATH 46
XC32_EXEC_PREFIX .. 47
xc32-gcc ... 45
XC32_LIBRARY_ PATH 47
__xdata qualifier .. 33
-Xlinker ... 82

Y

__ydata qualifier .. 33

Index

 2012 Microchip Technology Inc. DS51686E-page 237

NOTES:

DS51686E-page 238 2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

http://www.microchip.com/

support

Web Address:

www.microchip.com

Atlanta
Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Boston
Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago
Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Cleveland
Independence, OH

Tel: 216-447-0464

Fax: 216-447-0643

Dallas
Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit
Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Indianapolis
Noblesville, IN

Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444

Fax: 408-961-6445

Toronto
Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor

Tower 6, The Gateway

Harbour City, Kowloon

Hong Kong

Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511

Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588

Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187

Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512

Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818

Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869

Fax: 44-118-921-5820

Worldwide Sales and Service

08/02/11

http://support.microchip.com
http://www.microchip.com

	Documentation Conventions
	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Device Description
	1.3 Compiler Description and Documentation
	1.3.1 Conventions
	1.3.2 ANSI C Standards
	1.3.3 Optimization
	1.3.4 ANSI Standard Library Support
	1.3.5 ISO/IEC C++ Standard
	1.3.6 Compiler Driver
	1.3.7 Documentation

	1.4 Compiler and Other Development Tools
	Chapter 2. Common C Interface
	2.1 Introduction
	2.2 Background – The Desire for Portable Code
	2.2.1 The ANSI Standard
	2.2.2 The Common C Interface

	2.3 Using the CCI
	2.4 ANSI Standard Refinement
	2.4.1 Source File Encoding
	2.4.1.1 Example
	2.4.1.2 Differences
	2.4.1.3 Migration to the CCI

	2.4.2 The Prototype for main
	2.4.2.1 Example
	2.4.2.2 Differences
	2.4.2.3 Migration to the CCI

	2.4.3 Header File Specification
	2.4.3.1 Example
	2.4.3.2 Differences
	2.4.3.3 Migration to the CCI

	2.4.4 Include Search Paths
	2.4.4.1 Example
	2.4.4.2 Differences
	2.4.4.3 Migration to the CCI

	2.4.5 The Number of Significant Initial Characters in an Identifier
	2.4.5.1 Example
	2.4.5.2 Differences
	2.4.5.3 Migration to the CCI

	2.4.6 Sizes of Types
	2.4.6.1 Example
	2.4.6.2 Differences
	2.4.6.3 Migration to the CCI

	2.4.7 Plain char Types
	2.4.7.1 Example
	2.4.7.2 Differences
	2.4.7.3 Migration to the CCI

	2.4.8 Signed Integer Representation
	2.4.8.1 Example
	2.4.8.2 Differences
	2.4.8.3 Migration to the CCI

	2.4.9 Integer conversion
	2.4.9.1 Example
	2.4.9.2 Differences
	2.4.9.3 Migration to the CCI

	2.4.10 Bit-wise Operations on Signed Values
	2.4.10.1 Example
	2.4.10.2 Differences
	2.4.10.3 Migration to the CCI

	2.4.11 Right-shifting Signed Values
	2.4.11.1 Example
	2.4.11.2 Differences
	2.4.11.3 Migration to the CCI

	2.4.12 Conversion of Union Member Accessed Using Member With Different Type
	2.4.12.1 Example
	2.4.12.2 Differences
	2.4.12.3 Migration to the CCI

	2.4.13 Default Bit-field int Type
	2.4.13.1 Example
	2.4.13.2 Differences
	2.4.13.3 Migration to the CCI

	2.4.14 Bit-fields Straddling a Storage Unit Boundary
	2.4.14.1 Example
	2.4.14.2 Differences
	2.4.14.3 Migration to the CCI

	2.4.15 The Allocation Order of Bits-field
	2.4.15.1 Example
	2.4.15.2 Differences
	2.4.15.3 Migration to the CCI

	2.4.16 The NULL macro
	2.4.16.1 Example
	2.4.16.2 Differences
	2.4.16.3 Migration to the CCI

	2.4.17 Floating-point sizes
	2.4.17.1 Example
	2.4.17.2 Differences
	2.4.17.3 Migration to the CCI

	2.5 ANSI Standard Extensions
	2.5.1 Generic Header File
	2.5.1.1 Example
	2.5.1.2 Differences
	2.5.1.3 Migration to the CCI

