
BOURNS®

- Designed for Complementary Use with the BD245 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD246		-55		
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD246A	N.	-70	V	
	BD246B	VCER	-90		
	BD246C		-115		
	BD246		-45		
Collector-emitter voltage (I _C = -30 mA)	BD246A	V	-60	٧	
	BD246B	V _{CEO}	-80		
	BD246C		-100		
Emitter-base voltage		V _{EBO}	-5	V	
Continuous collector current		I _C	-10	Α	
Peak collector current (see Note 1)		I _{CM}	-15	Α	
Continuous base current	I _B	-3	Α		
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	80	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			3	W	
Unclamped inductive load energy (see Note 4)		½Ll _C ²	62.5	mJ	
Operating junction temperature range		Tj	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds	T _L	250	°C		

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

electrical characteristics at 25°C case temperature

	PARAMETER		TEST CONDITIONS	S	MIN	TYP	MAX	UNIT	
	0.11			BD246	-45				
V _{(BR)CEO}	Collector-emitter breakdown voltage	$I_{\rm C} = -30 \text{mA}$	$I_{B} = 0$	BD246A	-60			V	
(51.)020		(see Note 5)	5	BD246B	-80				
				BD246C	-100				
		V _{CE} = -55 V	$V_{BE} = 0$	BD246			-0.4		
1	Collector-emitter	$V_{CE} = -70 \text{ V}$	$V_{BE} = 0$	BD246A			-0.4	mA	
ICES	cut-off current	$V_{CE} = -90 \text{ V}$	$V_{BE} = 0$	BD246B			-0.4		
		V _{CE} = -115 V	$V_{BE} = 0$	BD246C			-0.4		
	Collector cut-off	V _{CE} = -30 V	I _B = 0	BD246/246A			-0.7	mA	
I _{CEO}	current	$V_{CE} = -60 \text{ V}$	$I_B = 0$	BD246B/246C			-0.7		
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0				-1	mA	
	Forward current	V _{CE} = -4 V	I _C = -1 A		40				
h _{FE}	transfer ratio	$V_{CF} = -4 V$	$V_{CE} = -4 V$	$I_C = -3 A$	(see Notes 5 and 6)	20			
		V _{CE} = -4 V	$I_C = -10 \text{ A}$		4				
V	Collector-emitter	I _B = -0.3 A	I _C = -3 A	(see Notes 5 and 6)			-1	V	
V _{CE(sat)}	saturation voltage	I _B = -2.5 A	$I_C = -10 \text{ A}$	(see Notes 5 and 6)		-4	-4	v	
V _{BE}	Base-emitter	V _{CE} = -4 V	I _C = -3 A	(see Notes 5 and 6)			-1.6	V	
V BE	voltage	V _{CE} = -4 V	$I_{\rm C} = -10 {\rm A}$	(See Notes 5 and 6)	-3	-3	•		
h _{fe}	Small signal forward	V _{CE} = -10 V	/ I _C = -0.5 A	f = 1 kHz	20				
' 'fe	current transfer ratio	ACE = 10 A	1C = -0.0 A	- T-N 12	20				
h _{fe}	Small signal forward	V _{CF} = -10 V	I _C = -0.5 A	f = 1 MHz	3				
ı, i.eı	current transfer ratio	-CE - 10 F	.0 = 0.071		,				

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300$ µs, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC} Junction to case thermal resistance			1.56	°C/W
R _{0JA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †		MIN	TYP	MAX	UNIT	
t _{on}	Turn-on time	I _C = -1 A	$I_{B(on)} = -0.1 A$	$I_{B(off)} = 0.1 A$		0.2		μs
t _{off}	Turn-off time	$V_{BF(off)} = 3.7 \text{ V}$	$R_1 = 20 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		0.8		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

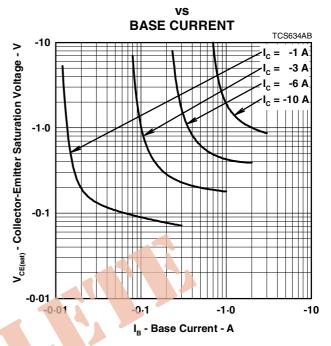
^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

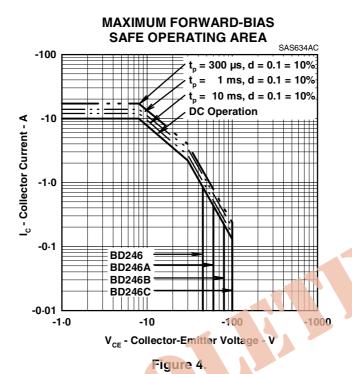
TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT TCS634AG T_C = 25°C T_C = 300 µs, duty cycle < 2% 100 I_C - Collector Current - A

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE




Figure 2.

BASE-EMITTER VOLTAGE VS COLLECTOR CURRENT TCS634AC TC = 25 °C TC = -4 V TC = 25 °C -1.0 -0.6 -0.1 I_c - Collector Current - A

Figure 3.

PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION **CASE TEMPERATURE** TIS633AA \mathbf{P}_{tot} - Maximum Power Dissipation - W 80 60 40 20 0 0 25 50 75 100 150 125 $\rm T_{\rm C}$ - Case Temperature - $^{\circ}\rm C$

Figure 5.