	2.5.2 Absolute addressing
	2.5.2.1 Example
	2.5.2.2 Differences
	2.5.2.3 Migration to the CCI
	2.5.2.4 Caveats

	2.5.3 Far Objects and Functions
	2.5.3.1 Example
	2.5.3.2 Differences
	2.5.3.3 Migration to the CCI
	2.5.3.4 Caveats

	2.5.4 Near Objects
	2.5.4.1 Example
	2.5.4.2 Differences
	2.5.4.3 Migration to the CCI
	2.5.4.4 Caveats

	2.5.5 Persistent Objects
	2.5.5.1 Example
	2.5.5.2 Differences
	2.5.5.3 Migration to the CCI
	2.5.5.4 Caveats

	2.5.6 X and Y Data Objects
	2.5.6.1 Example
	2.5.6.2 Differences
	2.5.6.3 Migration to the CCI
	2.5.6.4 Caveats

	2.5.7 Banked Data Objects
	2.5.7.1 Example
	2.5.7.2 Differences
	2.5.7.3 Migration to the CCI
	2.5.7.4 Caveats

	2.5.8 Alignment of Objects
	2.5.8.1 Example
	2.5.8.2 Differences
	2.5.8.3 Migration to the CCI
	2.5.8.4 Caveats

	2.5.9 EEPROM Objects
	2.5.9.1 Example
	2.5.9.2 Differences
	2.5.9.3 Migration to the CCI
	2.5.9.4 Caveats

	2.5.10 Interrupt Functions
	2.5.10.1 Example
	2.5.10.2 Differences
	2.5.10.3 Migration to the CCI
	2.5.10.4 Caveats

	2.5.11 Packing Objects
	2.5.11.1 Example
	2.5.11.2 Differences
	2.5.11.3 Migration to the CCI
	2.5.11.4 Caveats

	2.5.12 Indicating Antiquated Objects
	2.5.12.1 Example
	2.5.12.2 Differences
	2.5.12.3 Migration to the CCI
	2.5.12.4 Caveats

	2.5.13 Assigning Objects to Sections
	2.5.13.1 Example
	2.5.13.2 Differences
	2.5.13.3 Migration to the CCI
	2.5.13.4 Caveats

	2.5.14 Specifying Configuration Bits
	2.5.14.1 Example
	2.5.14.2 Differences
	2.5.14.3 Migration to the CCI
	2.5.14.4 Caveats

	2.5.15 Manifest Macros
	Table 2-1: Manifest macros defined by the CCI
	2.5.15.1 Example
	2.5.15.2 Differences
	2.5.15.3 Migration to the CCI
	2.5.15.4 Caveats

	2.5.16 In-line Assembly
	2.5.16.1 Example
	2.5.16.2 Differences
	2.5.16.3 Migration to the CCI
	2.5.16.4 Caveats

	2.6 Compiler Features
	2.6.1 Enabling the CCI
	2.6.1.1 Differences
	2.6.1.2 Migration to the CCI
	2.6.1.3 Caveats

	Chapter 3. Compiler Command Line Driver
	3.1 Introduction
	3.2 Invoking the Compiler
	3.2.1 Driver Command Line Format
	Table 3-1: Compiler-Related Environmental Variables

	3.2.2 Input File Types
	Table 3-2: File Names

	3.3 The C Compilation Sequence
	3.3.1 Single-step C Compilation
	3.3.1.1 Compiling a Single C File
	3.3.1.2 Compiling Multiple C Files

	3.3.2 Multi-step C Compilation

	3.4 The C++ Compilation Sequence
	3.4.1 Single-step C++ Compilation
	3.4.1.1 Compiling a Single C++ File

	3.4.2 Compiling Multiple C and C++ files

	3.5 Runtime Files
	3.5.1 Library Files
	3.5.1.1 Standard Libraries
	3.5.1.2 User-defined libraries

	3.5.2 Peripheral Library Functions

	3.6 Start-up and Initialization
	3.7 Compiler Output
	3.7.1 Output Files
	Table 3-3: File Names

	3.7.2 Diagnostic Files

	3.8 Compiler Messages
	3.9 Driver Option Descriptions
	Table 3-4: PIC32MX Device-Specific Options
	Table 3-5: Kind-of-Output Control Options
	Table 3-6: C Dialect Control Options
	Table 3-7: C++ Dialect Control Options
	Table 3-8: Warning and Error Options Implied by All Warnings
	Table 3-9: Warning and Error Options Not Implied by All Warnings
	Table 3-10: Debugging Options
	Table 3-11: General Optimization Options
	Table 3-12: Specific Optimization Options
	Table 3-13: Machine-Independent Optimization Options
	Table 3-14: Preprocessor Options
	Table 3-15: Assembly Options
	Table 3-16: Linking Options
	Table 3-17: Directory Search Options
	Table 3-18: Code Generation Convention Options

	Chapter 4. Device-Related Features
	4.1 Introduction
	4.2 Device Support
	4.3 Device Header Files
	4.3.1 CP0 Register Definitions Header File

	4.4 Stack
	4.4.1 Configuration Bit Access

	4.5 Using SFRs From C Code
	4.5.1 CP0 Register Definitions
	4.5.2 CP0 Register Field Definitions
	4.5.3 CP0 Access Macros
	4.5.4 Address Translation Macros

	Chapter 5. ANSI C Standard Issues
	5.1 Divergence from the ANSI C Standard
	5.2 Extensions to the ANSI C Standard
	5.2.1 Keyword Differences
	5.2.2 Statement Differences
	5.2.3 Expression Differences

	5.3 Implementation-defined behavior
	Chapter 6. Supported Data Types and Variables
	6.1 Introduction
	6.2 Identifiers
	6.3 Data Representation
	6.4 Integer Data Types
	6.5 Floating-Point Data Types
	Table 6-1: Floating-point format example IEEE 754
	Table 6-2: Ranges of floating-point type values

	6.6 Structures and Unions
	6.6.1 Structure and Union Qualifiers
	6.6.2 Bit Fields in Structures

	6.7 Pointer Types
	6.7.1 Combining Type Qualifiers and Pointers
	6.7.3 Function Pointers
	6.7.3.1 Special Pointer Targets

	6.8 Complex Data Types
	6.9 Constant Types and Formats
	Table 6-3: Radix formats
	Table 6-4: Suffixes and assigned types

	6.10 Standard Type Qualifiers
	6.10.1 Const Type Qualifier
	6.10.2 Volatile Type Qualifier

	6.11 Compiler-Specific Qualifiers
	6.12 Variable Attributes
	Chapter 7. Memory Allocation and Access
	7.1 Introduction
	7.2 Address Spaces
	7.3 Variables in Data Memory
	7.3.1 Non-auto Variable Allocation
	7.3.3 Non-auto Variable Size Limits
	7.3.4 Changing the Default Non-auto Variable Allocation

	7.4 Auto Variable Allocation and Access
	7.4.1 Local Variable Size Limits

	7.5 Variables in Program Memory
	7.5.1 Size Limitations of const Variables
	7.5.2 Changing the Default Allocation

	7.6 Variables in Registers
	7.7 Dynamic Memory Allocation
	7.8 Memory Models
	Chapter 8. Operators and Statements
	8.1 Introduction
	8.2 Integral Promotion
	8.3 Type References
	8.4 Labels as Values
	8.5 Conditional Operator Operands
	8.6 Case Ranges
	Chapter 9. Register Usage
	9.1 Introduction
	9.2 Register Usage
	9.3 Register Conventions
	Table 9-1: Register Conventions

	Chapter 10. Functions
	10.1 Writing Functions
	10.2 Function Attributes and Specifiers
	10.2.1 Function Attributes

	10.3 Allocation of Function Code
	10.4 Changing the Default Function Allocation
	10.5 Function Size Limits
	10.6 Function Parameters
	Table 10-1: Registers Required

	10.7 Function Return Values
	10.8 Calling Functions
	10.9 Inline Functions
	Chapter 11. Interrupts
	11.1 Introduction
	11.2 Interrupt Operation
	11.3 Writing an Interrupt Service Routine
	11.3.1 Interrupt Attribute
	11.3.3.1 __ISR(V, IPL)
	11.3.3.2 __ISR_AT_VECTOR(v, IPL)
	11.3.3.3 Interrupt-Vector Macros

	11.4 Associating a Handler Function with an Exception Vector
	11.4.1 Vector Attribute
	11.4.3 Vector Pragma

	11.5 Exception Handlers
	11.5.1 Bootstrap Exception
	11.5.2 General Exception

	11.6 Interrupt Service Routine Context Switching
	11.6.1 Context Restoration

	11.7 Latency
	11.8 Nesting Interrupts
	11.9 Enabling/Disabling Interrupts
	11.10 ISR Considerations
	Chapter 12. Main, Runtime Start-up and Reset
	12.1 Introduction
	12.2 The Main Function
	12.3 Runtime Start-up Code
	12.3.1 Jump to NMI Handler if an NMI Occurred
	12.3.5.2 Hardware Enable Register (HWREna – CP0 Register 7, Select 0)
	12.3.5.3 Bad Virtual Address Register (BadVAddr – CP0 Register 8, Select 0)
	12.3.5.4 Count Register (Count – CP0 Register 9, Select 0)
	12.3.5.5 Compare Register (Compare – CP0 Register 11, Select 0)
	12.3.5.7 Interrupt Control Register (IntCtl – CP0 Register 12, Select 1)
	12.3.5.8 Shadow Register Control Register (SRSCtl – CP0 Register 12, Select 2)
	12.3.5.9 Shadow Register Map Register (SRSMap – CP0 Register 12, Select 3)
	12.3.5.11 Exception Program Counter (EPC – CP0 Register 14, Select 0)
	12.3.5.12 Processor Identification Register (PRId – CP0 Register 15, Select 0)
	12.3.5.15 Trace Control Register (TraceControl – CP0 Register 23, Select 1)
	12.3.5.16 Trace Control 2 Register (TraceControl2 – CP0 Register 23, Select 2)
	12.3.5.18 TraceBPC Register (TraceBPC – CP0 Register 23, Select 4)
	12.3.5.19 Debug2 Register (Debug2 – CP0 Register 23, Select 5)
	12.3.5.20 Debug Exception Program Counter (DEPC – CP0 Register 24, Select 0)
	12.3.5.22 Debug Exception Save Register (DeSave – CP0 Register 31, Select 0)

	12.3.7 Change Location of Exception Vectors
	12.3.8 Call the C++ initialization code
	12.3.9 Call Main

	12.4 The On Reset Routine
	12.4.1 Clearing Objects

	Chapter 13. Library Routines
	13.1 Using Library Routines
	Chapter 14. Mixing C/C++ and Assembly Language
	14.1 Introduction
	14.2 Using Inline Assembly Language
	Table 14-1: Register Constraint Letters Supported by the Compiler
	Table 14-2: Integer Constraint Letters Supported by the Compiler
	Table 14-3: General Constraint Letters Supported by the Compiler
	Table 14-4: Constraint Modifiers Supported by the Compiler
	14.2.1 Equivalent Assembly Symbols

	14.3 Predefined Assembly Macros
	Table 14-5: Predefined Macros

	Chapter 15. Optimizations
	15.1 Introduction
	Chapter 16. Preprocessing
	16.1 Introduction
	16.2 C/C++ Language Comments
	16.3 Preprocessor Directives
	Table 16-1: Preprocessor directives

	16.4 Pragma Directives
	16.5 Predefined Macros
	16.5.1 32-Bit C/C++ Compiler Macros

	Chapter 17. Linking Programs
	17.1 Introduction
	17.2 Replacing Library Symbols
	17.3 Linker-Defined Symbols
	17.4 Default Linker Script
	17.4.1 Output Format and Entry Points
	17.4.3.2 OPTIONAL Inclusion of Processor-Specific Peripheral Libraries
	17.4.3.3 Base Exception Vector Address and Vector Spacing Symbols
	17.4.4.2 .bev_excpt Section
	17.4.4.3 .dbg_excpt Section
	17.4.4.5 .app_excpt Section
	17.4.4.6 .vector_0 .. .vector_63 Sections
	17.4.4.7 .start-up Section
	17.4.4.9 C++ Initialization Sections
	17.4.4.10 .rodata Section
	17.4.4.12 .sbss2 Section
	17.4.4.14 .data Section
	17.4.4.15 .got Section
	17.4.4.16 .sdata Section
	17.4.4.18 .lit4 Section
	17.4.4.19 .sbss Section
	17.4.4.21 .heap Section
	17.4.4.23 .ramfunc Section
	17.4.4.24 Stack Location

	Appendix 18. Implementation-Defined Behavior
	18.1 Introduction
	18.2 Highlights
	18.3 Overview
	18.4 Translation
	18.5 Environment
	18.6 Identifiers
	18.7 Characters
	18.8 Integers
	18.9 Floating-Point
	18.10 Arrays and Pointers
	18.11 Hints
	18.12 Structures, Unions, Enumerations, and Bit fields
	18.13 Qualifiers
	18.14 Declarators
	18.15 Statements
	18.16 Pre-Processing Directives
	18.17 Library Functions
	18.18 Architecture
	Appendix 19. ASCII Character Set
	Table 19-1: ASCII character set

	Appendix 20. Deprecated Features
	20.1 Introduction
	20.2 Variables in Specified Registers
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Indianapolis
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham
	Worldwide Sales and Service

